Patient-Derived Organoids from Pancreatic Neuroendocrine Tumors: A Systematic Review of PDO Take Rates, Molecular–Biological Characteristics, and Potential for Clinical Utility
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion Criteria
- Reported the establishment or use of PDOs generated from PanNENs, including PanNET (G1–G3) or PanNECs.
- Were original research articles published in peer-reviewed journals, with the full text available in English.
- Were published between 1 January 2009, and 6 August 2025.
2.3. Exclusion Criteria
- Used non-human or non-patient-derived material (e.g., established cell lines, xenografts, or animal models only).
- Did not involve established organoids.
- Did not report PanNENs (e.g., solely exocrine pancreatic tumors or other GEP-NENs).
- Were reviews, editorials, conference abstracts, or preprints, without peer review.
- Lacked sufficient methodological details or relevant outcome data related to PDO establishment, validation, or other applications.
2.4. Data Extraction
2.5. Quality Appraisal and Risk-of-Bias Consideration
3. Results
3.1. Current Overview of Patient-Derived Organoid Models in PanNENs
3.2. Validation and Characterization Methods
3.3. Feasibility of Patient-Derived Organoids in Pancreatic NENs
3.4. Functional Applications and Drug Screening
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ASCL1 | Achaete-scute family bHLH transcription factor 1 |
| ATAC-seq | Assay for transposase-accessible chromatin sequencing |
| Bcl-2 | B-cell lymphoma 2 |
| CACNA1D | Calcium voltage-gated channel subunit alpha1 D |
| CDK | Cyclin-dependent kinase |
| CDK4/6 | Cyclin-dependent kinase 4/6 |
| CGA | Chromogranin A |
| CPI-455 | KDM5A inhibitor (lysine demethylase 5A inhibitor) |
| C2 | Subtype classification (proteomic signature) |
| EM | Electron microscopy |
| EZH2 | Enhancer of Zeste homolog 2 |
| FACS | Fluorescence-activated cell sorting |
| FDA | U.S. Food and Drug Administration |
| FK866 (NAMPT) | Nicotinamide phosphoribosyltransferase inhibitor |
| G1–G3 | Tumor grades 1 to 3 |
| GEP-NEN | Gastroenteropancreatic neuroendocrine neoplasm |
| GSK126 | GSK2816126 (EZH2 inhibitor compound) |
| H&E | Hematoxylin and eosin |
| IHC | Immunohistochemistry |
| ICC | Immunocytochemistry |
| IFNB1 (IFN-β1) | Interferon beta 1 |
| INSM1 | Insulinoma-associated protein 1 |
| KDM5A | Lysine-specific demethylase 5A |
| KDM5Ai | Lysine-KDM5A inhibitor |
| LN | Lymph node |
| Met | Metastasis |
| mTOR | Mechanistic target of rapamycin |
| Nano-LC-MS/MS | Nano-liquid chromatography tandem mass spectrometry |
| NAMPT | Nicotinamide phosphoribosyltransferase |
| NEC | Neuroendocrine carcinoma |
| NEN | Neuroendocrine neoplasm |
| NET | Neuroendocrine tumor |
| NF-PanNET | Non-functional pancreatic neuroendocrine tumor |
| OMI | Optical metabolic imaging |
| OS | Overall survival |
| PanNEC | Pancreatic neuroendocrine carcinoma |
| PanNEN | Neuroendocrine neoplasm |
| PanNET | Pancreatic neuroendocrine tumor |
| PDO | Patient-derived organoid |
| PDX | Patient-derived xenograft |
| PI3K | Phosphoinositide 3-kinase |
| PICO | Population, intervention, comparison, and outcome (systematic review framework) |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| PRRT | Peptide receptor radionuclide therapy |
| RNA-seq | RNA sequencing |
| RTK | Receptor tyrosine kinase |
| SSA | Somatostatin analog |
| SSTR2 | Somatostatin receptor 2 |
| STR | Short tandem repeat |
| SYN | Synaptophysin |
| VEGF | Vascular endothelial growth factor |
| WB | Western blot |
| WES | Whole-exome sequencing |
| WGS | Whole-genome sequencing |
| Xeno | Xenotransplantation |
References
- Nordstrand, M.A.; Lea, D.; Søreide, J.A. Incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): An updated systematic review of population-based reports from 2010 to 2023. J. Neuroendocr. 2025, 37, e70001. [Google Scholar] [CrossRef]
- Dasari, A.; Wallace, K.; Halperin, D.M.; Maxwell, J.; Kunz, P.; Singh, S.; Chasen, B.; Yao, J.C. Epidemiology of Neuroendocrine Neoplasms in the US. JAMA Netw. Open 2025, 8, e2515798. [Google Scholar] [CrossRef] [PubMed]
- White, B.E.; Rous, B.; Chandrakumaran, K.; Wong, K.; Bouvier, C.; Van Hemelrijck, M.; George, G.; Russell, B.; Srirajaskanthan, R.; Ramage, J.K. Incidence and survival of neuroendocrine neoplasia in England 1995–2018: A retrospective, population-based study. Lancet Reg. Health Eur. 2022, 23, 100510. [Google Scholar] [CrossRef]
- Søreide, K.; Hallet, J.; Jamieson, N.B.; Stättner, S. Optimal surgical approach for digestive neuroendocrine neoplasia primaries: Oncological benefits versus short and long-term complications. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101786. [Google Scholar] [CrossRef] [PubMed]
- Halfdanarson, T.R.; Rabe, K.G.; Rubin, J.; Petersen, G.M. Pancreatic neuroendocrine tumors (PNETs): Incidence, prognosis and recent trend toward improved survival. Ann. Oncol. 2008, 19, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, A.; Chang, D.K.; Nones, K.; Corbo, V.; Patch, A.M.; Bailey, P.; Lawlor, R.T.; Johns, A.L.; Miller, D.K.; Mafficini, A.; et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 2017, 543, 65–71. [Google Scholar] [CrossRef]
- Tacelli, M.; Gentiluomo, M.; Biamonte, P.; Castano, J.P.; Berković, M.C.; Cives, M.; Kapitanović, S.; Marinoni, I.; Marinovic, S.; Nikas, I.; et al. Pancreatic neuroendocrine neoplasms (pNENs): Genetic and environmental biomarkers for risk of occurrence and prognosis. Semin. Cancer Biol. 2025, 112, 112–125. [Google Scholar] [CrossRef]
- Cejas, P.; Drier, Y.; Dreijerink, K.M.A.; Brosens, L.A.A.; Deshpande, V.; Epstein, C.B.; Conemans, E.B.; Morsink, F.H.M.; Graham, M.K.; Valk, G.D.; et al. Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors. Nat. Med. 2019, 25, 1260–1265. [Google Scholar] [CrossRef]
- Frost, M.; Lines, K.E.; Thakker, R.V. Current and emerging therapies for PNETs in patients with or without MEN1. Nat. Rev. Endocrinol. 2018, 14, 216–227. [Google Scholar] [CrossRef]
- Chan, C.S.; Laddha, S.V.; Lewis, P.W.; Koletsky, M.S.; Robzyk, K.; Da Silva, E.; Torres, P.J.; Untch, B.R.; Li, J.; Bose, P.; et al. ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup. Nat. Commun. 2018, 9, 4158. [Google Scholar] [CrossRef]
- Rindi, G.; Mete, O.; Uccella, S.; Basturk, O.; La Rosa, S.; Brosens, L.A.A.; Ezzat, S.; de Herder, W.W.; Klimstra, D.S.; Papotti, M.; et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr. Pathol. 2022, 33, 115–154. [Google Scholar] [CrossRef]
- Abukhiran, I.; Neyaz, A.; Kop, M.; Baroudi, I.; Christensen, D.; Baki, M.A.; Surakji, H.; Shaker, N.; Bedell, M.L.; Jasser, J.; et al. Optimal Approaches to Grading Enteropancreatic Neuroendocrine Tumors Using Ki-67 Proliferation Index: Hotspot and Whole-Slide Digital Quantitative Analysis. Mod. Pathol. 2025, 38, 100780. [Google Scholar] [CrossRef]
- Sonbol, M.B.; Mazza, G.L.; Mi, L.; Oliver, T.; Starr, J.; Gudmundsdottir, H.; Cleary, S.P.; Hobday, T.; Halfdanarson, T.R. Survival and Incidence Patterns of Pancreatic Neuroendocrine Tumors Over the Last 2 Decades: A SEER Database Analysis. Oncologist 2022, 27, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Kenney, L.M.; Hughes, M. Surgical Management of Gastroenteropancreatic Neuroendocrine Tumors. Cancers 2025, 17, 377. [Google Scholar] [CrossRef]
- Perinel, J.; Nappo, G.; Zerbi, A.; Heidsma, C.M.; Nieveen van Dijkum, E.J.M.; Han, H.S.; Yoon, Y.S.; Satoi, S.; Demir, I.E.; Friess, H.; et al. Sporadic nonfunctional pancreatic neuroendocrine tumors: Risk of lymph node metastases and aggressiveness according to tumor size: A multicenter international study. Surgery 2022, 172, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Han, I.W.; Park, J.; Park, E.Y.; Yoon, S.J.; Jin, G.; Hwang, D.W.; Jiang, K.; Kwon, W.; Xu, X.; Heo, J.S.; et al. Fate of Surgical Patients with Small Nonfunctioning Pancreatic Neuroendocrine Tumors: An International Study Using Multi-Institutional Registries. Cancers 2022, 14, 1038. [Google Scholar] [CrossRef] [PubMed]
- Ghabra, S.; Ramamoorthy, B.; Andrews, S.G.; Sadowski, S.M. Surgical Management and Long-Term Evaluation of Pancreatic Neuroendocrine Tumors. Surg. Clin. N. Am. 2024, 104, 891–908. [Google Scholar] [CrossRef]
- Brandl, A.; Lundon, D.; Siriwardena, A.K.; Sochorova, D.; Ceelen, W.; Besselink, M.; Soreide, K.; Stättner, S. Surgical management of pancreatic neuroendocrine tumors—An EYSAC and E-AHPBA international survey of current practice. Eur. J. Surg. Oncol. 2024, 50, 108544. [Google Scholar] [CrossRef]
- Segaran, N.; Devine, C.; Wang, M.; Ganeshan, D. Current update on imaging for pancreatic neuroendocrine neoplasms. World J. Clin. Oncol. 2021, 12, 897–911. [Google Scholar] [CrossRef]
- Rinke, A.; Gress, T.M. Neuroendocrine Cancer, Therapeutic Strategies in G3 Cancers. Digestion 2017, 95, 109–114. [Google Scholar] [CrossRef]
- Ji, S.; Cao, L.; Gao, J.; Du, Y.; Ye, Z.; Lou, X.; Liu, F.; Zhang, Y.; Xu, J.; Shi, X.; et al. Proteogenomic characterization of non-functional pancreatic neuroendocrine tumors unravels clinically relevant subgroups. Cancer Cell 2025, 43, 776–796.e714. [Google Scholar] [CrossRef]
- Del Rivero, J.; Perez, K.; Kennedy, E.B.; Mittra, E.S.; Vijayvergia, N.; Arshad, J.; Basu, S.; Chauhan, A.; Dasari, A.N.; Bellizzi, A.M.; et al. Systemic Therapy for Tumor Control in Metastatic Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors: ASCO Guideline. J. Clin. Oncol. 2023, 41, 5049–5067. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Raymond, E.; Dahan, L.; Raoul, J.L.; Bang, Y.J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shen, L.; Bai, C.; Wang, W.; Li, J.; Yu, X.; Li, Z.; Li, E.; Yuan, X.; Chi, Y.; et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.E.; Hainsworth, J.D.; Baudin, E.; Peeters, M.; Hörsch, D.; Winkler, R.E.; Klimovsky, J.; Lebwohl, D.; Jehl, V.; Wolin, E.M.; et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): A randomised, placebo-controlled, phase 3 study. Lancet 2011, 378, 2005–2012. [Google Scholar] [CrossRef]
- Rinke, A.; Auernhammer, C.J.; Bodei, L.; Kidd, M.; Krug, S.; Lawlor, R.; Marinoni, I.; Perren, A.; Scarpa, A.; Sorbye, H.; et al. Treatment of advanced gastroenteropancreatic neuroendocrine neoplasia, are we on the way to personalised medicine? Gut 2021, 70, 1768. [Google Scholar] [CrossRef]
- Singh, S.; Halperin, D.; Myrehaug, S.; Herrmann, K.; Pavel, M.; Kunz, P.L.; Chasen, B.; Tafuto, S.; Lastoria, S.; Capdevila, J.; et al. [(177)Lu]Lu-DOTA-TATE plus long-acting octreotide versus high-dose long-acting octreotide for the treatment of newly diagnosed, advanced grade 2–3, well-differentiated, gastroenteropancreatic neuroendocrine tumours (NETTER-2): An open-label, randomised, phase 3 study. Lancet 2024, 403, 2807–2817. [Google Scholar] [CrossRef]
- Tesselaar, M.E.T.; Partelli, S.; Braat, A.; Croitoru, A.; Soares Santos, A.P.; Schrader, J.; Welin, S.; Christ, E.; Falconi, M.; Bartsch, D.K. Controversies in NEN: An ENETS position statement on the management of locally advanced neuroendocrine neoplasia of the small intestine and pancreas without distant metastases. J. Neuroendocr. 2025, e70083. [Google Scholar] [CrossRef]
- Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.; Pape, U.F.; et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016, 103, 172–185. [Google Scholar] [CrossRef]
- Ney, A.; Canciani, G.; Hsuan, J.J.; Pereira, S.P. Modelling Pancreatic Neuroendocrine Cancer: From Bench Side to Clinic. Cancers 2020, 12, 3170. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Yoshimura, K.; Sewastjanow-Silva, M.; Song, S.; Ajani, J.A. Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers 2023, 15, 4352. [Google Scholar] [CrossRef] [PubMed]
- Gerstberger, S.; Ganesh, K. NEN in a dish: A patient-derived organoid biobank illuminates potential novel therapeutic opportunities for neuroendocrine neoplasms. Cancer Cell 2023, 41, 2014–2016. [Google Scholar] [CrossRef] [PubMed]
- Varinelli, L.; Illescas, O.; Lorenc, E.J.; Battistessa, D.; Di Bella, M.; Zanutto, S.; Gariboldi, M. Organoids technology in cancer research: From basic applications to advanced ex vivo models. Front. Cell Dev. Biol. 2025, 13, 1569337. [Google Scholar] [CrossRef]
- Jiang, X.-Y.; Wang, Y.-R.; Di, P.-R.; Qian, S.-Y.; Jiang, H.-T. Organoids in cancer therapies: A comprehensive review. Front. Bioeng. Biotechnol. 2025, 13, 1607488. [Google Scholar] [CrossRef]
- Navarro, P.; Grazioso, T.P.; Barquín, A.; Barba, M.; Yagüe, M.; Millán, C.; López, I.; Sevillano, E.; Quiralte, M.; Fernández, P.; et al. Multicenter study correlating molecular characteristics and clinical outcomes of cancer cases with patient-derived organoids. J. Exp. Clin. Cancer Res. 2025, 44, 182. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Xu, P.; Yao, Y.; Tian, H.; Wang, X.; Fang, H.; Ge, S.; Yao, Y.; Wang, Y.; et al. Organoid technologies in antitumor drug screening: Past development, present applications, and future prospects. Int. J. Surg. 2025, 111, 4629–4646. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Wang, L.Z.; Cao, Y.; Huang, L.; Sethi, G.; Chen, X.; Wang, L.; Goh, B.C. The application of organoids in treatment decision-making for digestive system cancers: Progress and challenges. Mol. Cancer 2025, 24, 222. [Google Scholar] [CrossRef]
- Skardal, A.; Sivakumar, H.; Rodriguez, M.A.; Popova, L.V.; Dedhia, P.H. Bioengineered in vitro three-dimensional tumor models in endocrine cancers. Endocr. Relat. Cancer 2024, 31, e230344. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Qin, Y.; Lou, X.; Ye, Z.; Zhang, W.; Gao, H.; Chen, J.; Xu, X.; Yu, X.; et al. Recent progress of experimental model in pancreatic neuroendocrine tumors: Drawbacks and challenges. Endocrine 2023, 80, 266–282. [Google Scholar] [CrossRef]
- Sedlack, A.J.H.; Saleh-Anaraki, K.; Kumar, S.; Ear, P.H.; Lines, K.E.; Roper, N.; Pacak, K.; Bergsland, E.; Quelle, D.E.; Howe, J.R.; et al. Preclinical Models of Neuroendocrine Neoplasia. Cancers 2022, 14, 5646. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Roalsø, M.T.T.; Alexeeva, M.; Oanæs, C.; Watson, M.; Lea, D.; Zaharia, C.; Hagland, H.R.; Søreide, K. Patient-derived organoids from pancreatic cancer after pancreatectomy: Feasibility and organoid take rate in treatment-naïve periampullary tumors. Pancreatology 2024, 25, 367–376. [Google Scholar] [CrossRef]
- Strnadel, J.; Valasek, M.A.; Lin, G.Y.; Lin, H.; Tipps, A.M.P.; Woo, S.M.; Fujimura, K.; Wang, H.; Choi, S.; Bui, J.; et al. Development of 3D-iNET ORION: A novel, pre-clinical, three-dimensional in vitro cell model for modeling human metastatic neuroendocrine tumor of the pancreas. Hum. Cell 2024, 37, 1593–1601. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Z.; Lou, X.; Xu, J.; Jing, D.; Zhou, C.; Qin, Y.; Chen, J.; Xu, X.; Yu, X.; et al. Comparison among different preclinical models derived from the same patient with a non-functional pancreatic neuroendocrine tumor. Hum. Cell 2024, 37, 1522–1534. [Google Scholar] [CrossRef]
- April-Monn, S.L.; Kirchner, P.; Detjen, K.; Bräutigam, K.; Trippel, M.A.; Grob, T.; Statzer, C.; Maire, R.S.; Kollàr, A.; Chouchane, A.; et al. Patient derived tumoroids of high grade neuroendocrine neoplasms for more personalized therapies. npj Precis. Oncol. 2024, 8, 59. [Google Scholar] [CrossRef]
- Alcala, N.; Voegele, C.; Mangiante, L.; Sexton-Oates, A.; Clevers, H.; Fernandez-Cuesta, L.; Dayton, T.L.; Foll, M. Multi-omic dataset of patient-derived tumor organoids of neuroendocrine neoplasms. Gigascience 2024, 13, giae008. [Google Scholar] [CrossRef]
- Dayton, T.L.; Alcala, N.; Moonen, L.; den Hartigh, L.; Geurts, V.; Mangiante, L.; Lap, L.; Dost, A.F.M.; Beumer, J.; Levy, S.; et al. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell 2023, 41, 2083–2099.e2089. [Google Scholar] [CrossRef]
- Gulde, S.; Foscarini, A.; April-Monn, S.L.; Genio, E.; Marangelo, A.; Satam, S.; Helbling, D.; Falconi, M.; Toledo, R.A.; Schrader, J.; et al. Combined Targeting of Pathogenetic Mechanisms in Pancreatic Neuroendocrine Tumors Elicits Synergistic Antitumor Effects. Cancers 2022, 14, 5481. [Google Scholar] [CrossRef]
- April-Monn, S.L.; Andreasi, V.; Schiavo Lena, M.; Sadowski, M.C.; Kim-Fuchs, C.; Buri, M.C.; Ketkar, A.; Maire, R.; Di Domenico, A.; Schrader, J.; et al. EZH2 Inhibition as New Epigenetic Treatment Option for Pancreatic Neuroendocrine Neoplasms (PanNENs). Cancers 2021, 13, 5014. [Google Scholar] [CrossRef]
- Gillette, A.A.; Babiarz, C.P.; VanDommelen, A.R.; Pasch, C.A.; Clipson, L.; Matkowskyj, K.A.; Deming, D.A.; Skala, M.C. Autofluorescence Imaging of Treatment Response in Neuroendocrine Tumor Organoids. Cancers 2021, 13, 1873. [Google Scholar] [CrossRef]
- April-Monn, S.L.; Wiedmer, T.; Skowronska, M.; Maire, R.; Schiavo Lena, M.; Trippel, M.; Di Domenico, A.; Muffatti, F.; Andreasi, V.; Capurso, G.; et al. Three-Dimensional Primary Cell Culture: A Novel Preclinical Model for Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2021, 111, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Toshimitsu, K.; Matano, M.; Fujita, M.; Fujii, M.; Togasaki, K.; Ebisudani, T.; Shimokawa, M.; Takano, A.; Takahashi, S.; et al. An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell 2020, 183, 1420–1435.e1421. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Liu, Y.; Lu, X.; Zhang, M.; Jiang, S.; Cao, Z.; Yang, G.; Qiu, J.; Zhang, T.; Zhao, Y. Organoids in the research of pancreatic neoplasms: Cultivation, applications, and limitations. Cancer Lett. 2025, 632, 217968. [Google Scholar] [CrossRef] [PubMed]
- Roalsø, M.T.; Öhlund, D.; Søreide, K. A decade of patient-derived organoids in pancreatic cancer: Points in translation. Scand. J. Gastroenterol. 2025, 1–3. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Z.; Yang, H.; Zhang, L.; Hu, C.; Yang, Z.; Li, P.; Su, X.; Liu, X.; Wei, W.; et al. Endocrine cancer organoids in basic and translational medical research. Sci. China Life Sci. 2025, 68, 2842–2866. [Google Scholar] [CrossRef] [PubMed]
- Hogenson, T.L.; Xie, H.; Phillips, W.J.; Toruner, M.D.; Li, J.J.; Horn, I.P.; Kennedy, D.J.; Almada, L.L.; Marks, D.L.; Carr, R.M.; et al. Culture media composition influences patient-derived organoid ability to predict therapeutic responses in gastrointestinal cancers. JCI Insight 2022, 7, e158060. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, K.G.; Bird, C.E.; Buehler, J.D.; Gattie, L.C.; Savani, M.R.; Sternisha, A.C.; Xiao, Y.; Levitt, M.M.; Hicks, W.H.; Li, W.; et al. Establishment of patient-derived organoid models of lower-grade glioma. Neuro-Oncol. 2021, 24, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Ear, P.H.; Marinoni, I.; Dayton, T.; Guenter, R.; Quelle, D.E.; Battistella, A.; Buishand, F.O.; Chittaranjan, S.; Nancy Du, Y.C.; Marques, I.; et al. NET Models Meeting 2024 white paper: The current state of neuroendocrine tumour research models and our future aspirations. Endocr. Oncol. 2024, 4, e240055. [Google Scholar] [CrossRef]
- Kim, S.Y.; van de Wetering, M.; Clevers, H.; Sanders, K. The future of tumor organoids in precision therapy. Trends Cancer 2025, 11, 665–675. [Google Scholar] [CrossRef]
- Nölting, S.; Luca, E.; Shapiro, I.; Wang, K.; Auernhammer, C.J.; Beuschlein, F.; Zitzmann, K.; Debaix, H.; Hantel, C. Anti-tumor potential of combinatory GSK3 inhibition in human 3D models of pancreatic neuroendocrine tumors and patient-derived GEP-NET primary cultures. Endocr. Relat. Cancer 2025, 32, e250073. [Google Scholar] [CrossRef]
- Harter, M.F.; Recaldin, T.; Gjorevski, N. Organoids as models of immune-organ interaction. Cell Rep. 2025, 44, 116214. [Google Scholar] [CrossRef]
- Di Paola, F.J.; Calafato, G.; Piccaluga, P.P.; Tallini, G.; Rhoden, K.J. Patient-Derived Organoid Biobanks for Translational Research and Precision Medicine: Challenges and Future Perspectives. J. Pers. Med. 2025, 15, 394. [Google Scholar] [CrossRef]
- Man, Y.; Liu, Y.; Chen, Q.; Zhang, Z.; Li, M.; Xu, L.; Tan, Y.; Liu, Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv. Healthc. Mater. 2024, 13, 2401843. [Google Scholar] [CrossRef]

| Characteristics | Number |
|---|---|
| Publication Period: | |
| 2020–2022 | 5 |
| 2023–2025 | 7 |
| Geographical Distribution: | |
| North America | 2 |
| Europe | 8 |
| Asia | 3 |
| 1st Author (Year, Country) | Tumor Type | Sample Origin | PDO Take Rate | Culture Duration | Validation/ Characterization | Functional Assessment |
|---|---|---|---|---|---|---|
| Ji (2025, China) [21] | NF-PanNET (G2-3) | - | 4/4 | Short-term (>6 days) | H&E, IHC, and Nano-LC-MS/MS | No |
| Roalsø (2024, Norway) [46] | 1 PanNEC | Primary tumor | 1/3 | Short-term (>14 days) | H&E and STR profiling | No |
| Strnadel (2024, Slovakia/USA) [47] | PanNET (G3) | Liver met | 1/1 | Long-term (>20 passages) | H&E, ICC, WB, FACS, confocal imaging, EM, STR profiling, and protein microarray | Xeno |
| Wang (2024, China) [48] | NF-PanNET (G3) | Primary tumor | 1/1 | Long-term (>7 passages) | H&E, IHC, and WES | Tumorigenicity test |
| April-Monn (2024, Switzerland) [49] | 2 PanNET (G3), 1 PanNEC | 2 liver met; 1 LN met | 3/3 | Short-term (~2 weeks) | H&E, IHC, Targeted panel seq, and RNA-seq | Metabolic Activity and transcriptional profiling |
| Alcala (2024, France) [50] | PanNEC 1 | Primary tumor | 1/1 | Long-term (>1 year) | H&E, IHC, WGS, and RNA-seq | No |
| Dayton (2023, Netherlands) [51] | PanNEC | Primary tumor | 1/1 | Long-term (>1 year) | H&E, IHC, WGS, and RNA-seq | Viability assay and xeno |
| Gulde (2022, Germany) [52] | PanNET | 2 primary tumors; 2 liver met | 4/4 | Short-term (>12 days) | H&E and IHC | Viability assay |
| April-Monn (2021, Switzerland) [53] | 5 PanNET (G2) 1 PanNEC | 4 primary tumors; 2 liver met | 6/6 | Short-term (>10 days) | H&E and IHC | Viability assay |
| Gillette (2021, USA) [54] | PanNET (G2) | Primary tumor | 2/2 | Short-term (1–2 months) | H&E and IHC | OMI |
| April-Monn (2021, Switzerland) [55] | NF-PanNET (G1-2) | 5 primary tumors; 1 liver met | 6/7 | Short-term (≤15 days) | H&E and IHC | Viability assay |
| Kawasaki (2020, Japan) [56] | 1 PanNET (G3) 2 PanNEC | Primary tumor | 3/8 | Long-term (>6 months) | H&E, IHC, WGS, WES, RNA-seq, ATAC-seq, and methylation microarray | Xeno and genetic engineering |
| Collective sum | 33/44 (75%) |
| 1st Author (Year) | PDOs Tested | Sample Origin | Drug Panel (Summary) | Key Findings |
|---|---|---|---|---|
| Ji (2025) [21] | 4 NF-PanNETs (G2-3) | Primary tumor | Preliminary screening: 10 C2-upregulated targets + 30 FDA approved drugs. Secondary screening: 6 hits + 4 PanNET clinical drugs. | Subtype-directed combos targeting C2-upregulated proteins (CACNA1D/CDK5); improved PDO efficacy and reduced PDX tumor growth. |
| April--Monn (2024) [49] | 2 PanNETs (G3); 1 PanNEC | 2 liver met; 1 LN met | Cisplatin; temozolomide; IFNB1b; KDM5Ai (CPI-455) | High-grade PanNEN organoids mirrored clinical responses and revealed KDM5A/IFNB1 as cisplatin-sensitizing targets. |
| Dayton (2023) [51] | 1 PanNEC | Primary tumor | Paclitaxel; everolimus (mTOR); navitoclax (Bcl-2); FK866 (NAMPT) | PanNEC organoids showed strong sensitivity towards navitoclax and identified ASCL1 as a potential biomarker for treatment responses. |
| Gulde (2022) [52] | PanNET | 2 primary tumors, 2 liver met | Buparlisib (PI3K) and ribociclib (CDK4/6), tested alone and in combination | Buparlisib + ribociclib combined increased efficacy in PanNET PDOs and in PanNET mice models. |
| April--Monn (2021) [53] | 5 PanNETs (G2); 1 PanNEC | 4 primary tumors; 2 liver met | GSK126 (EZH2) | High EZH2 expression observed; EZH2 inhibition active in a subset of PanNEN organoids. |
| Gillette (2021) [54] | 1 PanNET (G2) | Primary tumor | Navitoclax (Bcl-2) ± everolimus (mTOR) | OMI enabled single-cell metabolic measurements of responses to navitoclax and everolimus in live PanNET organoids. |
| April--Monn (2021) [55] | 6 NF-PanNETs (G1-2) | 5 primary tumors; 1 liver met | Sunitinib (RTKs); everolimus (mTOR); temozolomide | Establishment of a PanNET drug screening platform with PDOs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oanæs, C.; Roalsø, M.T.T.; Alexeeva, M.; Søreide, K. Patient-Derived Organoids from Pancreatic Neuroendocrine Tumors: A Systematic Review of PDO Take Rates, Molecular–Biological Characteristics, and Potential for Clinical Utility. Cancers 2025, 17, 3364. https://doi.org/10.3390/cancers17203364
Oanæs C, Roalsø MTT, Alexeeva M, Søreide K. Patient-Derived Organoids from Pancreatic Neuroendocrine Tumors: A Systematic Review of PDO Take Rates, Molecular–Biological Characteristics, and Potential for Clinical Utility. Cancers. 2025; 17(20):3364. https://doi.org/10.3390/cancers17203364
Chicago/Turabian StyleOanæs, Celine, Marcus T. T. Roalsø, Marina Alexeeva, and Kjetil Søreide. 2025. "Patient-Derived Organoids from Pancreatic Neuroendocrine Tumors: A Systematic Review of PDO Take Rates, Molecular–Biological Characteristics, and Potential for Clinical Utility" Cancers 17, no. 20: 3364. https://doi.org/10.3390/cancers17203364
APA StyleOanæs, C., Roalsø, M. T. T., Alexeeva, M., & Søreide, K. (2025). Patient-Derived Organoids from Pancreatic Neuroendocrine Tumors: A Systematic Review of PDO Take Rates, Molecular–Biological Characteristics, and Potential for Clinical Utility. Cancers, 17(20), 3364. https://doi.org/10.3390/cancers17203364

