Molecular Characterization of Seminoma Utilizing the AACR Project GENIE: A Retrospective Observational Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Demographics of Seminoma
Demographics | Category | n (%) |
---|---|---|
Sex | Male | 209 (99.1%) |
Female | 0 (0.0%) | |
Not Reported | 2 (0.9%) | |
Age Category | Adult | 209 (99.1%) |
Pediatric | 0 (0.0%) | |
Not Reported | 2 (0.9%) | |
Ethnicity | Non-Hispanic | 170 (80.6%) |
Unknown/Not Collected | 27 (12.8%) | |
Hispanic | 14 (6.6%) | |
Race | Asian | 8 (3.8%) |
White | 170 (80.6%) | |
Black | 3 (1.4%) | |
Other | 12 (5.7%) | |
Unknown | 18 (8.5%) | |
Sample Type | Primary | 136 (62.7%) |
Metastasis | 70 (30.3%) | |
Not Collected | 7 (3.2%) | |
Unspecified | 4 (1.8%) |
3.2. Most Common Somatic Mutations and Copy Number Alterations (CNAs)
3.3. Genetic Differences by Race and Sex
Gene (Chi-Squared) | Black, n (%) | Asian n (%) | White, n (%) | p Value |
---|---|---|---|---|
AMER1 | 1 (33.33) | 0 (0.0) | 0 (0.0) | p < 0.001 |
PMS1 | 1 (50.00) | 0 (0.0) | 0 (0.0) | p < 0.001 |
PIK3CD | 1 (50.00) | 0 (0.0) | 0 (0.0) | p < 0.001 |
BORCS8-MEF2B | 0 (0.0) | 1 (12.50%) | 0 (0.0) | p < 0.001 |
MKRN1 | 0 (0.0) | 1 (12.50%) | 0 (0.0) | p < 0.001 |
NUP214 | 0 (0.0) | 0 (0.0) | 1 (100.00) | p < 0.001 |
CIC | 0 (0.0) | 1 (12.50%) | 0 (0.0) | p < 0.001 |
3.4. Co-Occurrence and Mutual Exclusivity of Mutations
3.5. Primary vs. Metastatic Mutations
4. Discussion
4.1. Subgroups and Mutational Landscape
4.2. Commonly Mutated Genes and Altered Pathways
4.3. KIT/RAS/MAPK Pathway
4.4. PI3K/AKT/mTOR (PAM) Pathway
4.5. Co-Occurrence Patterns and Functional Implication
4.6. Primary vs. Metastatic Samples
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AACR | American Association for Cancer Research |
ADC | Antibody-Drug Conjugate |
AFP | Alpha-Fetoprotein |
ALK | Anaplastic Lymphoma Kinase |
AMER1 | APC Membrane Recruitment Protein 1 |
ASCT | Autologous Stem-Cell Transplant |
ATM | Ataxia Telangiectasia Mutated |
BEP | Bleomycin, Etoposide, and Cisplatin |
CDK12 | Cyclin-Dependent Kinase 12 |
CDKN1B | Cyclin-Dependent Kinase Inhibitor 1B |
CEB | Carboplatin, Etoposide, and Bleomycin |
CHEK2 | Checkpoint kinase 2 |
CNAs | Copy Number Alterations |
CS | Clinical Stage |
DNA | Deoxyribonucleic Acid |
EGFR | Epidermal Growth Factor Receptor |
EP300 | E1A Binding Protein P300 |
ERK | Extracellular Signal-Regulated Kinase |
ETV6 | ETS Translocation Variant 6 |
FDR | False Discovery Rate |
FH | Fumarate Hydratase |
GATK | Genomic Analysis Toolkit |
GENIE | Project Genomics Evidence Neoplasia Information Exchange |
i(12p) | Isochromosome 12p |
KMT2C | Lysine (K)-Specific Methyltransferase 2C |
KMT2D | Lysine Methyltransferase 2D |
LDH | Lactate Dehydrogenase |
MAF | Mutation Annotation Format |
MAPK | Mitogen-Activated Protein Kinase |
Mb | Megabase |
miRNA | MicroRNA |
mTOR | Mammalian Target of Rapamycin |
NRAS | Neuroblastoma RAS Viral Oncogene Homolog |
PAM | PI3K/AKT/mTOR pathway |
PI3K | Phosphoinositide 3-Kinase |
PI3K/AKT/mTOR | Phosphoinositide 3-kinase/Protein Kinase B/Mammalian Target of Rapamycin |
PIK3C2G | Phosphatidylinositol-4-Phosphate 3-Kinase, Catalytic Subunit Type 2 Gamma |
PIK3CA | Phosphatidylinositol-4,5-Biphosphate 3-Kinase, Catalytic Subunit Alpha |
PIK3CD | Phosphatidylinositol-4,5-Biphosphate 3-Kinase, Catalytic Subunit Delta |
RTK | Receptor Tyrosine Kinase |
SD | Standard Deviation |
STAG2 | Stromal Antigen 2 |
TCF3 | Transcription Factor 3 |
TGCT | Testicular Germ Cell Tumors |
TMB | Tumor Mutational Burden |
TP53 | Tumor Protein p53 |
VAF | Variant Allele Frequency |
VUS | Variants of Uncertain Significance |
WES | Whole-Exome Sequencing |
WGS | Whole-Genome Sequencing |
β-HCG | β-Human Chorionic Gonadotropin |
References
- Lamichhane, A.; Mukkamalla, S.K.R. Seminoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Dong, W.; Gang, W.; Liu, M.; Zhang, H. Analysis of the prognosis of patients with testicular seminoma. Oncol. Lett. 2016, 11, 1361–1366. [Google Scholar] [CrossRef]
- Drevinskaite, M.; Patasius, A.; Kincius, M.; Jievaltas, M.; Smailyte, G. A Population-Based Analysis of Incidence, Mortality, and Survival in Testicular Cancer Patients in Lithuania. Medicina 2019, 55, 552. [Google Scholar] [CrossRef] [PubMed]
- Chia, V.M.; Quraishi, S.M.; Devesa, S.S.; Purdue, M.P.; Cook, M.B.; McGlynn, K.A. International trends in the incidence of testicular cancer, 1973–2002. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Xiang, Y.; Ge, Q.; Zhou, Y.; Zhang, H.; Xu, W.; Zhou, S.; Chen, L. Multiomics Approach Distinguishes SPTBN4 as a Key Molecule in Diagnosis, Prognosis, and Immune Suppression of Testicular Seminomas. Int. J. Genom. 2025, 2025, 3530098. [Google Scholar] [CrossRef] [PubMed]
- Bumbasirevic, U.; Zivkovic, M.; Petrovic, M.; Coric, V.; Lisicic, N.; Bojanic, N. Treatment options in stage I seminoma. Oncol. Res. 2023, 30, 117–128. [Google Scholar] [CrossRef]
- Cheng, K.; Seita, Y.; Whelan, E.C.; Yokomizo, R.; Hwang, Y.S.; Rotolo, A.; Krantz, I.D.; Ginsberg, J.P.; Kolon, T.F.; Lal, P.; et al. Defining the cellular origin of seminoma by transcriptional and epigenetic mapping to the normal human germline. Cell Rep. 2024, 43, 114323. [Google Scholar] [CrossRef]
- The AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine Through An International Consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef]
- Ghazarian, A.A.; McGlynn, K.A. Increasing Incidence of Testicular Germ Cell Tumors among Racial/Ethnic Minorities in the United States. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1237–1245. [Google Scholar] [CrossRef]
- Almeida, A.A.; Wojt, A.; Metayer, C.; Kanetsky, P.A.; Graubard, B.I.; Alvarez, C.S.; McGlynn, K.A. Racial/ethnic differences in trends of testicular germ cell tumor incidence in the United States, 1992–2021. Cancer 2025, 131, e35706. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Q.; Wang, Y. Racial differences in testicular cancer in the United States: Descriptive epidemiology. BMC Cancer 2020, 20, 284. [Google Scholar] [CrossRef]
- Uzamere, I.; Wang, Y.; Zheng, T. Genetic determinants for the racial disparities in the risk of prostate and testicular cancers. Commun. Med. 2022, 2, 138. [Google Scholar] [CrossRef]
- Guerra, F.; Quintana, S.; Giustina, S.; Mendeluk, G.; Jufe, L.; Avagnina, M.; Palaoro, L. Investigation of EGFR/pi3k/Akt signaling pathway in seminomas. Biotechn. Histochem. 2020, 96, 125–137. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Zhang, Y.; Kwok-Shing Ng, P.; Kucherlapati, M.; Chen, F.; Liu, Y.; Tsang, Y.H.; de Velasco, G.; Jeong, K.J.; Akbani, R.; Hadjipanayis, A.; et al. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell. 2017, 31, 820–832.e3. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, K.; Fukushima, S.; Totoki, Y.; Matsushita, Y.; Otsuka, A.; Tomiyama, A.; Niwa, T.; Takami, H.; Nakamura, T.; Suzuki, T.; et al. Recurrent neomorphic mutations of MTOR in central nervous system and testicular germ cell tumors may be targeted for therapy. Acta Neuropathol. 2016, 131, 889–901. [Google Scholar] [CrossRef]
- Yaba, A.; Bozkurt, E.R.; Demir, N. mTOR expression in human testicular seminoma. Andrologia 2016, 48, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Onel, T.; Erdogan, C.S.; Aru, B.; Yildirim, E.; Demirel, G.Y.; Yaba, A. Effect of rapamycin treatment in human seminoma TCam-2 cells through inhibition of G1-S transition. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Plaza, X.; de Vries, G.; Meersma, G.J.; Suurmeijer, A.J.H.; Gietema, J.A.; van Vugt, M.A.T.M.; de Jong, S. Dual mTORC1/2 Inhibition Sensitizes Testicular Cancer Models to Cisplatin Treatment. Mol. Cancer Ther. 2020, 19, 590–601. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Du, X.; Liu, H.; Tian, Z.; Zhang, S.; Shi, L.; Wang, Y.; Guo, X.; Zhang, B.; Yuan, S.; Zeng, X.; et al. PI3K/AKT/mTOR pathway mediated-cell cycle dysregulation contribute to malignant proliferation of mouse spermatogonia induced by microcystin-leucine arginine. Environ. Toxicol. 2023, 38, 343–358. [Google Scholar] [CrossRef]
- Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Mol. Biol. Rep. 2020, 47, 4587–4629. [Google Scholar] [CrossRef]
- Shen, H.; Shih, J.; Hollern, D.P.; Wang, L.; Bowlby, R.; Tickoo, S.K.; Thorsson, V.; Mungall, A.J.; Newton, Y.; Hegde, A.M.; et al. Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep. 2018, 23, 3392–3406. [Google Scholar] [CrossRef]
- Loveday, C.; Litchfield, K.; Proszek, P.Z.; Cornish, A.J.; Santo, F.; Levy, M.; Macintyre, G.; Holryod, A.; Broderick, P.; Dudakia, D.; et al. Genomic landscape of platinum resistant and sensitive testicular cancers. Nat. Commun. 2020, 11, 2189. [Google Scholar] [CrossRef]
- Tien, J.C.; Luo, J.; Chang, Y.; Zhang, Y.; Cheng, Y.; Wang, X.; Yang, J.; Mannan, R.; Mahapatra, S.; Shah, P.; et al. CDK12 loss drives prostate cancer progression, transcription-replication conflicts, and synthetic lethality with paralog CDK13. Cell Rep. Med. 2024, 5, 101758. [Google Scholar] [CrossRef]
- Liang, S.; Hu, L.; Wu, Z.; Chen, Z.; Liu, S.; Xu, X.; Qian, A. CDK12: A Potent Target and Biomarker for Human Cancer Therapy. Cells 2020, 9, 1483. [Google Scholar] [CrossRef]
- Coffey, J.; Linger, R.; Pugh, J.; Dudakia, D.; Sokal, M.; Easton, D.F.; Bishop, D.T.; Stratton, M.; Huddart, R.; Rapley, E.A. Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: Report of 220 tumors and review of literature. Genes Chromosome Cancer 2008, 47, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Meir, M.; Maurus, K.; Kuper, J.; Hankir, M.; Wardelmann, E.; Rosenwald, A.; Germer, C.T.; Wiegering, A. The novel KIT exon 11 germline mutation K558N is associated with gastrointestinal stromal tumor, mastocytosis, and seminoma development. Genes Chromosome Cancer 2021, 60, 827–832. [Google Scholar] [CrossRef]
- Mata, D.A.; Yang, S.R.; Ferguson, D.C.; Liu, Y.; Sharma, R.; Benhamida, J.K.; Al-Ahmadie, H.A.; Chakravarty, D.; Solit, D.B.; Tickoo, S.K.; et al. RAS/MAPK Pathway Driver Alterations Are Significantly Associated With Oncogenic KIT Mutations in Germ-cell Tumors. Urology 2020, 144, 111–116. [Google Scholar] [CrossRef]
- Kemmer, K.; Corless, C.L.; Fletcher, J.A.; McGreevey, L.; Haley, A.; Griffith, D.; Cummings, O.W.; Wait, C.; Town, A.; Heinrich, M.C. KIT mutations are common in testicular seminomas. Am. J. Pathol. 2004, 164, 305–313. [Google Scholar] [CrossRef]
- McIntyre, A.; Summersgill, B.; Grygalewicz, B.; Gillis, A.J.; Stoop, J.; van Gurp, R.J.; Dennis, N.; Fisher, C.; Huddart, R.; Cooper, C.; et al. Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults. Cancer Res. 2005, 65, 8085–8089. [Google Scholar] [CrossRef] [PubMed]
- Schittenhelm, M.M.; Shiraga, S.; Schroeder, A.; Corbin, A.S.; Griffith, D.; Lee, F.Y.; Bokemeyer, C.; Deininger, M.W.; Druker, B.J.; Heinrich, M.C. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and ac-tivation loop mutant KIT isoforms associated with human malignancies. Cancer Res. 2006, 66, 473–481. [Google Scholar] [CrossRef]
- Hacioglu, B.M.; Kodaz, H.; Erdogan, B.; Cinkaya, A.; Tastekin, E.; Hacibekiroglu, I.; Turkmen, E.; Kostek, O.; Genc, E.; Uzunoglu, S.; et al. K-RAS and N-RAS mutations in testicular germ cell tumors. Bosn. J. Basic Med. Sci. 2017, 17, 159–163. [Google Scholar] [CrossRef]
- Cabral, E.R.M.; Pacanhella, M.F.; Lengert, A.V.H.; Dos Reis, M.B.; Leal, L.F.; de Lima, M.A.; da Silva, A.L.V.; Pinto, I.A.; Reis, R.M.; Pinto, M.T.; et al. Somatic mutation detection and KRAS amplification in testicular germ cell tumors. Front. Oncol. 2023, 13, 1133363. [Google Scholar] [CrossRef]
- Macheroni, C.; Lucas, T.F.G.; Souza, D.S.; Vicente, C.M.; da Silva Pereira, G.J.; da Silva Vaz Junior, I.; Juliano, M.A.; Porto, C.S. Activation of estrogen receptor ESR1 and ESR2 induces proliferation of the human testicular embryonal carcinoma NT2/D1 cells. Mol. Cell Endocrinol. 2022, 554, 111708. [Google Scholar] [CrossRef]
- Passarelli, R.; Pfail, J.L.; Jang, T.L. Contemporary surgical management of testicular seminoma. Transl. Cancer Res. 2024, 13, 6463–6472. [Google Scholar] [CrossRef]
- Aydin, A.M.; Zemp, L.; Cheriyan, S.K.; Sexton, W.J.; Johnstone, P.A.S. Contemporary management of early stage testicular seminoma. Transl. Androl. Urol. 2020, 9, S36–S44. [Google Scholar] [CrossRef]
- Domont, J.; Massard, C.; Patrikidou, A.; Bossi, A.; de Crevoisier, R.; Rose, M.; Wibault, P.; Fizazi, K. A risk-adapted strategy of radiotherapy or cisplatin-based chemotherapy in stage II seminoma. Urol. Oncol. 2013, 31, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Országhová, Z.; Kalavska, K.; Mego, M.; Chovanec, M. Overcoming Chemotherapy Resistance in Germ Cell Tumors. Biomedicines 2022, 10, 972. [Google Scholar] [CrossRef] [PubMed]
- Skowron, M.A.; Kotthoff, M.; Bremmer, F.; Ruhnke, K.; Parmaksiz, F.; Richter, A.; Küffer, S.; Reuter-Jessen, K.; Pauls, S.; Stefanski, A.; et al. Targeting CLDN6 in germ cell tumors by an antibody-drug-conjugate and studying therapy resistance of yolk-sac tumors to identify and screen specific therapeutic options. Mol. Med. 2023, 29, 40. [Google Scholar] [CrossRef] [PubMed]
- Pectasides, D.; Nikolaou, M.; Pectasides, E.; Koumarianou, A.; Valavanis, C.; Economopoulos, T. Complete response after imatinib mesylate administration in a patient with chemoresistant stage IV seminoma. Anticancer Res. 2008, 28, 2317–2320. [Google Scholar]
- De, P.; Aske, J.C.; Dey, N. RAC1 Takes the Lead in Solid Tumors. Cells 2019, 8, 382. [Google Scholar] [CrossRef]
- Xu, L.; Pierce, J.L.; Sanchez, A.; Chen, K.S.; Shukla, A.A.; Fustino, N.J.; Stuart, S.H.; Bagrodia, A.; Xiao, X.; Guo, L.; et al. Integrated genomic analysis reveals aberrations in WNT signaling in germ cell tumors of childhood and adolescence. Nat. Commun. 2023, 14, 2636. [Google Scholar] [CrossRef]
- Jostes, S.; Nettersheim, D.; Fellermeyer, M.; Schneider, S.; François, H.; Honecker, F.; Schumacher, V.; Geyer, M.; Kristiansen, G.; Schorle, H. The bromodomain inhibitor JQ1 triggers arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J. Cell Mol. Med. 2016, 21, 1300–1314. [Google Scholar] [CrossRef] [PubMed]
- Asangani, I.A.; Dommeti, V.L.; Wang, X.; Wang, X.; Malik, R.; Cieslik, M.; Yang, R.; Escara-Wilke, J.; Wilder-Romans, K.; Dhanireddy, S.; et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 2014, 510, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Luo, Y.; Nie, X.; Zhang, B.; Wang, X.; Li, R.; Liu, G.; Zhou, Q.; Liu, Z.; Fan, L.; et al. Single-cell multi-omics analysis of human testicular germ cell tumor reveals its molecular features and microenvironment. Nat. Commun. 2023, 14, 8462. [Google Scholar] [CrossRef] [PubMed]
- Bing, Z.; Master, S.R.; Tobias, J.W.; Baldwin, D.A.; Xu, X.W.; Tomaszewski, J.E. MicroRNA expression profiles of seminoma from paraffin-embedded formalin-fixed tissue. Virchows Arch. 2012, 461, 663–668. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geereddy, S.R.; Chang, A.; Gallegos, A.; Lin, J.; Surendra, A.; Puvvadi, S.; Hsia, B.; Tauseef, A.; Thirumalareddy, J.; Sood, A. Molecular Characterization of Seminoma Utilizing the AACR Project GENIE: A Retrospective Observational Study. Cancers 2025, 17, 3363. https://doi.org/10.3390/cancers17203363
Geereddy SR, Chang A, Gallegos A, Lin J, Surendra A, Puvvadi S, Hsia B, Tauseef A, Thirumalareddy J, Sood A. Molecular Characterization of Seminoma Utilizing the AACR Project GENIE: A Retrospective Observational Study. Cancers. 2025; 17(20):3363. https://doi.org/10.3390/cancers17203363
Chicago/Turabian StyleGeereddy, Suchit R., Amber Chang, Alma Gallegos, Jonathan Lin, Akaash Surendra, Suraj Puvvadi, Beau Hsia, Abubakar Tauseef, Joseph Thirumalareddy, and Akshat Sood. 2025. "Molecular Characterization of Seminoma Utilizing the AACR Project GENIE: A Retrospective Observational Study" Cancers 17, no. 20: 3363. https://doi.org/10.3390/cancers17203363
APA StyleGeereddy, S. R., Chang, A., Gallegos, A., Lin, J., Surendra, A., Puvvadi, S., Hsia, B., Tauseef, A., Thirumalareddy, J., & Sood, A. (2025). Molecular Characterization of Seminoma Utilizing the AACR Project GENIE: A Retrospective Observational Study. Cancers, 17(20), 3363. https://doi.org/10.3390/cancers17203363