Redefining Reconstruction: Technological Innovations in Microsurgical Breast Reconstruction
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Flap Planning
3.1.1. CT Angiography (CTA)
3.1.2. MR Angiography (MRA)
3.1.3. Indocyanine Green (ICG) Angiography
3.1.4. AI-Based Flap Planning Tools
3.1.5. Three-Dimensional Printing
3.2. Flap Harvest
3.2.1. Robotic-Assisted DIEP Flap Harvest Using Da Vinci Surgical System
3.2.2. Endoscopic DIEP (Ediep) and Total Extraperitoneal Laparoscopic (TEP-Lap) Flap Harvest
3.3. Microsurgical Anastomosis
3.3.1. Symani® Surgical System
3.3.2. MUSA Platform
3.3.3. Venous Coupler
3.3.4. ORBEYE
3.4. Flap Monitoring
3.4.1. Non-Invasive Methods
- Doppler systems (pencil, color, laser)
- ViOptix®
- T-Stat
3.4.2. Invasive Methods
- Cook-Swartz Doppler probe
- Synovis GEM™ flow coupler
- Microdialysis
- LICOX®
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ARBS Network | Aesthetic and Reconstructive Breast Surgery Network |
| AI | Artificial Intelligence |
| CTA | CT angiography |
| DIEP | Deep inferior epigastric perforator |
| ICG | Indocyanine green |
| LVA | Lymphaticovenous anastomosis |
| LOS | Length of stay |
| MRA | MR-angiography |
| OR | Operating room |
| ptiO2 | Tissue oxygen tension |
| StO2 | Tissue oxygen saturation |
| TAPP | Transabdominal preperitoneal |
| TEP-lap | Total extraperitoneal laparoscopic |
| TRAM | Transverse rectus abdominis myocutaneous |
References
- Allen, R.J.; Treece, P. Deep Inferior Epigastric Perforator Flap for Breast Reconstruction. Ann. Plast. Surg. 1994, 32, 32–38. [Google Scholar] [CrossRef]
- Cho, M.-J.; Schroeder, M.; Garcia, J.F.; Royfman, A.; Moreira, A. The Current State of the Art in Autologous Breast Reconstruction: A Review and Modern/Future Approaches. J. Clin. Med. 2025, 14, 1543. [Google Scholar] [CrossRef]
- Speck, N.E.; Grufman, V.; Farhadi, J. Trends and Innovations in Autologous Breast Reconstruction. Arch. Plast. Surg. 2022, 50, 240–247. [Google Scholar] [CrossRef]
- Allam, O.; Foster, C.; Knoedler, L.; Knoedler, S.; Oh, S.J.; Pomahac, B.; Ayyala, H.S. Future of autologous breast reconstruction: A review of novel technological innovations. Plast. Aesthetic Res. 2024, 11. [Google Scholar] [CrossRef]
- Cevik, J.; Seth, I.; Rozen, W.M. Transforming breast reconstruction: The pioneering role of artificial intelligence in preoperative planning. Gland. Surg. 2023, 12, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Burns, H.R.; McLennan, A.; Xue, E.Y.; Yu, J.Z.; Selber, J.C. Robotics in Microsurgery and Supermicrosurgery. Semin. Plast. Surg. 2024, 37, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Tanna, N.M.; Sugiyama, G.; Smith, M.L.; Sanchez, S.B.; Minasian, R.A.; Robinson, E.B.; Silverman, J.B.; Shuck, J.W.; Selber, J.M. The Full Continuum of Robotic Breast Surgery: Robotic-assisted Mastectomy, Robotic DIEP Flap, and Robotic Supermicrosurgery. Plast. Reconstr. Surg.–Glob. Open 2023, 11, e5491. [Google Scholar] [CrossRef]
- Kiely, J.; Kumar, M.; Wade, R.G. The accuracy of different modalities of perforator mapping for unilateral DIEP flap breast reconstruction: A systematic review and meta-analysis. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 945–956. [Google Scholar] [CrossRef]
- Rodkin, B.; Hunter-Smith, D.J.; Rozen, W.M. A review of visualized preoperative imaging with a focus on surgical procedures of the breast. Gland. Surg. 2019, 8, S301–S309. [Google Scholar] [CrossRef]
- Yusufov, S.; Startseva, O.; Khalfaoui, S.; Zhigailova, E.; Gabriyanchik, M.; Manasherova, D.; Meskhi, K.; Reshetov, I. Robot-Assisted Versus Conventional Harvesting of DIEP and Latissimus Dorsi Flaps for Breast Reconstruction in Post-Mastectomy Women: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 744. [Google Scholar] [CrossRef]
- Brown, H.; Brown, R.A.; Lenkiu, L.; SamSam, A.; Lopez, J.; Sawh-Martinez, R. Robotic-assisted Supermicrosurgery in Plastic Surgery: A Systematic Literature Review. Plast. Reconstr. Surg.–Glob. Open 2025, 13, e6912. [Google Scholar] [CrossRef] [PubMed]
- Lacey, H.; Kanakopoulos, D.; Hussein, S.; Moyasser, O.; Ward, J.; King, I. Adjunctive technologies in postoperative free-flap monitoring: A systematic review. J. Plast. Reconstr. Aesthetic Surg. 2023, 87, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Zötterman, J.; Opsomer, D.; Farnebo, S.; Blondeel, P.; Monstrey, S.; Tesselaar, E. Intraoperative Laser Speckle Contrast Imaging in DIEP Breast Reconstruction: A Prospective Case Series Study. Plast. Reconstr. Surg.–Glob. Open 2020, 8, e2529. [Google Scholar] [CrossRef] [PubMed]
- Canizares, O.; Mayo, J.; Soto, E.; Allen, R.J.; Sadeghi, A. Optimizing Efficiency in Deep Inferior Epigastric Perforator Flap Breast Reconstruction. Ann. Plast. Surg. 2015, 75, 186–192. [Google Scholar] [CrossRef]
- Masia, J.; Clavero, J.; Larrañaga, J.; Alomar, X.; Pons, G.; Serret, P. Multidetector-row computed tomography in the planning of abdominal perforator flaps. J. Plast. Reconstr. Aesthetic Surg. 2006, 59, 594–599. [Google Scholar] [CrossRef]
- Masia, J.; Navarro, C.; Clavero, J.A.; Alomar, X. Noncontrast Magnetic Resonance Imaging for Preoperative Perforator Mapping. Clin. Plast. Surg. 2011, 38, 253–261. [Google Scholar] [CrossRef]
- Nahabedian, M.Y. The deep inferior epigastric perforator flap: Where we started and where we are now. Gland. Surg. 2023, 12, 696–703. [Google Scholar] [CrossRef]
- Stroumza, N.; Barthelemy, R.N.; Majoulet, L.; Delchet, O.; Qassemyar, Q.; Atlan, M. Endoscopic DIEP flap dissection (eDIEP): An experimental cadaveric study. J. Plast. Reconstr. Aesthetic Surg. 2017, 70, 1149–1151. [Google Scholar] [CrossRef]
- Kuo, W.-L.; Wong, A.W.-J.; Tsai, C.-Y.; Chen, Y.-F.; Chang, T.N.-J.; Cheong, D.C.-F.; Huang, J.-J.M. Oncoplastic Entirely Robot-Assisted Approach: Incorporating Robotic Surgery in Both Mastectomy and DIEP Flap Reconstruction. Plast. Reconstr. Surg. 2025, 156, 451e–460e. [Google Scholar] [CrossRef]
- Selber, J.C. The Robotic DIEP Flap. Plast. Reconstr. Surg. 2020, 145, 340–343. [Google Scholar] [CrossRef]
- Bishop, S.N.; Selber, J.C. The RoboDIEP: Robotic-Assisted Deep Inferior Epigastric Perforator Flaps for Breast Reconstruction. In Robotics in Plastic and Reconstructive Surgery; Springer International Publishing: Berlin, Germany, 2021; pp. 53–60. ISBN 978-3-030-74244-7. [Google Scholar] [CrossRef]
- Innocenti, M. Back to the Future: Robotic Microsurgery. Arch. Plast. Surg. 2022, 49, 287–288. [Google Scholar] [CrossRef]
- Teichmann, H.; Innocenti, M. Development of a New Robotic Platform for Microsurgery. In Robotics in Plastic and Reconstructive Surgery; Springer International Publishing: Cham, Switzerland, 2021; pp. 127–137. [Google Scholar] [CrossRef]
- Ahmad, F.I.; Mericli, A.F.; DeFazio, M.V.; Chang, E.I.; Hanasono, M.M.; Pederson, W.C.; Kaufman, M.; Selber, J.C. Application of the ORBEYE three-dimensional exoscope for microsurgical procedures. Microsurgery 2020, 40, 468–472. [Google Scholar] [CrossRef]
- Rupra, R.S.; Ruccia, F.; Daneshi, K.; Aftab, F.; Yousif, Y.F.; Khan, G.R.; Dehnadi, S.; AlSaidi, Y.H.; Maggialetti, N.; Lorusso, G.; et al. A systematic review and meta-analysis on computed tomography angiography mapping for deep inferior epigastric perforator flap breast reconstruction. Front. Oncol. 2025, 15, 1600476. [Google Scholar] [CrossRef] [PubMed]
- Colakoglu, S.; Tebockhorst, S.; Freedman, J.; Douglass, S.; Siddikoglu, D.; Chong, T.W.; Mathes, D.W. CT angiography prior to DIEP flap breast reconstruction: A randomized controlled trial. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Wade, R.G.; Watford, J.; Wormald, J.C.; Bramhall, R.J.; Figus, A. Perforator mapping reduces the operative time of DIEP flap breast reconstruction: A systematic review and meta-analysis of preoperative ultrasound, computed tomography and magnetic resonance angiography. J. Plast. Reconstr. Aesthetic Surg. 2018, 71, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Thimmappa, N.D. MRA for Preoperative Planning and Postoperative Management of Perforator Flap Surgeries: A Review. J. Magn. Reson. Imaging 2024, 59, 797–811. [Google Scholar] [CrossRef]
- Schaverien, M.V.; Ludman, C.N.; Neil-Dwyer, J.; Perks, G.B.; Akhtar, N.; Rodrigues, J.N.; Benetatos, K.; Raurell, A.; Rasheed, T.; McCulley, S.J. Contrast-Enhanced Magnetic Resonance Angiography for Preoperative Imaging in DIEP Flap Breast Reconstruction. Plast. Reconstr. Surg. 2011, 128, 56–62. [Google Scholar] [CrossRef]
- Schaverien, M.V.; McCulley, S.J. Contrast-Enhanced Magnetic Resonance Angiography for Preoperative Imaging in DIEP Flap Breast Reconstruction. In Breast Reconstruction; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Thimmappa, N.; Bhat, A.P.; Bishop, K.; Nagpal, P.; Prince, M.R.; Saboo, S.S. Preoperative cross-sectional mapping for deep inferior epigastric and profunda artery perforator flaps. Cardiovasc. Diagn. Ther. 2019, 9, S131–S142. [Google Scholar] [CrossRef]
- Parmeshwar, N.; Sultan, S.M.; Kim, E.A.; Piper, M.L. A Systematic Review of the Utility of Indocyanine Angiography in Autologous Breast Reconstruction. Ann. Plast. Surg. 2021, 86, 601–606. [Google Scholar] [CrossRef]
- Bombardelli, J.; Farhat, S.; Hagopian, A.D.L.F.; Hua, J.; Schusterman, M.A.I.; Echo, A. Evaluation of Intraoperative Anastomotic Patency with Angiography in Microsurgical Breast Reconstruction. Plast. Reconstr. Surg.–Glob. Open 2023, 11, e5230. [Google Scholar] [CrossRef]
- Nguyen, C.L.; Dayaratna, N.; Easwaralingam, N.; Seah, J.L.; Azimi, F.; Mak, C.; Pulitano, C.; Warrier, S.K. Developing an Indocyanine Green Angiography Protocol for Predicting Flap Necrosis During Breast Reconstruction. Surg. Innov. 2025, 32, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Byrne, N.; Karunanithy, N.; Farhadi, J. 3D printing provides unrivalled bespoke teaching tools for autologous free flap breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2016, 69, 578–580. [Google Scholar] [CrossRef]
- DeFazio, M.V.; Arribas, E.M.; Ahmad, F.I.; Le-Petross, H.T.; Liu, J.; Chu, C.K.; Santiago, L.; Clemens, M.W. Application of Three-Dimensional Printed Vascular Modeling as a Perioperative Guide to Perforator Mapping and Pedicle Dissection during Abdominal Flap Harvest for Breast Reconstruction. J. Reconstr. Microsurg. 2020, 36, 325–338. [Google Scholar] [CrossRef]
- Chae, M.P.; Hunter-Smith, D.J.; Chung, R.D.; Smith, J.A.; Rozen, W.M. 3D-printed, patient-specific DIEP flap templates for preoperative planning in breast reconstruction: A prospective case series. Gland. Surg. 2021, 10, 2192–2199. [Google Scholar] [CrossRef]
- Ghasroddashti, A.; Guyn, C.; Martou, G.; Edmunds, R.W. Utility of 3D-printed vascular modeling in microsurgical breast reconstruction: A systematic review. J. Plast. Reconstr. Aesthetic Surg. 2024, 96, 95–104. [Google Scholar] [CrossRef]
- Boyd, B.; Umansky, J.; Samson, M.; Boyd, D.; Stahl, K. Robotic Harvest of Internal Mammary Vessels in Breast Reconstruction. J. Reconstr. Microsurg. 2006, 22, 261–266. [Google Scholar] [CrossRef]
- Hammond, J.B.; Egan, K.G.; Selber, J.C. Robotic approaches to breast reconstruction. Plast. Aesthetic Res. 2024, 11. [Google Scholar] [CrossRef]
- Elver, A.A.; Matthews, S.A.; Egan, K.G.; Bowles, E.L.; Nazir, N.; Flurry, M.; Holding, J.; Lai, E.C.; Butterworth, J.A. Characterizing Outcomes of Medial and Lateral Perforators in Deep Inferior Epigastric Perforator Flaps. J. Reconstr. Microsurg. 2023, 39, 020–026. [Google Scholar] [CrossRef]
- Daar, D.A.; Anzai, L.M.; Vranis, N.M.; Schulster, M.L.; Frey, J.D.; Jun, M.; Zhao, L.C.; Levine, J.P. Robotic deep inferior epigastric perforator flap harvest in breast reconstruction. Microsurgery 2022, 42, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Won, J.; Song, S.Y.; Park, H.S.; Kim, J.Y.; Shin, H.J.; Kwon, Y.I.; Lee, D.W.; Kim, N.Y. Clinical outcomes following robotic versus conventional DIEP flap in breast reconstruction: A retrospective matched study. Front. Oncol. 2022, 12, 989231. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.B.; Prado, K.; Hu, J.C. Economics of Robotic Surgery. Urol. Clin. N. Am. 2014, 41, 591–596. [Google Scholar] [CrossRef]
- Gundlapalli, V.S.; Ogunleye, A.A.; Scott, K.; Wenzinger, E.; Ulm, J.P.; Tavana, L.; Pullatt, R.C.; Delaney, K.O. Robotic-assisted deep inferior epigastric artery perforator flap abdominal harvest for breast reconstruction: A case report. Microsurgery 2018, 38, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Bustos, S.S.; Manrique, O.J.; Mohan, A.T.; Nguyen, M.-D.; Martinez-Jorge, J.; Forte, A.J.; Terzic, A. Robotic-Assisted DIEP Flap Harvest for Autologous Breast Reconstruction: A Comparative Feasibility Study on a Cadaveric Model. J. Reconstr. Microsurg. 2020, 36, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.D.; Won, B.W.; Baumgardner, K.B.; Lue, M.B.; Montorfano, L.; Hosein, R.C.; Wang, H.T.; Martinez, R.A. Literature Review. Ann. Plast. Surg. 2022, 89, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Murariu, D.; Chen, B.; Bailey, E.; Nelson, W.; Fortunato, R.; Nosik, S.; Moreira, A. Transabdominal Robotic Harvest of Bilateral DIEP Pedicles in Breast Reconstruction: Technique and Interdisciplinary Approach. J. Reconstr. Microsurg. 2025, 41, 369–375. [Google Scholar] [CrossRef]
- Choi, J.H.; Song, S.Y.M.; Park, H.S.M.; Kim, C.H.; Kim, J.Y.; Lew, D.H.M.; Roh, T.S.M.; Lee, D.W.M. Robotic DIEP Flap Harvest through a Totally Extraperitoneal Approach Using a Single-Port Surgical Robotic System. Plast. Reconstr. Surg. 2021, 148, 304–307. [Google Scholar] [CrossRef]
- Shakir, S.; Spencer, A.B.; Piper, M.; Kozak, G.M.; Soriano, I.S.; Kanchwala, S.K. Laparoscopy allows the harvest of the DIEP flap with shorter fascial incisions as compared to endoscopic harvest: A single surgeon retrospective cohort study. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 1203–1212. [Google Scholar] [CrossRef]
- Katsuragi, R. Endoscope-Assisted DIEP Flap for Breast Reconstruction: A Consecutive Series of Nine Cases. Indian J. Plast. Surg. 2025, 58, S5–S148. [Google Scholar] [CrossRef]
- Cannizzaro, D.; Scalise, M.; Zancanella, C.; Paulli, S.; Peron, S.; Stefini, R. Comparative Evaluation of Major Robotic Systems in Microanastomosis Procedures: A Systematic Review of Current Capabilities and Future Potential. Brain Sci. 2024, 14, 1235. [Google Scholar] [CrossRef]
- Menichini, G.; Malzone, G.; Tamburello, S.; Andreoli, A.L.; Mori, F.; Ballestín, A.; Shiraki, T. Safety and efficacy of Symani robotic-assisted microsurgery: Assessment of vascular anastomosis patency, thrombus, and stenosis in a randomized preclinical study. J. Plast. Reconstr. Aesthetic Surg. 2024, 96, 1–10. [Google Scholar] [CrossRef]
- Vollbach, F.H.; Bigdeli, A.K.; Struebing, F.; Weigel, J.L.; Gazyakan, E.; Kneser, U. Using a Microsurgical Robotic Platform for In-flap Anastomosis in Autologous Bipedicular Breast Reconstruction. Plast. Reconstr. Surg.–Glob. Open 2024, 12, e5511. [Google Scholar] [CrossRef] [PubMed]
- Wessel, K.J.; Varnava, C.; Wiebringhaus, P.; Hiort, M.; Hirsch, T.; Kückelhaus, M. Roboter-assistierte Mikrochirurgie zur autologen Brustrekonstruktion. Handchir. · Mikrochir. · Plast. Chir. 2024, 56, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Kueckelhaus, M.M. Minimally Invasive Robotic-assisted Perforator-to-Perforator DIEP Flap Breast Reconstruction. Plast. Reconstr. Surg.–Glob. Open 2024, 12, e5800. [Google Scholar] [CrossRef] [PubMed]
- van Mulken, T.J.M.; Schols, R.M.; Scharmga, A.M.J.; Winkens, B.; Cau, R.; Schoenmakers, F.B.F.; Qiu, S.S.; van der Hulst, R.R.W.J.; MicroSurgical Robot Research Group; Keuter, X.H.A.; et al. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: A randomized pilot trial. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- van Mulken, T.J.M.; Wolfs, J.A.G.N.; Qiu, S.S.M.; Scharmga, A.M.J.; Schols, R.M.M.; van Weezelenburg, M.A.S.; Cau, R.; van der Hulst, R.R.W.J.M.; MicroSurgical Robot Research Group. One-Year Outcomes of the First Human Trial on Robot-Assisted Lymphaticovenous Anastomosis for Breast Cancer–Related Lymphedema. Plast. Reconstr. Surg. 2022, 149, 151–161. [Google Scholar] [CrossRef]
- O’connor, E.F.; Rozen, W.M.; Chowdhry, M.; Band, B.; Ramakrishnan, V.V.; Griffiths, M. Preoperative computed tomography angiography for planning DIEP flap breast reconstruction reduces operative time and overall complications. Gland. Surg. 2016, 5, 93–98. [Google Scholar] [CrossRef]
- Broer, P.N.; Weichman, K.E.; Tanna, N.; Wilson, S.; Ng, R.; Ahn, C.; Choi, M.; Karp, N.S.; Levine, J.P.; Allen, R.J. Venous coupler size in autologous breast reconstruction—does it matter? Microsurgery 2013, 33, 514–518. [Google Scholar] [CrossRef]
- Rogoń, I.; Rogoń, A.; Kaczmarek, M.; Bujnowski, A.; Wtorek, J.; Lachowski, F.; Jankau, J. Flap Monitoring Techniques: A Review. J. Clin. Med. 2024, 13, 5467. [Google Scholar] [CrossRef]
- Hölzle, F.; Loeffelbein, D.J.; Nolte, D.; Wolff, K.-D. Free flap monitoring using simultaneous non-invasive laser Doppler flowmetry and tissue spectrophotometry. J. Cranio-Maxillofac. Surg. 2006, 34, 25–33. [Google Scholar] [CrossRef]
- Keller, A. Noninvasive Tissue Oximetry for Flap Monitoring: An Initial Study. J. Reconstr. Microsurg. 2007, 23, 189–197. [Google Scholar] [CrossRef]
- Keller, A. A New Diagnostic Algorithm for Early Prediction of Vascular Compromise in 208 Microsurgical Flaps Using Tissue Oxygen Saturation Measurements. Ann. Plast. Surg. 2009, 62, 538–543. [Google Scholar] [CrossRef]
- Schoenbrunner, A.; Hackenberger, P.N.; DeSanto, M.B.; Chetta, M. Cost-Effectiveness of Vioptix versus Clinical Examination for Flap Monitoring of Autologous Free Tissue Breast Reconstruction. Plast. Reconstr. Surg. 2021, 148, 185e–189e. [Google Scholar] [CrossRef] [PubMed]
- Mericli, A.F.; Wren, J.; Garvey, P.B.; Liu, J.; Butler, C.E.; Selber, J.C. A Prospective Clinical Trial Comparing Visible Light Spectroscopy to Handheld Doppler for Postoperative Free Tissue Transfer Monitoring. Plast. Reconstr. Surg. 2017, 140, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Smit, J.; Whitaker, I.; Liss, A.; Audolfsson, T.; Kildal, M.; Acosta, R. Post operative monitoring of microvascular breast reconstructions using the implantable Cook–Swartz doppler system: A study of 145 probes & technical discussion. J. Plast. Reconstr. Aesthetic Surg. 2009, 62, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Um, G.T.; Chang, J.; Louie, O.; Colohan, S.M.; Said, H.K.; Neligan, P.C.; Mathes, D.W. Implantable Cook-Swartz Doppler probe versus Synovis Flow Coupler for the post-operative monitoring of free flap breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2014, 67, 960–966. [Google Scholar] [CrossRef]
- Rozen, W.M.M.; Whitaker, I.S.M.; Wagstaff, M.J.D.M.; Audolfsson, T.; Acosta, R. Buried Free Flaps for Breast Reconstruction: A New Technique Using the Cook-Swartz Implantable Doppler Probe for Postoperative Monitoring. Plast. Reconstr. Surg. 2010, 125, 171e–172e. [Google Scholar] [CrossRef]
- Frost, M.W.; Niumsawatt, V.; Rozen, W.M.; Eschen, G.E.T.; Damsgaard, T.E.; Kiil, B.J. Direct comparison of postoperative monitoring of free flaps with microdialysis, implantable cook-swartz Doppler probe, and clinical monitoring in 20 consecutive patients. Microsurgery 2015, 35, 262–271. [Google Scholar] [CrossRef]
- A Agha, R.; Gundogan, B.; Fowler, A.J.; Bragg, T.W.H.; Orgill, D.P. The efficacy of the Cook-Swartz implantable Doppler in the detection of free-flap compromise: A systematic review protocol. BMJ Open 2014, 4, e004253. [Google Scholar] [CrossRef]
- Chadwick, S.; Khaw, R.; Duncan, J.; Wilson, S.; Highton, L.; O’CEallaigh, S. The use of venous anastomotic flow couplers to monitor buried free DIEP flap reconstructions following nipple-sparing mastectomy. JPRAS Open 2020, 23, 50–54. [Google Scholar] [CrossRef]
- Udesen, A.; Løntoft, E.; Kristensen, S.R. Monitoring of Free Tram Flaps with Microdialysis. J. Reconstr. Microsurg. 2000, ume 16, 0101–0106. [Google Scholar] [CrossRef]
- Whitaker, I.; Rozen, W.; Chubb, D.; Acosta, R.; Kiil, B.; Birke-Sorensen, H.; Grinsell, D.; Ashton, M. Postoperative Monitoring of Free Flaps in Autologous Breast Reconstruction: A Multicenter Comparison of 398 Flaps Using Clinical Monitoring, Microdialysis, and the Implantable Doppler Probe. J. Reconstr. Microsurg. 2010, 26, 409–416. [Google Scholar] [CrossRef]
- Hirigoyen, M.B.; Blackwell, K.E.; Zhang, W.X.; Silver, L.; Weinberg, H.; Urken, M.L. Continuous Tissue Oxygen Tension Measurement as a Monitor of Free-Flap Viability. Plast. Reconstr. Surg. 1997, 99, 763–773. [Google Scholar] [CrossRef]
- Arnež, Z.M.; Ramella, V.; Papa, G.; Novati, F.C.; Manca, E.; Leuzzi, S.; Stocco, C. Is the LICOX® PtO2 system reliable for monitoring of free flaps? Comparison between two cohorts of patients. Microsurgery 2019, 39, 423–427. [Google Scholar] [CrossRef]
- Shadid, O.; Seth, I.; Cuomo, R.; Rozen, W.M.; Marcaccini, G. Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation. J. Clin. Med. 2025, 14, 4574. [Google Scholar] [CrossRef]
- University Of Nevada Las; Allen, B. The Present and Future of Robotic Surgery in Breast Cancer and Breast Reconstruction. Clin. Stud. Med Case Rep. 2025, 12, 2100. [Google Scholar] [CrossRef]

| Area | Author/Speaker | Title | Innovation | Hyperlink | Reference |
|---|---|---|---|---|---|
| Flap planning | J. Masia | Decision making with ICG technology for autologous breast reconstruction | ICG technology | https://www.arbsnetwork.com/content/conferences/decision-making-with-icg-technology-for-autologous-breast-reconstruction (accessed on 5 October 2025) | |
| Flap planning | N. Karunanithy | Video Workshop Session: Imaging for Microsurgeons | CTA | https://www.arbsnetwork.com/content/conferences/imaging-and-the-choice-of-the-one-perforator-in-autologous-breast-reconstruction (accessed on 5 October 2025) | |
| Flap planning | P. Blondeel | Imaging and the choice of the ONE perforator in autologous breast reconstruction | ICG technology Thermographic camera | https://www.arbsnetwork.com/content/conferences/imaging-and-the-choice-of-the-one-perforator-in-autologous-breast-reconstruction (accessed on 5 October 2025) | [13] |
| Flap planning | R. Allen | Imaging and the choice of the ONE perforator in autologous breast reconstruction | CTA MRA | https://www.arbsnetwork.com/content/conferences/imaging-and-the-choice-of-the-one-perforator-in-autologous-breast-reconstruction (accessed on 5 October 2025) | [14] |
| Flap planning | S. Allen | Do plastic surgeons need to be certified in preoperative imaging? | CTA | https://www.arbsnetwork.com/content/conferences/do-plastic-surgeons-need-to-be-certified-in-preoperative-imaging (accessed on 5 October 2025) | |
| Flap planning | N. Karunanithy | Adjuncts to autologous reconstruction | CTA | https://www.arbsnetwork.com/content/conferences/adjuncts-to-autologous-reconstruction (accessed on 5 October 2025) | |
| Flap planning | G. Pons | Refinement of autologous breast reconstruction | CTA MRA ICG technology | https://www.arbsnetwork.com/content/conferences/refinement-of-autologous-breast-reconstruction (accessed on 5 October 2025) | [15,16] |
| Flap harvest | M. Nahabedian, H. Sbitani | Webinar: New technologies for improving breast surgery | Robotic-assisted DIEP harvest | https://www.arbsnetwork.com/content/webinars/webinar-new-technologies-for-improving-breast-surgery (accessed on 5 October 2025) | [17] |
| Flap harvest | M. Atlan | Innovation in autologous flaps: Endoscopic DIEP flap | Endoscopic DIEP harvest | https://www.arbsnetwork.com/content/conferences/innovation-in-autologous-flaps-endoscopic-diep-flap (accessed on 5 October 2025) | [18] |
| Flap harvest | J. J. Huang | Artificial intelligence and robotics | Robotic-assisted DIEP harvest | https://www.arbsnetwork.com/content/conferences/artificial-intelligence-and-robotics (accessed on 5 October 2025) | [19] |
| Flap harvest | J. Selber | Robotic surgery in breast and microsurgery | Robotic-assisted DIEP harvest | https://www.arbsnetwork.com/content/conferences/robotic-surgery-in-breast-and-microsurgery (accessed on 5 October 2025) | [20,21] |
| Microsurgery | M. Innocenti | Artificial intelligence and robotics | Symani® | https://www.arbsnetwork.com/content/conferences/artificial-intelligence-and-robotics (accessed on 5 October 2025) | [22,23] |
| Microsurgery | M. Innocenti | Robotic surgery in breast and microsurgery | Symani® | https://www.arbsnetwork.com/content/conferences/robotic-surgery-in-breast-and-microsurgery (accessed on 5 October 2025) | [22,23] |
| Microsurgery | E. I. Chang | Innovations in autologous reconstruction | ORBEYE | https://www.arbsnetwork.com/content/conferences/innovations-in-autologous-reconstruction (accessed on 5 October 2025) | [24] |
| Monitoring | S. Suominen | Flap monitoring in autologous reconstruction: short and sweet | Laser Doppler Color Doppler pO2 (ViOptix®) Thermocamera ICG pO2 (LICOX®) Microdialysis Implantable laser Doppler Flow coupler | https://www.arbsnetwork.com/content/conferences/flap-monitoring-in-autologous-reconstruction-short-and-sweet (accessed on 5 October 2025) | |
| Monitoring | M. Chrysopoulo | T-Stat symposium: Flap salvage-the earliest possible detection | T-Stat Tissue Oximeter | https://www.arbsnetwork.com/content/conferences/t-stat-symposium-flap-salvage-the-earliest-possible-detection (accessed on 5 October 2025) | |
| Monitoring | C. Andree | Innovations in autologous reconstruction | Flow coupler Cook-Swartz Doppler Microdialyisis | https://www.arbsnetwork.com/content/conferences/innovations-in-autologous-reconstruction (accessed on 5 October 2025) |
| Technology | Advantages | Disadvantages |
|---|---|---|
| Robotic DIEP (da Vinci) | Perforator dissection with high-resolution optics [20] Superior ergonomics Shorter hospital LOS Decreased opioid requirements [42] Increased patient satisfaction [43] Decreased donor site morbidity by limiting anterior rectus sheath incision | Currently Off-Label by the U.S. Food and Drug Administration Cost for acquisition and maintenance [44] Learning curve for the surgeon and OR staff |
| Endoscopic DIEP | Lower cost than robotic harvest Decreased donor site morbidity by limiting anterior rectus sheath incision | Learning curve for the surgeon and OR staff Cost for acquisition and maintenance |
| Technology | Manufacturer (Country) | Advantage | Disadvantage |
|---|---|---|---|
| Symani® | MMI (Italy) | Tremor filtration Motion scaling Enabling supermicrosurgery | Cost for acquisition and maintenance Separate instruments necessary Large size Use for anastomosis only; no possibility for dissection |
| MUSA | Microsure (The Netherlands) | Tremor filtration Motion scaling Standard microsurgical instruments can be used Small size | Cost for acquisition and maintenance |
| Monitoring Technology | Invasiveness | True-Positive Rate Among Flap Take Backs | Salvage Rate | Flap Failure Rate | Disadvantage |
|---|---|---|---|---|---|
| Clinical exam | Non-invasive | 61.9% | 77.4% | 5.1% | Requiring external skin paddle |
| ViOptix® | Non-invasive | 74.76% | 88.62% | 2.5% | Requiring external skin paddle, higher cost, learning curve for staff |
| T-Stat | Non-invasive | 100% | 100% | 0% | Requiring external skin paddle, higher cost, learning curve for staff |
| Cook-Swartz Doppler | Invasive | 80.17% | 83.63% | 2.6% | Higher cost |
| Synovis GEM™ flow coupler | Invasive | 90% | 82% | 2.8% | Higher cost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speck, N.E.; Farhadi, J. Redefining Reconstruction: Technological Innovations in Microsurgical Breast Reconstruction. Cancers 2025, 17, 3739. https://doi.org/10.3390/cancers17233739
Speck NE, Farhadi J. Redefining Reconstruction: Technological Innovations in Microsurgical Breast Reconstruction. Cancers. 2025; 17(23):3739. https://doi.org/10.3390/cancers17233739
Chicago/Turabian StyleSpeck, Nicole E., and Jian Farhadi. 2025. "Redefining Reconstruction: Technological Innovations in Microsurgical Breast Reconstruction" Cancers 17, no. 23: 3739. https://doi.org/10.3390/cancers17233739
APA StyleSpeck, N. E., & Farhadi, J. (2025). Redefining Reconstruction: Technological Innovations in Microsurgical Breast Reconstruction. Cancers, 17(23), 3739. https://doi.org/10.3390/cancers17233739

