Predicting Remaining Survival of Glioblastoma Patients with Radiomics Analysis Based on 18F-DOPA PET Images
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and 18F-DOPA PET Surveillance Images
2.2. Outcome Endpoints
2.3. Radiomics Feature Extraction
2.4. Radiomics Feature Selection
2.5. ML Algorithms
3. Results
3.1. Patient Cohort and Servalliance Images
3.2. Radiomics Feature Selection
3.3. Model Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Stupp, R.; Weber, D.C. The Role of Radio- and Chemotherapy in Glioblastoma. Oncol. Res. Treat. 2005, 28, 315–317. [Google Scholar] [CrossRef]
- Taphoorn, M.J.B.; Dirven, L.; Kanner, A.A.; Lavy-Shahaf, G.; Weinberg, U.; Taillibert, S.; Toms, S.A.; Honnorat, J.; Chen, T.C.; Sroubek, J.; et al. Influence of Treatment With Tumor-Treating Fields on Health-Related Quality of Life of Patients With Newly Diagnosed Glioblastoma. JAMA Oncol. 2018, 4, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, O.M.; Álvarez-Torres, M.d.M.; Figueiredo, P.; Hangel, G.; Keil, V.C.; Nechifor, R.E.; Riemer, F.; Schmainda, K.M.; Warnert, E.A.H.; Wiegers, E.C.; et al. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front. Oncol. 2022, 12, 810263. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, J.H.; Kim, N.; Lim, D.H.; Song, J.H.; Suh, C.-O.; Wee, C.W.; Kim, I.A. Optimizing Recurrent Glioblastoma Salvage Treatment: A Multicenter Study Integrating Genetic Biomarkers From the Korean Radiation Oncology Group (21-02). Neurosurgery 2024, 95, 584–595. [Google Scholar] [CrossRef]
- Cuncannon, M.; Wong, M.; Jayamanne, D.; Guo, L.; Cove, N.; Wheeler, H.; Back, M. Role of delayed salvage bevacizumab at symptomatic progression of chemorefractory glioblastoma. BMC Cancer 2019, 19, 445. [Google Scholar] [CrossRef]
- Hygino da Cruz, L.C., Jr.; Rodriguez, I.; Domingues, R.C.; Gasparetto, E.L.; Sorensen, A.G. Pseudoprogression and Pseudoresponse: Imaging Challenges in the Assessment of Posttreatment Glioma. Am. J. Neuroradiol. 2011, 32, 1978–1985. [Google Scholar] [CrossRef]
- Thust, S.C.; Bent, M.J.v.D.; Smits, M. Pseudoprogression of brain tumors. J. Magn. Reson. Imaging 2018, 48, 571–589. [Google Scholar] [CrossRef]
- Wen, P.Y.; Chang, S.M.; Bent, M.J.V.D.; Vogelbaum, M.A.; Macdonald, D.R.; Lee, E.Q. Response Assessment in Neuro-Oncology Clinical Trials. J. Clin. Oncol. 2017, 35, 2439–2449. [Google Scholar] [CrossRef]
- Chukwueke, U.N.; Wen, P.Y. Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol. 2019, 8, CNS28. [Google Scholar] [CrossRef]
- Brandes, A.A.; Franceschi, E.; Tosoni, A.; Blatt, V.; Pession, A.; Tallini, G.; Bertorelle, R.; Bartolini, S.; Calbucci, F.; Andreoli, A.; et al. MGMT Promoter Methylation Status Can Predict the Incidence and Outcome of Pseudoprogression After Concomitant Radiochemotherapy in Newly Diagnosed Glioblastoma Patients. J. Clin. Oncol. 2008, 26, 2192–2197. [Google Scholar] [CrossRef]
- Wick, W.; Chinot, O.L.; Bendszus, M.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Revil, C.; Kerloeguen, Y.; Cloughesy, T. Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neuro-Oncology 2016, 18, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Topkan, E.; Topuk, S.; Oymak, E.; Parlak, C.; Pehlivan, B. Pseudoprogression in Patients With Glioblastoma Multiforme After Concurrent Radiotherapy and Temozolomide. Am. J. Clin. Oncol. 2012, 35, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Young, R.; Gupta, A.; Shah, A.; Graber, J.; Zhang, Z.; Shi, W.; Holodny, A.; Omuro, A. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology 2011, 76, 1918–1924. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.M.; Sun, Y.; Aryal, M.P.; Parmar, H.A.; Piert, M.; Rosen, B.; Mayo, C.S.; Balter, J.M.; Schipper, M.; Gabel, N.; et al. A Phase 2 Study of Dose-intensified Chemoradiation Using Biologically Based Target Volume Definition in Patients With Newly Diagnosed Glioblastoma. Int. J. Radiat. Oncol. 2021, 110, 792–803. [Google Scholar] [CrossRef]
- Laack, N.N.; Pafundi, D.; Anderson, S.K.; Kaufmann, T.; Lowe, V.; Hunt, C.; Vogen, D.; Yan, E.; Sarkaria, J.; Brown, P.; et al. Initial Results of a Phase 2 Trial of 18F-DOPA PET-Guided Dose-Escalated Radiation Therapy for Glioblastoma. Int. J. Radiat. Oncol. 2021, 110, 1383–1395. [Google Scholar] [CrossRef]
- Patel, P.; Baradaran, H.; Delgado, D.; Askin, G.; Christos, P.; Tsiouris, A.J.; Gupta, A. MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: A systematic review and meta-analysis. Neuro-Oncology 2017, 19, 118–127. [Google Scholar] [CrossRef]
- Leimgruber, A.; Ostermann, S.; Yeon, E.J.; Buff, E.; Maeder, P.P.; Stupp, R.; Meuli, R.A. Perfusion and diffusion MRI of glioblastoma progression in a four-year prospective temozolomide clinical trial. Int. J. Radiat. Oncol. 2006, 64, 869–875. [Google Scholar] [CrossRef]
- Prager, A.; Martinez, N.; Beal, K.; Omuro, A.; Zhang, Z.; Young, R. Diffusion and Perfusion MRI to Differentiate Treatment-Related Changes Including Pseudoprogression from Recurrent Tumors in High-Grade Gliomas with Histopathologic Evidence. Am. J. Neuroradiol. 2015, 36, 877–885. [Google Scholar] [CrossRef]
- Kim, M.M.; Parmar, H.A.; Aryal, M.P.; Mayo, C.S.; Balter, J.M.; Lawrence, T.S.; Cao, Y. Developing a Pipeline for Multiparametric MRI-Guided Radiation Therapy: Initial Results from a Phase II Clinical Trial in Newly Diagnosed Glioblastoma. Tomography 2019, 5, 118–126. [Google Scholar] [CrossRef]
- Prather, K.Y.; O’nEal, C.M.; Westrup, A.M.; Tullos, H.J.; Hughes, K.L.; Conner, A.K.; A Glenn, C.; Battiste, J.D. A systematic review of amino acid PET in assessing treatment response to temozolomide in glioma. Neuro-Oncol. Adv. 2022, 4, vdac008. [Google Scholar] [CrossRef]
- Cicone, F.; Galldiks, N.; Papa, A.; Langen, K.-J.; Cascini, G.L.; Minniti, G. Repeated amino acid PET imaging for longitudinal monitoring of brain tumors. Clin. Transl. Imaging 2022, 10, 457–465. [Google Scholar] [CrossRef]
- Nabavizadeh, A.; Bagley, S.J.; Doot, R.K.; Ware, J.B.; Young, A.J.; Ghodasara, S.; Zhao, C.; Anderson, H.; Schubert, E.; Carpenter, E.L.; et al. Distinguishing Progression from Pseudoprogression in Glioblastoma Using18F-Fluciclovine PET. J. Nucl. Med. 2023, 64, 852–858. [Google Scholar] [CrossRef]
- Darcourt, J.; Chardin, D.; Bourg, V.; Gal, J.; Schiappa, R.; Blonski, M.; Koulibaly, P.-M.; Almairac, F.; Mondot, L.; Le Jeune, F.; et al. Added value of [18F]FDOPA PET to the management of high-grade glioma patients after their initial treatment: A prospective multicentre study. Eur. J. Nucl. Med. 2023, 50, 2727–2735. [Google Scholar] [CrossRef] [PubMed]
- Galldiks, N.; Langen, K.-J. Anwendung der Aminosäure-PET in der Diagnostik und Therapie von zerebralen Gliomen [Use of Amino Acid PET in the Diagnostic and Treatment Management of Cerebral Gliomas]. Fortschritte Neurol.·Psychiatr. 2012, 80, 17–23. [Google Scholar] [CrossRef]
- Galldiks, N.; Dunkl, V.; Stoffels, G.; Hutterer, M.; Rapp, M.; Sabel, M.; Reifenberger, G.; Kebir, S.; Dorn, F.; Blau, T.; et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. Eur. J. Nucl. Med. 2015, 42, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Galldiks, N.; Dunkl, V.; Ceccon, G.; Tscherpel, C.; Stoffels, G.; Law, I.; Henriksen, O.M.; Muhic, A.; Poulsen, H.S.; Steger, J.; et al. Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. Eur. J. Nucl. Med. 2018, 45, 2377–2386. [Google Scholar] [CrossRef]
- Galldiks, N.; Abdulla, D.S.; Scheffler, M.; Wolpert, F.; Werner, J.-M.; Hüllner, M.; Stoffels, G.; Schweinsberg, V.; Schlaak, M.; Kreuzberg, N.; et al. Treatment Monitoring of Immunotherapy and Targeted Therapy Using 18F-FET PET in Patients with Melanoma and Lung Cancer Brain Metastases: Initial Experiences. J. Nucl. Med. 2021, 62, 464–470. [Google Scholar] [CrossRef]
- Narang, S.; Lehrer, M.; Yang, D.; Lee, J.; Rao, A. Radiomics in glioblastoma: Current status, challenges and potential opportunities. Transl. Cancer Res. 2016, 5, 383–397. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, J.E.; Jo, Y.; Shim, W.H.; Nam, S.J.; Kim, J.H.; Yoo, R.-E.; Choi, S.H.; Kim, H.S. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro-Oncology 2019, 21, 404–414. [Google Scholar] [CrossRef]
- Lohmann, P.; Lerche, C.; Bauer, E.; Steger, J.; Stoffels, G.; Blau, T.; Dunkl, V.; Filss, C.P.; Stegmayr, C.; Neumaier, B.; et al. Differentiation of Pseudoprogression from Tumor Progression in Glioblastoma Patients Based on Fet Pet Radiomics. Neuro-Oncology 2017, 19, vi148–vi149. [Google Scholar] [CrossRef]
- Lohmann, P.; Elahmadawy, M.A.; Gutsche, R.; Werner, J.-M.; Bauer, E.K.; Ceccon, G.; Kocher, M.; Lerche, C.W.; Rapp, M.; Fink, G.R.; et al. FET PET Radiomics for Differentiating Pseudoprogression from Early Tumor Progression in Glioma Patients Post-Chemoradiation. Cancers 2020, 12, 3835. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Wang, N.; Turk, S.; Mohammed, S.; Lobo, R.; Kim, J.; Liao, E.; Camelo-Piragua, S.; Kim, M.; Junck, L.; et al. Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning. Sci. Rep. 2020, 10, 20331. [Google Scholar] [CrossRef] [PubMed]
- Moassefi, M.; Faghani, S.; Conte, G.M.; Kowalchuk, R.O.; Vahdati, S.; Crompton, D.J.; Perez-Vega, C.; Cabreja, R.A.D.; Vora, S.A.; Quiñones-Hinojosa, A.; et al. A deep learning model for discriminating true progression from pseudoprogression in glioblastoma patients. J. Neuro-Oncol. 2022, 159, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Herman, M.G.; Brinkmann, D.H.; Laack, N.N.; Kemp, B.J.; Hunt, C.H.; Lowe, V.; Pafundi, D.H. Prediction of MGMT Status for Glioblastoma Patients Using Radiomics Feature Extraction From 18F-DOPA-PET Imaging. Int. J. Radiat. Oncol. 2020, 108, 1339–1346. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Lei, M.; Varghese, B.; Hwang, D.; Cen, S.; Lei, X.; Desai, B.; Azadikhah, A.; Oberai, A.; Duddalwar, V. Benchmarking Various Radiomic Toolkit Features While Applying the Image Biomarker Standardization Initiative toward Clinical Translation of Radiomic Analysis. J. Digit. Imaging 2021, 34, 1156–1170. [Google Scholar] [CrossRef]
- Pafundi, D.H.; Laack, N.N.; Youland, R.S.; Parney, I.F.; Lowe, V.J.; Giannini, C.; Kemp, B.J.; Grams, M.P.; Morris, J.M.; Hoover, J.M.; et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: Results of a prospective pilot study. Neuro-Oncology 2013, 15, 1058–1067. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. arXiv 2012, arXiv:1201.0490. [Google Scholar]
- Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. arXiv 2020, arXiv:2003.06505. [Google Scholar]
- Nori, H.; Jenkins, S.; Koch, P.; Caruana, R. InterpretML: A Unified Framework for Machine Learning Interpretability. arXiv 2019, arXiv:1909.09223. [Google Scholar] [CrossRef]
- Lou, Y.; Caruana, R.; Gehrke, J. Intelligible models for classification and regression. In Proceedings of the The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 150–158. [Google Scholar] [CrossRef]
- Patel, C.B.; Fazzari, E.; Chakhoyan, A.; Yao, J.; Raymond, C.; Nguyen, H.; Manoukian, J.; Nguyen, N.; Pope, W.; Cloughesy, T.F.; et al. 18F-FDOPA PET and MRI characteristics correlate with degree of malignancy and predict survival in treatment-naïve gliomas: A cross-sectional study. J. Neuro-Oncol. 2018, 139, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Celli, M.; Caroli, P.; Amadori, E.; Arpa, D.; Gurrieri, L.; Ghigi, G.; Cenni, P.; Paganelli, G.; Matteucci, F. Diagnostic and Prognostic Potential of 18F-FET PET in the Differential Diagnosis of Glioma Recurrence and Treatment-Induced Changes After Chemoradiation Therapy. Front. Oncol. 2021, 11, 721821. [Google Scholar] [CrossRef]
- Qian, J.; Pafundi, D.H.; Breen, W.G.; Brown, P.D.; Hunt, C.H.; Jacobson, M.S.; Johnson, D.R.; Kaufmann, T.J.; Kemp, B.J.; Kizilbash, S.H.; et al. Analysis of imaging signatures in 18F-DOPA PET of glioblastoma treated with dose-escalated radiotherapy. Front. Oncol. 2025, 15, 1623313. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; De Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]






| Category | Features | Optimized Cut Point | p-Value |
|---|---|---|---|
| Shape | MeshVolume | 10.114 | <0.001 |
| MajorAxisLength | 0.477 | <0.001 | |
| LeastAxisLength | 0.194 | <0.001 | |
| First Order | Variance | 0.001 | <0.001 |
| Texture | [GLCM] Correlation | 0.003 | <0.001 |
| [GLRLM] LongRunEmphasis | 0.499 | <0.001 |
| MP Coincident with RANO | MP Earlier than RANO | MP Later than RANO | Missing Transition | |
|---|---|---|---|---|
| Percentage of the cohort population | 33.3% | 45.4% | 6.1% | 15.2% |
| RS after RANO PC (months) | 10.4 ± 6.2 | 7.1 ± 5.3 | 16.5 ± 3.5 | 14.3 ± 5.7 |
| % (RS ≤ 12 months) after RANO PC | 91% | 87% | 0% | 40% |
| RS after MP Transition (months) | 10.4 ± 6.2 | 10.1 ± 5.9 | 10.5 ± 0.7 | N/A |
| % (RS ≤ 12) after MP Transition | 91% | 80% | 100% | N/A |
| Features | Autogluon | EBM |
|---|---|---|
| UMAP x | 0.910 | 0.417 |
| UMAP y | 0.07 | 0.292 |
| UMAP x–y | 0 | 0.291 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Hasenauer, D.; Breen, W.G.; Brown, P.D.; Hunt, C.H.; Jacobson, M.S.; Johnson, D.R.; Kaufmann, T.J.; Kemp, B.J.; Kizilbash, S.H.; et al. Predicting Remaining Survival of Glioblastoma Patients with Radiomics Analysis Based on 18F-DOPA PET Images. Cancers 2025, 17, 3560. https://doi.org/10.3390/cancers17213560
Qian J, Hasenauer D, Breen WG, Brown PD, Hunt CH, Jacobson MS, Johnson DR, Kaufmann TJ, Kemp BJ, Kizilbash SH, et al. Predicting Remaining Survival of Glioblastoma Patients with Radiomics Analysis Based on 18F-DOPA PET Images. Cancers. 2025; 17(21):3560. https://doi.org/10.3390/cancers17213560
Chicago/Turabian StyleQian, Jing, Deanna Hasenauer, William G. Breen, Paul D. Brown, Christopher H. Hunt, Mark S. Jacobson, Derek R. Johnson, Timothy J. Kaufmann, Bradley J. Kemp, Sani H. Kizilbash, and et al. 2025. "Predicting Remaining Survival of Glioblastoma Patients with Radiomics Analysis Based on 18F-DOPA PET Images" Cancers 17, no. 21: 3560. https://doi.org/10.3390/cancers17213560
APA StyleQian, J., Hasenauer, D., Breen, W. G., Brown, P. D., Hunt, C. H., Jacobson, M. S., Johnson, D. R., Kaufmann, T. J., Kemp, B. J., Kizilbash, S. H., Lowe, V. J., Ruff, M. W., Sarkaria, J. N., Uhm, J. H., Zakhary, M. J., Seaberg, M. H., Wan Chan Tseung, H. S., Yan, E. S., Zhang, Y., ... Brinkmann, D. H. (2025). Predicting Remaining Survival of Glioblastoma Patients with Radiomics Analysis Based on 18F-DOPA PET Images. Cancers, 17(21), 3560. https://doi.org/10.3390/cancers17213560

