The Potential of Artificial Intelligence to Improve Selection Criteria for Liver Transplantation in HCC
Simple Summary
Abstract
1. Introduction
2. Different HCC Classification Systems and Prediction of Tumor Recurrence
2.1. Imaging Methods in the Diagnosis of HCC and LI-RADS-Classification
2.2. Organ Allocation Depending on Static Modalities Such as Radiologic and Histological Staging Criteria
2.3. Estimation of the Risk of Tumor Recurrence Depending on Laboratory Scores and Additional Preoperative Parameters
2.4. Non-Invasive Detection of Microvascular Invasion Before Liver Transplantation
2.5. Response Rate to Locoregional Procedures
3. Artificial Intelligence in HCC Diagnosis
3.1. Automated Diagnosis of HCC Nodules Using Radiomics
3.2. Deep Learning Approaches for Detection of LI-RADS 5 Nodes, MVI, and Locoregional Treatment Success
3.3. How to Facilitate Uniform Decision-Making in the Transplant Conference?
3.4. Ab Initio Transplantation or Salvage LT? Living Donor Liver Transplantation for Everyone?
3.5. Limitations of AI in HCC Diagnostics and Organ Allocation
3.6. Practical Implications for Transplant Selection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| AFP | alpha fetoprotein |
| AI | artificial intelligence |
| CCC | cholangiocellular carcinoma |
| CEUS | contrast-enhanced ultrasonography |
| CNN | convolutional neural network |
| CT | computed tomography |
| DCP | des-gamma-carboxy prothrombin |
| EASL | European Association for the Study of the Liver |
| GBDT | gradient boosting decision tree |
| HCC | hepatocellular carcinoma |
| LASSO | least absolute shrinkage and selection operator |
| LI-RADS | Liver Imaging-Reporting and Data System |
| LRT | locoregional treatment |
| LT | liver transplantation |
| MASH | Metabolic Dysfunction-associated Steatohepatitis |
| MC | Milan criteria |
| MRI | magnetic resonance imaging |
| MVI | microvascular invasion |
| RFA | radiofrequency ablation |
| SIRT | selective internal radiotherapy |
| TACE | transarterial chemoembolization |
| TIPS | transjugular intrahepatic portosystemic shunt |
| UCSF | University of California San Francisco |
| UNOS | United Network for Organ Sharing |
| US | ultrasonography |
References
- International Agency for Research on Cancer, World Health Organization. Cancer Today. Globocan 2022. Available online: https://gco.iarc.fr/today/home (accessed on 6 November 2025).
- Vibert, E.; Schwartz, M.; Olthoff, K.M. Advances in resection and transplantation for hepatocellular carcinoma. J. Hepatol. 2020, 72, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Clavien, P.A.; Lesurtel, M.; Bossuyt, P.M.; Gores, G.J.; Langer, B.; Perrier, A.; OLT for HCC Consensus Group. Recommendations for liver transplantation for hepatocellular carcinoma: An international consensus conference report. Lancet Oncol. 2012, 13, e11–e22. [Google Scholar] [CrossRef]
- Gundlach, J.P.; Schmidt, S.; Bernsmeier, A.; Gunther, R.; Kataev, V.; Trentmann, J.; Schäfer, J.P.; Röcken, C.; Becker, T.; Braun, F. Indication of Liver Transplantation for Hepatocellular Carcinoma Should Be Reconsidered in Case of Microvascular Invasion and Multilocular Tumor Occurrence. J. Clin. Med. 2021, 10, 1155. [Google Scholar] [CrossRef]
- Court, C.M.; Harlander-Locke, M.P.; Markovic, D.; French, S.W.; Naini, B.V.; Lu, D.S.; Raman, S.; Kalas, F.; Zarinpar, A.; Farmer, D.; et al. Determination of hepatocellular carcinoma grade by needle biopsy is unreliable for liver transplant candidate selection. Liver Transplant. 2017, 23, 1123–1132. [Google Scholar] [CrossRef]
- Nagami, N.; Arimura, H.; Nojiri, J.; Yunhao, C.; Ninomiya, K.; Ogata, M.; Oishi, M.; Ohira, K.; Kitamura, S.; Irie, H. Dual segmentation models for poorly and well-differentiated hepatocellular carcinoma using two-step transfer deep learning on dynamic contrast-enhanced CT images. J. Digit. Imaging 2023, 46, 83–97. [Google Scholar] [CrossRef]
- Chen, C.; Chen, C.; Ma, M.; Ma, X.; Lv, X.; Dong, X.; Yan, Z.; Zhu, M.; Chen, J. Classification of multi-differentiated liver cancer pathological images based on deep learning attention mechanism. BMC Med. Inform. Decis. Mak. 2022, 22, 176. [Google Scholar] [CrossRef]
- Wei, J.; Jiang, H.; Zeng, M.; Wang, M.; Niu, M.; Gu, D.; Chong, H.; Zhang, Y.; Fu, F.; Zhou, M.; et al. Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Deep Learning: A Multi-Center and Prospective Validation Study. Cancers 2021, 13, 2368. [Google Scholar] [CrossRef]
- Bruix, J.; Sherman, M.; Llovet, J.M.; Beaugrand, M.; Lencioni, R.; Burroughs, A.K.; Christensen, E.; Pagliaro, L.; Colombo, M.; Rodés, I.; et al. Clinical Management of Hepatocellular Carcinoma. Conclusions of the Barcelona-2000 EASL Conference. J. Hepatol. 2001, 35, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, J.K. Overview of the Updated AASLD Guidelines for the Management of HCC. Gastroenterol. Hepatol. 2017, 13, 751–753. [Google Scholar]
- Sheu, J.C.; Sung, J.L.; Chen, D.S.; Lai, M.Y.; Wang, T.H.; Yu, J.Y.; Yang, P.M.; Chuang, C.N.; Yang, P.C.; Lee, C.S.; et al. Early detection of hepatocellular carcinoma by real-time ultrasonography. A prospective study. Cancer 1985, 56, 660–666. [Google Scholar] [CrossRef]
- Cottone, M.; Turri, M.; Caltagirone, M.; Maringhini, A.; Sciarrino, E.; Virdone, R.; Maringhini, A.; Sciarrino, E.; Demma, I.; Nicoli, E.; et al. Early detection of hepatocellular carcinoma associated with cirrhosis by ultrasound and alfafetoprotein: A prospective study. Hepatogastroenterology 1988, 35, 101–103. [Google Scholar]
- Kim, T.; Murakami, T.; Takahashi, S.; Tsuda, K.; Tomoda, K.; Narumi, Y.; Oi, H.; Nakamura, H. Optimal phases of dynamic CT for detecting hepatocellular carcinoma: Evaluation of unenhanced and triple-phase images. Abdom. Imaging 1999, 24, 473–480. [Google Scholar] [CrossRef]
- Yu, J.S.; Kim, K.W.; Kim, E.K.; Lee, J.T.; Yoo, H.S. Contrast enhancement of small hepatocellular carcinoma: Usefulness of three successive early image acquisitions during multiphase dynamic MR imaging. Am. J. Roentgenol. 1999, 173, 597–604. [Google Scholar] [CrossRef][Green Version]
- Torzilli, G.; Minagawa, M.; Takayama, T.; Inoue, K.; Hui, A.M.; Kubota, K.; Ohtomo, K.; Makuuchi, M. Accurate preoperative evaluation of liver mass lesions without fine-needle biopsy. Hepatology 1999, 30, 889–893. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, J.M.; Sirlin, C.B. CT and MR Imaging Diagnosis and Staging of Hepatocellular Carcinoma: Part I. Development, Growth, and Spread: Key Pathologic and Imaging Aspects. Radiology 2014, 272, 635–654. [Google Scholar] [CrossRef]
- Zhang, B.H.; Yang, B.H.; Tang, Z.Y. Randomized controlled trial of screening for hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2004, 130, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Jo, P.C.; Jang, H.J.; Burns, P.N.; Burak, K.W.; Kim, T.K.; Wilson, S.R. Integration of Contrast-enhanced US into a Multimodality Approach to Imaging of Nodules in a Cirrhotic Liver: How I Do It. Radiology 2017, 282, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Gordic, S.; Puippe, G.D.; Krauss, B.; Klotz, E.; Desbiolles, L.; Lesurtel, M.; Müllhaupt, B.; Pfammatter, T.; Alkadhi, H. Correlation between Dual-Energy and Perfusion CT in Patients with Hepatocellular Carcinoma. Radiology 2016, 280, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Taouli, B.; Koh, D.M. Diffusion-weighted MR Imaging of the Liver. Radiology 2010, 254, 47–66. [Google Scholar] [CrossRef]
- Motosugi, U.; Bannas, P.; Sano, K.; Reeder, S.B. Hepatobiliary MR contrast agents in hypovascular hepatocellular carcinoma: Early HCC and MRI. J. Magn. Reson. Imaging 2015, 41, 251–265. [Google Scholar] [CrossRef]
- Purysko, A.S.; Remer, E.M.; Coppa, C.P.; Leão Filho, H.M.; Thupili, C.R.; Veniero, J.C. LI-RADS: A Case-based Review of the New Categorization of Liver Findings in Patients with End-Stage Liver Disease. RadioGraphics 2022, 32, 1977–1995. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Bashir, M.R.; Corwin, M.T.; Cruite, I.; Dietrich, C.F.; Do, R.K.G.; Ehman, E.C.; Fowler, K.J.; Hussain, H.K.; Jha, R.C.; et al. Evidence Supporting LI-RADS Major Features for CT- and MR Imaging–based Diagnosis of Hepatocellular Carcinoma: A Systematic Review. Radiology 2018, 286, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Kielar, A.Z.; Chernyak, V.; Bashir, M.R.; Do, R.K.; Fowler, K.J.; Mitchell, D.G.; Cerny, M.; Elsayes, K.M.; Santillan, C.; Kamaya, A.; et al. LI-RADS 2017: An update. J. Magn. Reson. Imaging 2018, 47, 1459–1474. [Google Scholar] [CrossRef]
- Park, H.J.; Choi, B.I.; Lee, E.S.; Park, S.B.; Lee, J.B. How to Differentiate Borderline Hepatic Nodules in Hepatocarcinogenesis: Emphasis on Imaging Diagnosis. Liver Cancer 2017, 6, 189–203. [Google Scholar] [CrossRef]
- Chartampilas, E.; Rafailidis, V.; Georgopoulou, V.; Kalarakis, G.; Hatzidakis, A.; Prassopoulos, P. Current Imaging Diagnosis of Hepatocellular Carcinoma. Cancers 2022, 14, 3997. [Google Scholar] [CrossRef]
- Barat, M.; Nguyen, T.T.L.; Hollande, C.; Coty, J.B.; Hoeffel, C.; Terris, B.; Dohan, A.; Mallet, V.; Pol, S.; Soyer, P.; et al. LI-RADS v2018 major criteria: Do hepatocellular carcinomas in non-alcoholic steatohepatitis differ from those in virus-induced chronic liver disease on MRI? Eur. J. Radiol. 2021, 138, 109651. [Google Scholar] [CrossRef]
- Wong, K.; Ozeki, K.; Kwong, A.; Patel, B.N.; Kwo, P. The effects of a transjugular intrahepatic portosystemic shunt on the diagnosis of hepatocellular cancer. PLoS ONE 2018, 13, e0208233. [Google Scholar] [CrossRef]
- Sha, M.; Chen, C.; Shen, C.; Jeong, S.; Sun, H.Y.; Xu, N.; Hang, H.-L.; Cao, L.; Tong, Y. Clinical analysis of deceased donor liver transplantation in the treatment of hepatocellular carcinoma with segmental portal vein tumor thrombus: A long-term real-world study. Front. Oncol. 2022, 12, 971532. [Google Scholar] [CrossRef]
- Mehta, N.; Dodge, J.L.; Roberts, J.P.; Yao, F.Y. A novel waitlist dropout score for hepatocellular carcinoma—Identifying a threshold that predicts worse post-transplant survival. J. Hepatol. 2021, 74, 829–837. [Google Scholar] [CrossRef]
- Parikh, N.D.; Singal, A.G. Model for end-stage liver disease exception points for treatment-responsive hepatocellular carcinoma: MELD Exception Points for Treatment-Responsive HCC. Clin. Liver Dis. 2016, 7, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, V.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Gennari, L. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med. 1996, 334, 693–699. [Google Scholar] [CrossRef]
- Marsh, J. Liver organ allocation for hepatocellular carcinoma: Are we sure? Liver Transpl. 2003, 9, 693–696. [Google Scholar] [CrossRef]
- Yao, F. Liver transplantation for hepatocellular carcinoma: Expansion of the tumor size limits does not adversely impact survival. Hepatology 2001, 33, 1394–1403. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Llovet, J.M.; Miceli, R.; Bhoori, S.; Schiavo, M.; Mariani, L.; Camerini, T.; Roayaie, S.; Schwartz, M.E.; Grazi, G.L.; et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: A retrospective, exploratory analysis. Lancet Oncol. 2009, 10, 35–43. [Google Scholar] [CrossRef]
- Martins-Filho, S.N.; Paiva, C.; Azevedo, R.S.; Alves, V.A.F. Histological Grading of Hepatocellular Carcinoma-A Systematic Review of Literature. Front. Med. 2017, 4, 193. [Google Scholar] [CrossRef]
- Viveiros, A.; Zoller, H.; Finkenstedt, A. Hepatocellular carcinoma: When is liver transplantation oncologically futile? Transl. Gastroenterol. Hepatol. 2017, 2, 63. [Google Scholar] [CrossRef] [PubMed]
- DuBay, D.; Sandroussi, C.; Sandhu, L.; Cleary, S.; Guba, M.; Cattral, M.S.; McGilvray, I.; Ghanekar, A.; Selzner, M.; Greig, P.D.; et al. Liver transplantation for advanced hepatocellular carcinoma using poor tumor differentiation on biopsy as an exclusion criterion. Ann. Surg. 2011, 253, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. Test Characteristics of α-Fetoprotein for Detecting Hepatocellular Carcinoma in Patients with Hepatitis C: A Systematic Review and Critical Analysis. Ann. Intern. Med. 2003, 139, 46. [Google Scholar] [CrossRef]
- Toso, C.; Meeberg, G.; Hernandez-Alejandro, R.; Dufour, J.; Marotta, P.; Majno, P.; Majno, P.; Kneteman, N.M. Total tumor volume and alpha-fetoprotein for selection of transplant candidates with hepatocellular carcinoma: A prospective validation. Hepatology 2015, 62, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Duvoux, C.; Roudot-Thoraval, F.; Decaens, T.; Pessione, F.; Badran, H.; Piardi, T.; Francoz, C.; Compagnon, P.; Vanlemmens, C.; Dumortier, J.; et al. Liver transplantation for hepatocellular carcinoma: A model including alpha-fetoprotein improves the performance of Milan criteria. Gastroenterology 2012, 143, 986–994. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Sposito, C.; Zhou, J.; Pinna, A.D.; De Carlis, L.; Fan, J.; Cescon, M.; Di Sandro, S.; Yi-Feng, H.; Lauterio, A.; et al. Metroticket 2.0 Model for Analysis of Competing Risks of Death After Liver Transplantation for Hepatocellular Carcinoma. Gastroenterology 2018, 154, 128–139. [Google Scholar] [CrossRef]
- Lai, Q.; Lesari, S.; Sandri, G.B.L.; Lerut, J. Des-Gamma-Carboxy Prothrombin in Hepatocellular Cancer Patients Waiting for Liver Transplant: A Systematic Review and Meta-Analysis. Int. J. Biol. Markers 2017, 32, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Takada, Y.; Ito, T.; Ueda, M.; Sakamoto, S.; Haga, H.; Maetani, Y.; Maetani, Y.; Ogawa, K.; Ogura, Y.; Oike, F.; et al. Living Donor Liver Transplantation for Patients with HCC Exceeding the Milan Criteria: A Proposal of Expanded Criteria. Dig. Dis. 2007, 25, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, M.; Takada, Y.; Ogura, Y.; Oike, F.; Kaido, T.; Teramukai, S.; Uemoto, S. Significance of Des-Gamma-Carboxy Prothrombin in Selection Criteria for Living Donor Liver Transplantation for Hepatocellular Carcinoma. Am. J. Transplant. 2009, 9, 2362–2371. [Google Scholar] [CrossRef]
- Soejima, Y.; Taketomi, A.; Yoshizumi, T.; Uchiyama, H.; Aishima, S.; Terashi, T.; Shimada, M.; Maehara, Y. Extended Indication for Living Donor Liver Transplantation in Patients With Hepatocellular Carcinoma. Transplantation 2007, 83, 893–899. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, Y.; Kim, H.Y.; Cho, E.J.; Lee, D.H.; Yu, S.J.; Lee, J.W.; Yi, N.-J.; Lee, K.-W.; Kim, S.H.; et al. Serum Tumor Markers Provide Refined Prognostication in Selecting Liver Transplantation Candidate for Hepatocellular Carcinoma Patients Beyond the Milan Criteria. Ann. Surg. 2016, 263, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Norman, J.S.; Li, P.J.; Kotwani, P.; Shui, A.M.; Yao, F.; Mehta, N. AFP-L3 and DCP strongly predict early hepatocellular carcinoma recurrence after liver transplantation. J. Hepatol. 2023, 79, 1469–1477. [Google Scholar] [CrossRef]
- Toyoda, H.; Kumada, T.; Osaki, Y.; Oka, H.; Urano, F.; Kudo, M.; Kudo, M.; Matsunaga, T. Staging Hepatocellular Carcinoma by a Novel Scoring System (BALAD Score) Based on Serum Markers. Clin. Gastroenterol. Hepatol. 2006, 4, 1528–1536. [Google Scholar] [CrossRef]
- Wongjarupong, N.; Negron-Ocasio, G.M.; Chaiteerakij, R.; Addissie, B.D.; Mohamed, E.A.; Mara, K.C.; Mohamed, E.A.; Mara, K.C.; Harmsen, W.S.; Theobald, J.P.; et al. Model combining pre-transplant tumor biomarkers and tumor size shows more utility in predicting hepatocellular carcinoma recurrence and survival than the BALAD models. World J. Gastroenterol. 2018, 24, 1321–1331. [Google Scholar] [CrossRef]
- Park, G.C.; Hwang, S.; You, Y.K.; Choi, Y.; Kim, J.M.; Joo, D.J.; Ryu, J.H.; Choi, D.; Kim, B.-W.; Kim, D.-S.; et al. Quantitative Prediction of Posttransplant Hepatocellular Carcinoma Prognosis Using ADV Score: Validation with Korea-Nationwide Transplantation Registry Database. J. Gastrointest. Surg. 2023, 27, 1353–1366. [Google Scholar] [CrossRef]
- Kang, W.; Hwang, S.; Kaibori, M.; Kim, J.M.; Kim, K.S.; Kobayashi, T.; Kayashima, H.; Koh, Y.S.; Kubota, K.; Mori, A.; et al. Validation of quantitative prognostic prediction using ADV score for resection of hepatocellular carcinoma: A Korea–Japan collaborative study with 9200 patients. J. Hepatobiliary Pancreat. Sci. 2023, 30, 993–1005. [Google Scholar] [CrossRef]
- Tran, B.V.; Moris, D.; Markovic, D.; Zaribafzadeh, H.; Henao, R.; Lai, Q.; Florman, S.S.; Tabrizian, P.; Hayde, B.; Ruiz, R.M.; et al. Development and validation of a REcurrent Liver cAncer Prediction ScorE (RELAPSE) following liver transplantation in patients with hepatocellular carcinoma: Analysis of the US Multicenter HCC Transplant Consortium. Liver Transplant. 2023, 29, 683–697, Erratum in Liver Transplant. 2024, 30, E52. https://doi.org/10.1097/LVT.0000000000000391. [Google Scholar] [CrossRef]
- Sasaki, K.; Firl, D.J.; Hashimoto, K.; Fujiki, M.; Diago-Uso, T.; Quintini, C.; Eghtesad, B.; Fung, J.J.; Aucejo, F.N.; Miller, C.M. Development and validation of the HALT-HCC score to predict mortality in liver transplant recipients with hepatocellular carcinoma: A retrospective cohort analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.; Mantero, A.; Newcomb, C.; Delgado, C.; Forde, K.A.; Kaplan, D.E.; John, B.; Nuchovich, N.; Dominguez, B.; Emanuel, E.; et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma using the LiTES-HCC score. J. Hepatol. 2021, 74, 1398–1406. [Google Scholar] [CrossRef]
- Russo, F.P.; Imondi, A.; Lynch, E.N.; Farinati, F. When and how should we perform a biopsy for HCC in patients with liver cirrhosis in 2018? A review. Dig. Liver Dis. 2018, 50, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Y.; Chen, J.; Xia, C.C.; Cao, L.K.; Duan, T.; Song, B. Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis. World J. Gastroenterol. 2018, 24, 2348–2362. [Google Scholar] [CrossRef]
- Hong, S.B.; Choi, S.H.; Kim, S.Y.; Shim, J.H.; Lee, S.S.; Byun, J.H.; Park, S.H.; Kim, K.W.; Kim, S.; Lee, N.K. MRI Features for Predicting Microvascular Invasion of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Liver Cancer 2021, 10, 94–106. [Google Scholar] [CrossRef]
- Chandarana, H.; Robinson, E.; Hajdu, C.H.; Drozhinin, L.; Babb, J.S.; Taouli, B. Microvascular Invasion in Hepatocellular Carcinoma: Is It Predictable With Pretransplant MRI? Am. J. Roentgenol. 2011, 196, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.T.; Chen, R.C.; Lin, W.C.; Ko, C.J.; Chen, C.B.; Chen, Y.L. Prediction of Microvascular Invasion of Hepatocellular Carcinoma: Preoperative CT and Histopathologic Correlation. Am. J. Roentgenol. 2014, 203, W253–W259. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.L.; Liu, Q.P.; Sun, S.W.; Zhang, J.; Zhu, F.P.; Yang, G.; Yan, X.; Zhang, Y.-D.; Liu, X.-S. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J. Hepatol. 2019, 70, 1133–1144. [Google Scholar] [CrossRef]
- Lim, J.H.; Choi, D.; Park, C.K.; Lee, W.J.; Lim, H.K. Encapsulated hepatocellular carcinoma: CT-pathologic correlations. Eur. Radiol. 2006, 16, 2326–2333. [Google Scholar] [CrossRef]
- Zhao, H.; Hua, Y.; Dai, T.; He, J.; Tang, M.; Fu, X.; Mao, L.; Jin, H.; Qiu, Y. Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma. Eur. J. Radiol. 2017, 88, 32–40. [Google Scholar] [CrossRef]
- Reginelli, A.; Vanzulli, A.; Sgrazzutti, C.; Caschera, L.; Serra, N.; Raucci, A.; Urraro, F.; Cappabianca, S. Vascular microinvasion from hepatocellular carcinoma: CT findings and pathologic correlation for the best therapeutic strategies. Med. Oncol. 2017, 34, 93. [Google Scholar] [CrossRef]
- Suh, Y.J.; Kim, M.J.; Choi, J.Y.; Park, M.S.; Kim, K.W. Preoperative prediction of the microvascular invasion of hepatocellular carcinoma with diffusion-weighted imaging. Liver Transplant. 2012, 18, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Okamura, S.; Sumie, S.; Tonan, T.; Nakano, M.; Satani, M.; Shimose, S.; Shirono, T.; Iwamoto, H.; Aino, H.; Niizeki, T.; et al. Diffusion-weighted magnetic resonance imaging predicts malignant potential in small hepatocellular carcinoma. Dig. Liver Dis. 2016, 48, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Segal, E.; Sirlin, C.B.; Ooi, C.; Adler, A.S.; Gollub, J.; Chen, X.; Chan, B.K.; Matcuk, G.R.; Barry, C.T.; Chang, H.Y.; et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 2007, 25, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Wang, D.S.; Kim, H.J.; Sirlin, C.B.; Chan, M.G.; Korn, R.L.; Rutman, A.M.; Siripongsakun, S.; Lu, D.; Imanbayev, G.; et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology 2015, 62, 792–800. [Google Scholar] [CrossRef]
- Kulik, L.; Heimbach, J.K.; Zaiem, F.; Almasri, J.; Prokop, L.J.; Wang, Z.; Murad, M.H.; Mohammed, K. Therapies for patients with hepatocellular carcinoma awaiting liver transplantation: A systematic review and meta-analysis. Hepatology 2018, 67, 381–400. [Google Scholar] [CrossRef]
- Sapisochin, G.; Castells, L.; Dopazo, C.; Bilbao, I.; Minguez, B.; Lazaro, J.L.; Allende, H.; Balsells, J.; Caralt, M.; Charco, R. Single HCC in cirrhotic patients: Liver resection or liver transplantation? Long-term outcome according to an intention-to-treat basis. Ann. Surg. Oncol. 2013, 20, 1194–1202. [Google Scholar] [CrossRef]
- Crocetti, L.; Bozzi, E.; Scalise, P.; Bargellini, I.; Lorenzoni, G.; Ghinolfi, D.; Campani, D.; Balzano, E.; De Simone, P.; Cioni, R. Locoregional Treatments for Bridging and Downstaging HCC to Liver Transplantation. Cancers 2021, 13, 5558. [Google Scholar] [CrossRef]
- Chang, Y.; Jeong, S.W.; Young Jang, J.; Jae Kim, Y. Recent Updates of Transarterial Chemoembolilzation in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020, 21, 8165. [Google Scholar] [CrossRef]
- Young, S.; Craig, P.; Golzarian, J. Current trends in the treatment of hepatocellular carcinoma with transarterial embolization: A cross-sectional survey of techniques. Eur. Radiol. 2019, 29, 3287–3295. [Google Scholar] [CrossRef]
- Raoul, J.L.; Forner, A.; Bolondi, L.; Cheung, T.T.; Kloeckner, R.; de Baere, T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat. Rev. 2019, 72, 28–36. [Google Scholar] [CrossRef] [PubMed]
- S3-Leitlinie Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karzinome—S3 Guideline for the Diagnosis and Treatment of Hepatocellular Carcinoma and Biliary Carcinoma. Leitlinienprogramm Onkologie. 2024. Available online: https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/HCC/Version_5/LL_Hepatozelluläres_Karzinom_und_biliäre_Karzinome_Langversion_5.0.pdf (accessed on 18 August 2025).
- Renner, P.; Da Silva, T.; Schnitzbauer, A.A.; Verloh, N.; Schlitt, H.J.; Geissler, E.K. Hepatocellular carcinoma progression during bridging before liver transplantation. BJS Open 2021, 5, zrab005. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Lencioni, R. mRECIST for HCC: Performance and novel refinements. J. Hepatol. 2020, 72, 288–306. [Google Scholar] [CrossRef] [PubMed]
- Vincenzi, B.; Di Maio, M.; Silletta, M.; D’Onofrio, L.; Spoto, C.; Piccirillo, M.C.; Daniele, G.; Comito, F.; Maci, E.; Bronte, G.; et al. Prognostic Relevance of Objective Response According to EASL Criteria and mRECIST Criteria in Hepatocellular Carcinoma Patients Treated with Loco-Regional Therapies: A Literature-Based Meta-Analysis. PLoS ONE 2015, 10, e0133488. [Google Scholar] [CrossRef]
- Yao, F.Y.; Kerlan, R.K.; Hirose, R.; Davern, T.J.; Bass, N.M.; Feng, S.; Peters, M.; Terrault, N.; Freise, C.E.; Ascher, N.L.; et al. Excellent outcome following down-staging of hepatocellular carcinoma prior to liver transplantation: An intention-to-treat analysis. Hepatology 2008, 48, 819–827. [Google Scholar] [CrossRef]
- Yao, F.Y.; Hirose, R.; LaBerge, J.M.; Davern, T.J., 3rd; Bass, N.M.; Kerlan, R.K., Jr.; Merriman, R.; Feng, S.; Freise, C.E.; Ascher, N.L.; et al. A prospective study on downstaging of hepatocellular carcinoma prior to liver transplantation. Liver Transpl. 2005, 11, 1505–1514. [Google Scholar] [CrossRef]
- Ravaioli, M.; Grazi, G.L.; Piscaglia, F.; Trevisani, F.; Cescon, M.; Ercolani, G.; Vivarelli, M.; Golfieri, R.; D’Errico Grigioni, A.; Panzini, I.; et al. Liver transplantation for hepatocellular carcinoma: Results of down-staging in patients initially outside the Milan selection criteria. Am. J. Transplant. 2008, 8, 2547–2557. [Google Scholar] [CrossRef]
- Yao, F.Y.; Mehta, N.; Flemming, J.; Dodge, J.; Hameed, B.; Fix, O.; Hirose, R.; Fidelman, N.; Kerlan, R.K., Jr.; Roberts, J.P. Downstaging of hepatocellular cancer before liver transplant: Long-term outcome compared to tumors within Milan criteria. Hepatology 2015, 61, 1968–1977. [Google Scholar] [CrossRef]
- Mehta, N.; Dodge, J.L.; Grab, J.D.; Yao, F.Y. National Experience on Down-Staging of Hepatocellular Carcinoma Before Liver Transplant: Influence of Tumor Burden, Alpha-Fetoprotein, and Wait Time. Hepatology 2020, 71, 943–954. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Citterio, D.; Bhoori, S.; Bongini, M.; Miceli, R.; De Carlis, L.; Colledan, M.; Salizzoni, M.; Romagnoli, R.; Antonelli, B.; et al. Liver transplantation in hepatocellular carcinoma after tumour downstaging (XXL): A randomised, controlled, phase 2b/3 trial. Lancet Oncol. 2020, 21, 947–956. [Google Scholar] [CrossRef]
- Zhong, X.; Guan, T.; Tang, D.; Li, J.; Lu, B.; Cui, S.; Tang, H. Differentiation of small (≤3 cm) hepatocellular carcinomas from benign nodules in cirrhotic liver: The added additive value of MRI-based radiomics analysis to LI-RADS version 2018 algorithm. BMC Gastroenterol. 2021, 21, 155. [Google Scholar] [CrossRef]
- Wu, Y.; White, G.M.; Cornelius, T.; Gowdar, I.; Ansari, M.H.; Supanich, M.P.; Deng, J. Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors. Ann. Transl. Med. 2020, 8, 701. [Google Scholar] [CrossRef] [PubMed]
- Okimoto, N.; Yasaka, K.; Kaiume, M.; Kanemaru, N.; Suzuki, Y.; Abe, O. Improving detection performance of hepatocellular carcinoma and interobserver agreement for liver imaging reporting and data system on CT using deep learning reconstruction. Abdom. Radiol. 2023, 48, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Wang, Q.; Li, C.; Zhang, J.; Hu, X.; Fan, Y.; Ma, K.; Sparrelid, E.; Brismar, T.B. Radiomics Models for Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Radiomics Quality Score Assessment. Cancers 2021, 13, 5864. [Google Scholar] [CrossRef]
- Ni, M.; Zhou, X.; Lv, Q.; Li, Z.; Gao, Y.; Tan, Y.; Liu, J.; Liu, F.; Yu, H.; Jiao, L.; et al. Radiomics models for diagnosing microvascular invasion in hepatocellular carcinoma: Which model is the best model? Cancer Imaging 2019, 19, 60. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, R.; Liang, F.; Liu, G.; Chen, A.; Wu, H.; Lai, S.; Ding, W.; Wie, X.; Zhen, X.; et al. Prediction of Microvascular Invasion in Hepatocellular Carcinoma With a Multi-Disciplinary Team-Like Radiomics Fusion Model on Dynamic Contrast-Enhanced Computed Tomography. Front. Oncol. 2021, 11, 660629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, J.; Hou, J.; Jiang, X.; Guo, L.; Tian, L. Radiomics-based model using gadoxetic acid disodium-enhanced MR images: Associations with recurrence-free survival of patients with hepatocellular carcinoma treated by surgical resection. Abdom. Radiol. 2021, 46, 3845–3854. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, P.; Hou, J.; Luo, M.; Li, Y.; Jiang, X. Radiomics Model Based on Gadoxetic Acid Disodium-Enhanced MR Imaging to Predict Hepatocellular Carcinoma Recurrence After Curative Ablation. Cancer Manag. Res. 2021, 13, 2785–2796. [Google Scholar] [CrossRef]
- Lv, K.; Cao, X.; Du, P.; Fu, J.Y.; Geng, D.Y.; Zhang, J. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma. World J. Gastroenterol. 2022, 28, 2176–2183. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, L.; Wang, K.; Chen, S.; Wang, G.; Liu, Z.; Liang, C. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J. Magn. Reson. Imaging 2017, 45, 1476–1484. [Google Scholar] [CrossRef]
- Baeßler, B.; Weiss, K.; Pinto dos Santos, D. Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging: A Phantom Study. Invest. Radiol. 2019, 54, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Wang, L.; Wang, C.; Yu, X.; Chen, W.; Li, Y.; Li, W.; Yan, F.; Wang, H.; Li, R.; et al. Feasibility of automatic detection of small hepatocellular carcinoma (≤2 cm) in cirrhotic liver based on pattern matching and deep learning. Phys. Med. Biol. 2021, 66, 085014. [Google Scholar] [CrossRef]
- Liu, S.C.; Lai, J.; Huang, J.Y.; Cho, C.F.; Lee, P.H.; Lu, M.H.; Yeh, C.C.; Yu, J.; Lin, W.C. Predicting microvascular invasion in hepatocellular carcinoma: A deep learning model validated across hospitals. Cancer Imaging 2021, 21, 56. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Q.; Cao, S.E.; Cao, S.; Chen, J.N.; Wang, G.Y.; Shi, W.Q.; Deng, Y.N.; Cheng, N.; Ma, K.; Zeng, K.N.; et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. J. Cancer Res. Clin. Oncol. 2021, 147, 821–833. [Google Scholar] [CrossRef]
- Wang, L.; Wu, M.; Li, R.; Xu, X.; Zhu, C.; Feng, X. MVI-Mind: A Novel Deep-Learning Strategy Using Computed Tomography (CT)-Based Radiomics for End-to-End High Efficiency Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Cancers 2022, 14, 2956. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Wang, Y.; Wang, W.; Wang, Y.; Cai, J.; Zhu, K.; Lv, M.; Gao, Q.; Zhou, J.; Fan, J.; et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters. J. Cancer Res. Clin. Oncol. 2021, 147, 3757–3767. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Q.; Huang, Y.; Yao, Z.; Yan, C.; Zou, X.; Han, J.; Li, Q.; Mao, R.; Liao, Y.; et al. Deep Learning of Liver Contrast-Enhanced Ultrasound to Predict Microvascular Invasion and Prognosis in Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 878061. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, J.; Jiang, T.; Wu, J.; Li, Q.; Zhang, C.; Zhang, Y.; Cao, J.; Sun, Y.; Jiang, Y.; et al. A Nomogram Based on Combining Clinical Features and Contrast Enhanced Ultrasound LI-RADS Improves Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 699290. [Google Scholar] [CrossRef] [PubMed]
- Morshid, A.; Elsayes, K.M.; Khalaf, A.M.; Elmohr, M.M.; Yu, J.; Kaseb, A.O.; Hassan, M.; Mahvash, A.; Wang, Z.; Hazle, J.D.; et al. A Machine Learning Model to Predict Hepatocellular Carcinoma Response to Transcatheter Arterial Chemoembolization. Radiol. Artif. Intell. 2019, 1, e180021. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Kang, S.; Ning, Z.; Deng, H.; Shen, J.; Xu, Y.; Zhang, J.; Zhao, W.; Li, X.; Gong, W.; et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging. Eur. Radiol. 2020, 30, 413–424. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, L.; Zhong, B.; Zhou, H.; Zhu, H.; Zhou, H.; Song, J.; Guo, J.; Zhu, X.; Ji, J.; et al. Machine-learning analysis of contrast-enhanced computed tomography radiomics predicts patients with hepatocellular carcinoma who are unsuitable for initial transarterial chemoembolization monotherapy: A multicenter study. Transl. Oncol. 2021, 14, 101034. [Google Scholar] [CrossRef] [PubMed]
- Abajian, A.; Murali, N.; Savic, L.J.; Laage-Gaupp, F.M.; Nezami, N.; Duncan, J.S.; Schlachter, T.; Lin, M.; Geschwind, J.F.; Chapiro, J. Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning—An Artificial Intelligence Concept. J. Vasc. Interv. Radiol. 2018, 29, 850–857.e1. [Google Scholar]
- Chen, M.; Kong, C.; Qiao, E.; Chen, Y.; Chen, W.; Jiang, X.; Fang, S.; Zhang, D.; Chen, M.; Chen, W.; et al. Multi-algorithms analysis for pre-treatment prediction of response to transarterial chemoembolization in hepatocellular carcinoma on multiphase MRI. Insights Imaging 2023, 14, 38. [Google Scholar] [PubMed]
- Mehta, N.; Yao, F.Y. What Are the Optimal Liver Transplantation Criteria for Hepatocellular Carcinoma? Clin. Liver Dis. 2019, 13, 20–25. [Google Scholar] [CrossRef]
- Ferrer-Fàbrega, J.; Forner, A.; Liccioni, A.; Miquel, R.; Molina, V.; Navasa, M.; Fondevila, C.; García-Valdecasas, J.C.; Bruix, J.; Fuster, J. Prospective validation of ab initio liver transplantation in hepatocellular carcinoma upon detection of risk factors for recurrence after resection. Hepatology 2016, 63, 839–849. [Google Scholar]
- Seo, C.G.; Yim, S.Y.; Um, S.H.; Lee, Y.R.; Lee, Y.J.; Kim, T.H.; Goh, H.G.; Lee, Y.S.; Suh, S.J.; Han, N.Y.; et al. Survival according to recurrence patterns after resection for transplantable hepatocellular carcinoma in HBV endemic area: Appraisal of liver transplantation strategy. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 532–542. [Google Scholar] [CrossRef]

| Category | Key Benefits | Description |
|---|---|---|
| non-invasive diagnosis | reduced risk | Avoids biopsy-related complications such as bleeding, infection, or needle-track seeding. |
| patient comfort | Enhances compliance and patient acceptance due to painless and simple procedures. | |
| early detection | Enables identification of HCC at earlier stages via advanced imaging or biomarker analysis. | |
| cost-effectiveness | Reduces healthcare costs compared to invasive diagnostics. | |
| deep learning and AI | improved diagnostic recision | AI systems trained on large datasets enhance accuracy and reliability in HCC detection. |
| adaptability | Continuous learning allows AI to incorporate new biomarkers and imaging features. | |
| personalized medicine | Integrates patient-specific data for tailored risk assessment and therapy planning. | |
| predictive analytics | Identifies complex data patterns to forecast disease progression and survival. |
| Category | Key Benefits | Description |
|---|---|---|
| dynamic criteria | response to loco-regional therapy | AI evaluates real-time responses to RFA or TACE, refining prognosis and therapy. |
| biological parameter response | tracks biomarker dynamics to adjust survival predictions and treatment efficacy. |
| Morphologic Criteria | AFP [ng/mL] | Biomarker Composite (AFP-L3/DCP/MoRAL/Metroticket 2.0) | AI-Predicted MVI | LRT Response (EASL/mRECIST) | Waiting-List Action |
|---|---|---|---|---|---|
| Within Milan | <100 | Favorable | Low | CR/PR or SD | List |
| <100 | Favorable | High | CR/PR or SD | Continue LRT | |
| <100 | Unfavorable | High | Any | Continue LRT | |
| 100–399 | Favorable | Low | CR/PR | List | |
| 100–399 | Favorable | High | CR/PR or SD | Continue LRT | |
| 100–399 | Unfavorable | Any | PD | Exclude | |
| ≥400 | Favorable | Low | CR/PR | Continue LRT | |
| ≥400 | Any Unfavorable | High | Any | Exclude | |
| Within UCSF | <100 | Favorable | Low | CR/PR | List |
| <100 | Favorable | High | CR/PR | Continue LRT | |
| <100 | Unfavorable | Any | SD/PD | Continue LRT | |
| 100–399 | Favorable | Low | CR/PR | List/Consider LDLT | |
| 100–399 | Favorable | High | CR/PR or SD | Continue LRT | |
| 100–399 | Unfavorable | Any | PD | Exclude | |
| ≥400 | Favorable | Low | CR/PR | Continue LRT | |
| ≥400 | Unfavorable | High | Any | Exclude | |
| Within Up-to-Seven | <100 | Favorable | Low | CR/PR | Consider LDLT |
| <100 | Favorable | High | CR/PR | Continue LRT | |
| <100 | Unfavorable | Any | SD/PD | Continue LRT | |
| 100–399 | Favorable | Low | CR/PR | Consider LDLT | |
| 100–399 | Favorable | High | CR/PR or SD | Continue LRT | |
| 100–399 | Unfavorable | Any | PD | Exclude | |
| ≥400 | Favorable | Low | CR/PR | Continue LRT | |
| ≥400 | Unfavorable | High | Any | Exclude | |
| Beyond Up-to-Seven | Any | Any | Any | Any | Exclude |
| Category | Key Benefits | Description |
|---|---|---|
| combined benefits | comprehensive monitoring | Continuous, non-invasive follow-up integrating AI-driven insights. |
| timely interventions | Facilitates early and precise treatment adjustments, improving survival and quality of life. | |
| data-driven decisions | Supports evidence-based clinical and allocation decisions. | |
| enhanced predictive power | Merges AI analytics with biological dynamics for highly individualized survival estimation and therapy design. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gundlach, J.-P.; Heckl, S.M.; Langguth, P.; Oberkofler, C.; Taivankhuu, T.; Beckmann, J.H.; Becker, T.; Braun, F.; Linecker, M. The Potential of Artificial Intelligence to Improve Selection Criteria for Liver Transplantation in HCC. Cancers 2025, 17, 3829. https://doi.org/10.3390/cancers17233829
Gundlach J-P, Heckl SM, Langguth P, Oberkofler C, Taivankhuu T, Beckmann JH, Becker T, Braun F, Linecker M. The Potential of Artificial Intelligence to Improve Selection Criteria for Liver Transplantation in HCC. Cancers. 2025; 17(23):3829. https://doi.org/10.3390/cancers17233829
Chicago/Turabian StyleGundlach, Jan-Paul, Steffen M. Heckl, Patrick Langguth, Christian Oberkofler, Terbish Taivankhuu, Jan Henrik Beckmann, Thomas Becker, Felix Braun, and Michael Linecker. 2025. "The Potential of Artificial Intelligence to Improve Selection Criteria for Liver Transplantation in HCC" Cancers 17, no. 23: 3829. https://doi.org/10.3390/cancers17233829
APA StyleGundlach, J.-P., Heckl, S. M., Langguth, P., Oberkofler, C., Taivankhuu, T., Beckmann, J. H., Becker, T., Braun, F., & Linecker, M. (2025). The Potential of Artificial Intelligence to Improve Selection Criteria for Liver Transplantation in HCC. Cancers, 17(23), 3829. https://doi.org/10.3390/cancers17233829

