Allogeneic Hematopoietic Stem Cell Transplantation as a Platform to Treat Chemorefractory Acute Myeloid Leukemia in Adult Patients
Abstract
Simple Summary
Abstract
1. Introduction
2. Methods
3. Allogeneic HSCT Performed After Conventional Conditioning
- The French cooperative group “Société Francaise de Greffe de Moelle” (SFGM) reported their experience on 379 patients, 230 of whom were transplanted with active AML. Long-term survival was highly dependent on the status at HSCT, ranging from 32% in the case of patients transplanted in remission to 9% for those not undergoing rescue treatment before HSCT to 11% for patients refractory to rescue [7]. The authors found age less than 15 years, longer first complete remission (CR) duration, use of MRD instead of MUD, and the presence of a male donor to be associated with a better overall survival (OS).
- This is similar to what was reported by the Center for International Blood and Marrow Transplant Research (CIBMTR) on 2255 patients transplanted between 1995 and 2004 after MAC [8]. Here, the authors reported a 3-year OS of 19% at a median follow-up of 61 months. Despite this dismal outcome, they still could ascertain some factors associated with a slightly better prognosis, namely: (1) the length of initial CR (>6 months), (2) the absence of circulating blasts, (3) a better performance status (Karnofsky score ≥ 90%), (4) a favorable or intermediate karyotype, and (5) HSCT from MRD. The minority of patients undergoing HSCT with all these favorable features (i.e., 13% of the whole series) experienced a 3-year OS of 42%, opposite to that of the most adverse group, which made up the majority of the series and experienced a 3-year OS of only 6% [8].
- Similarly, Craddock and coll. reported a 5-year OS of 22% from 168 patients affected by primary refractory AML and transplanted either from MRD or MUD between the years 1994 and 2006 by means of mostly (n = 132) a standard MAC (TBI-based in 83 of them). Fewer than three courses of induction attempts, a lower percentage of bone marrow (BM) involvement, and patient CMV seropositivity were associated with a better OS: in fact, the group with the most favorable combination of these prognostic features showed a striking 5-year OS of 44% (+/− 11%). This is remarkably similar to what was reported in the study by the CIBMTR [9].
- Weisdorf and coll. analyzed 4682 patients transplanted either in second complete remission (CR2) (n = 1986), primary induction failure (PIF) (n = 1440), or after failure of one or more rescue treatments (n = 1256). Patients achieving CR2 more likely had de novo AML, better PS, and longer first remission (CR1) duration. Conversely, adverse cytogenetics were more common in patients experiencing PIF. 5-year OS adjusted for performance status (PS), cytogenetic risk, and donor type was 39% vs. 21% vs. 18%, respectively, with patients transplanted with PIF achieving a slightly better OS at 5 years than patients transplanted after refractory relapse (21% vs. 18%, respectively) [14].
- Poiani and coll. reported data from 2089 patients transplanted between 2000 and 2017 with active disease defined as either refractory (n = 972) or relapsed AML (n = 1117, with or without a reinduction attempt). This series was divided according to the cytogenetic risk stratification used by the British cooperative group Medical Research Council (MRC). Unsurprisingly, intermediate- and high-risk patients were more common (n = 1283 + n = 652 vs. n = 154, respectively) and experienced worse LFS (34% vs. 27% and 18%, p < 0.01), lower CR rate at day 100 after HSCT (79% vs. 69% and 61%, p < 0.01), and higher relapse rate (42% vs. 51% and 61%) than favorable-risk patients. No difference in survival could be observed when stratifying according to conditioning intensity [15].
- In a large registry analysis by the Acute Leukemia Working Party (ALWP) of the European Society for Blood and Marrow Transplantation (EBMT), Nagler and coll. reported an overall 2-year LFS of around 25% after MAC/RIC/FLAMSA-RIC and demonstrated a trend towards slightly better results in more recent years. This may be likely the outcome of the significant progress in HLA matching (i.e., genetic vs. serologic) and in the supportive care and infection control practices achieved in the last two decades [16].
- Yanada and coll. described the data of 6927 adults affected by AML and transplanted between 2001 and 2020: 5-year OS, RI, and NRM were 23%, 53%, and 27%, respectively. At multivariate analysis, adverse cytogenetics, the percentage of circulating blasts, and the year of transplantation affected RI, while age, sex, and performance status affected NRM. Relapsed refractory disease was prognostically worse than PIF with regard to OS (24%, 95% C.I. 22–26 vs. 23%, 95% C.I. 21–24, p = NS, respectively). In the relapsed group, shorter duration of CR1 correlated with increased relapse risk and mortality (with 5-year OS ranging from 38% for patients with CR1 lasting > 24 months to 16% for those with CR1 < 6 months, p < 0.001), while in the PIF group the same was true using time from diagnosis to HSCT as covariate (from 5-year OS 27% for those with duration < 3 months vs. 21% for those ≥6 months, p < 0.001). Neither donor type nor the intensity of conditioning had a significant effect on OS [18].
- Jiang and coll. reported the 10-year retrospective experience of their center: on 44 patients transplanted with active BM or extramedullary disease after MAC, they reported a 2-year OS of 44.4% (95% C.I. 30.2–65.4%) and a 2-year RI of 53.0% (95% C.I. 51–55%). Grade 3–4 GvHD at day +100 was 15.8%, 2-year severe chronic GvHD was 25.3%, and 100-day and 2-year NRM were 13.8% and 26.7%, respectively. The main cause of death was once more leukemia relapse, with a 1-year RI of 39.4% and a median OS after relapse of only 4.5 months despite reinduction attempts by DLI, chemotherapy, and, possibly, a second allogeneic HSCT [19].
- Finally, Shimomura and coll. reported a large experience on 707 patients transplanted with active AML after RIC. The 5-year OS and PFS were 22.0% (95% C.I. 8.5–25.7) and 18.8% (95% C.I. 15.6–22.2), respectively, with relapse as the main cause of death (5-year RI: 53.6%, 95% C.I. 49.7–57.4). A high NRM was observed (27.5%, 95% C.I. 24.0–31.2). Male sex, poor PS, cytogenetic risk and the amount of blasts in peripheral blood were independent prognostic variables linked to worse survival [21].
- a.
- b.
- c.
- The intensity of conditioning provides better early disease control in some studies but rarely translates into better long-term OS [11,16]; this is similar to what is observed in studies comparing MAC and RIC in patients transplanted in remission, where better disease control by MAC is usually offset by an increased NRM. Among large studies, only the one by Scott and coll. [25] observed an advantage by MAC over RIC (in terms of PFS, not OS), while many others did not [26,27,28]. It is likely that most of the benefit provided by allogeneic HSCT is due to the transfer of alloreactive immune cells against leukemia (i.e., the GvL effect) more than to the intensity of conditioning;
- d.
- e.
- Although various prognostic scores based on pre-transplant and post-transplant variables have been developed, none has been universally adopted in clinical practice. Nevertheless, the presence of adverse genetics and the amount of residual BM disease, together with the persistence of extramedullary disease, seem to be the most predictive factors [10,11,13]. It has been consistently proven that the minority of patients that do not present with adverse prognostic factors may still experience significant rates of long-term survival, in the range of 30–40% [8,9,18,21].
- a.
- A vast majority of patients achieved at least a transitory remission of their leukemia and the successful engraftment of the transplant, proving the feasibility and effectiveness of HSCT also in the presence of active disease;
- b.
- No universal prognostic score for these patients can be derived also from these studies;
- c.
- It appears useless to administer more than two induction attempts in refractory patients, as a higher number of chemotherapy courses prior to HSCT has consistently been shown to adversely impact survival [22]. This is in line with those studies that show a better outcome for PIF AML patients as compared to relapsed refractory ones [14,16,18].
4. Allogeneic HSCT Performed After Intensified Sequential Conditioning
4.1. Sequential Conditioning by Fludarabine, High-Dose Cytarabine, and Amsacrine (FLAMSA)
4.2. Sequential Conditioning with Other Chemotherapeutic Regimens
- High-dose Decitabine: Lv and coll. recently published the results of a multicenter prospective phase II study on 70 patients affected by active AML (in 74.3% of cases after failure of venetoclax) at the time of HSCT using high-dose decitabine (i.e., 400 mg/m2) as pre-treatment before BuCy MAC and allogeneic HSCT. Prophylactic DLIs were an integral part of the trial protocol. The regimen appeared overall well tolerated, and results were relevant: in fact, 2-year OS of 58.6% (95% C.I. 47–73%) and LFS of 55% (95% C.I. 43.5–69.4%) were reported, with 2-year RI of 29.6% (95% C.I. 18.4–41.7%) and 2-year NRM of 15.5% (95% C.I. 7.8–25.5%) [58].
- Bcl-2 antagonists (Venetoclax): the addition of venetoclax (200–400 mg qd starting from day -8 for 6–7 days) to a Busulfan/Fludarabine-based RIC (FluBu2) in a study on 22 patients affected by high-risk AML or myelodysplastic syndromes (MDS) (with only 5 AML transplanted not in remission) did not impair the engraftment rate nor induce excessive GvHD. Median PFS was 12.2 months, and median OS was unreached at follow-up 14.7 months (range: 8.6–24.8) [59]. A later expansion of this study also demonstrated the feasibility of the maintenance with venetoclax (400 mg qd, days 1–14/cycle) and azacitidine (36 mg/m2 i.v. days 1–5/cycle) after HSCT, with the most common grade 3–4 adverse events being leukopenia, neutropenia, and thrombocytopenia, and all infections being grade 1–2. No significant difference in T-cell reconstitution, but a delay in B-cell expansion was observed as compared to patients not [undergoing maintenance. Reported 2-year OS and PFS were 67% and 59%, with RI 41% and no death in remission (i.e., NRM 0%) [60].
- Radio-immunoconjugates: a phase-3 prospective randomized trial comparing the treatment with an anti-CD45 radio-immunoconjugate (i.e., 131I-apamistamab) vs. conventional care, in both cases followed by allogeneic HSCT, in elderly (>55 years) AML patients (the SIERRA trial) has recently shown favorable results for the experimental arm in all patient subsets and conditions [28]. Nevertheless, the well-known caveats and limitations linked to the use of radio-immunoconjugates will probably limit the diffusion of this procedure to most transplantation centers.
5. Donor Selection
5.1. HLA-Matched Related and Unrelated Donors, Haploidentical, and Other Alternative Donors
- mMUD and haploidentical donors are equally effective as MRD and MUD in terms of RI, LFS, and OS [64], and might also be more effective in some reports, although data are partially inconsistent:
- a.
- A study by the EBMT on 1578 patients transplanted with active AML between 2007 and 2014 and divided according to donor type (10/10 MUD n = 1111; 9/10 MMUD n = 383; haploidentical n = 199) showed a statistically equivalent 2-year LFS in the three groups (28% vs. 22.2% vs. 22.8%, respectively, p = NS), with nonsignificant differences also in terms of RI, NRM, GFRS, and OS. Interestingly, transplantation with relapsed refractory (as compared to PIF) AML and poorer cytogenetics were independently predictive of poorer survival, but not so donor type [92].
- b.
- Konuma and coll. compared the outcome in 5704 elderly patients (i.e., >50 years of age) transplanted with AML either in remission or not, by MRD, 8/8 MUD, 7/8 mMUD, UCB, and haploidentical donors. Overall, donor type did not predict differences in OS, irrespective of disease status at HSCT. Nevertheless, in patients undergoing HSCT while not in remission (n = 2663), LFS was significantly better for MUD (HR 0.77, 95% C.I. 0.64–0.93, p = 0.005) and UCB (HR 0.76, 95% C.I. 0.65–0.88, p < 0.001) as compared to MRD. This was due to lower RI in MUD and UCB. No difference was noted between mMUD (or haploidentical donors) and MRD, as among all donor types in the case of patients transplanted while in remission [91].
- c.
- Doppelhammer and coll. reported on 68 patients, 78% of whom were transplanted with active disease and the others with cytogenetically high-risk AML in remission: 3-year LFS was 49% and OS 56%, without significant differences in terms of RI, NRM, and GRFS between MUD and haploidentical donors [93].
- d.
- Opposite to these results, a prospective study on 661 patients (275 haploidentical, 246 MUD, and 140 MRD HSCT), all undergoing GvHD prophylaxis by means of PTCy and Tacrolimus (with or without MMF), the haploidentical setting showed reduced OS (HR 2.2, 95% C.I. 1.6–3.0, p < 0.001) due to higher NRM (HR 3.2, 95% C.I. 2.0–4.9, p < 0.001) as compared to the other two settings [94]. The haploidentical group also showed more infection-related deaths and a higher rate of viral reactivation, grade ≥3 hemorrhagic cystitis, and cardiovascular toxicities, as well as a slower rate of immunological reconstitution. This report, however, is hampered by some limitations: (1) HSCT had been conducted in a variety of hematological diseases; (2) mMUD had not been included; and (3) GvHD prophylaxis had also been partially heterogeneous in relation to the use of MMF, which was practically used only for haploidentical transplants [94].
- e.
- Finally, patients transplanted with haploidentical HSCT also showed inferior survival as compared to MRD and MUD in an EBMT study on chemorefractory core-binding factor AML (i.e., characterized by recurrent t(8;21) and inv(16) translocations). Here, the authors reported a 2-year OS and LFS of 53.6% and 42.7%, respectively, but inferior OS (HR 1.79, p = 0.003 for MRD and HR 1.64, p = 0.004 for MUD) for haploidentical donors as compared to MRD and MUD. Interestingly, patients with t(8;21) experienced higher RI (HR 2.04, p = 0.002) as compared to inv(16) patients [95].
- Haploidentical donors might have a disadvantage at increased age due to higher NRM and poorer GRFS, leading to worse OS [20].
- HLA heterozygosity after HSCT, deriving from differences in allelic presentation, cellular expression, and up to complete HLA haplotype loss, is relevant to leukemia relapse and a common determinant of immune escape [71,96,97,98]. After haploidentical HSCT, the loss of the mismatched HLA haplotype has been reported in up to one-third of relapsing patients [99]. All these phenomena may be rarer after UCB transplantation [100].
5.2. Umbilical Cord Blood Transplantation
6. Post-Transplant Maintenance and Pre-Emptive Treatments
7. A Special Case: TP53-Mutated AML
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Estey, E.H. Acute myeloid leukemia: 2021 update on risk-stratification and management. Am. J. Hematol. 2020, 95, 1368–1398. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Pollyea, D.; Bixby, D.; Perl, A.; Bhatt, V.R.; Altman, J.K.; Appelbaum, F.R.; de Lima, M.; Fathi, A.T.; Foran, J.M.; Gojo, I.; et al. NCCN Guidelines insights: Acute myeloid leukemia, version 2.2021. J. Natl. Compr. Cancer Netw. 2021, 19, 16–27. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; DiNardo, C.D.; Kadia, T.M.; Daver, N.G.; Altman, J.K.; Stein, E.M.; Jabbour, E.; Schiffer, C.A.; Lang, A.; Ravandi, F. Acute myeloid leukemia management and research in 2025. CA Cancer J. Clin. 2025, 75, 46–67. [Google Scholar] [CrossRef]
- Burnett, A.K.; Goldstone, A.; Hills, R.K.; Milligan, D.; Prentice, A.; Yin, J.; Wheatley, K.; Hunter, A.; Russell, N. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J. Clin. Oncol. 2013, 31, 1293–1301. [Google Scholar] [CrossRef]
- Cornelissen, J.J.; Blaise, D. Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood 2016, 127, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Michallet, M.; Thomas, X.; Vernant, J.P.; Kuentz, M.; Socié, G.; Esperou-Bourdeau, H.; Milpied, N.; Blaise, D.; Rio, B.; Reiffers, J.; et al. Long-term outcome after allogeneic hematopoietic stem cell transplantation for advanced stage acute myeloblastic leukemia: A retrospective study of 379 patients reported to the Societe Francaise de Greffe de Moelle (SFGM). Bone Marrow Transplant. 2000, 26, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Duval, M.; Klein, J.P.; He, W.; Cahn, J.Y.; Cairo, M.; Camitta, B.M.; Kamble, R.; Copelan, E.; de Lima, M.; Gupta, V.; et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J. Clin. Oncol. 2010, 28, 3730–3738. [Google Scholar] [CrossRef]
- Craddock, C.; Labopin, M.; Pillai, S.; Finke, J.; Bunjes, D.; Greinix, H.; Ehninger, G.; Steckel, N.K.; Zander, A.R.; Schwerdtfeger, R.; et al. Factors predicting outcome after unrelated donor stem cell transplantation in primary refractory acute myeloid leukaemia. Leukemia 2011, 25, 808–813. [Google Scholar] [CrossRef]
- Hemmati, P.G.; Terwey, T.H.; Na, I.K.; Jehn, C.F.; le Coutre, P.; Vuong, L.G.; Dorken, B.; Arnold, R. Allogeneic stem cell transplantation for refractory acute myeloid leukemia: A single center analysis of long-term outcome. Eur. J. Haematol. 2015, 95, 498–506. [Google Scholar] [CrossRef]
- Liu, N.; Ning, H.M.; Hu, L.D.; Jiang, M.; Xu, C.; Hu, J.W.; Wang, J.; Li, Y.H.; Li, B.T.; Lou, X.; et al. Outcome of myeloablative allogeneic peripheral blood hematopoietic stem cell transplantation for refractory/relapsed AML patients in NR status. Leuk. Res. 2015, 39, 1375–1381. [Google Scholar] [CrossRef]
- Nagler, A.; Savani, B.N.; Labopin, M.; Polge, E.; Passweg, J.; Finke, J.; Kyrcz-Krzemien, S.; Volin, L.; Anagnostopoulos, A.; Aljurf, M.; et al. Outcomes after use of two standard ablative regimens in patients with refractory acute myeloid leukaemia: A retrospective, multicentre, registry analysis. Lancet Haematol. 2015, 2, e384–e392. [Google Scholar] [CrossRef] [PubMed]
- Todisco, E.; Ciceri, F.; Boschini, C.; Giglio, F.; Bacigalupo, A.; Patriarca, F.; Donnini, I.; Alessandrino, E.P.; Arcese, W.; Iori, A.P.; et al. Factors predicting outcome after allogeneic transplant in refractory acute myeloid leukemia: A retrospective analysis of Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Bone Marrow Transplant. 2017, 52, 955–961. [Google Scholar] [CrossRef]
- Weisdorf, D.J.; Millard, H.R.; Horowitz, M.M.; Hyare, P.S.; Champlin, R.; Ho, V.; Mielcarek, M.; Rezvani, A.; Stockerl-Goldstein, K.; Khoury, H.J.; et al. Allogeneic transplantation for advanced acute myeloid leukemia: The value of complete remission. Cancer 2017, 123, 2025–2034. [Google Scholar] [CrossRef]
- Poiani, M.; Labopin, M.; Battipaglia, G.; Beelen, D.W.; Tischer, J.; Finke, J.; Brecht, A.; Forcade, E.; Ganser, A.; Passweg, J.R.; et al. The impact of cytogenetic risk on the outcomes of allogeneic hematopoietic cell transplantation in patients with relapsed/refractory acute myeloid leukemia: On behalf of the acute leukemia working party (ALWP) of the European group for blood and marrow transplantation (EBMT). Am. J. Hematol. 2021, 96, 40–50. [Google Scholar] [CrossRef]
- Nagler, A.; Ngoya, M.; Galimard, J.E.; Labopin, M.; Bornhauser, M.; Stelljes, M.; Finke, J.; Ganser, A.; Einsele, H.; Kroger, N.; et al. Longitudinal outcome over two decades of unrelated allogeneic stem cell transplantation for relapsed/refractory acute myeloid leukemia: An ALWP/EBMT analysis. Clin. Cancer Res. 2022, 28, 4258–4266. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, F.; Pavon, C.; Peccatori, J.; Giglio, F.; Arpinati, M.; Busca, A.; Bernasconi, P.; Grassi, A.; Iori, A.P.; Patriarca, F.; et al. Myeloablative conditioning with thiotepa-busulfan-fludarabine does not improve the outcome of patients transplanted with active leukemia: Final results of the GITMO prospective trial GANDALF-01. Bone Marrow Transplant. 2022, 57, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Yanada, M.; Yamasaki, S.; Kondo, T.; Kawata, T.; Harada, K.; Uchida, N.; Doki, N.; Yoshihara, S.; Katayama, Y.; Eto, T.; et al. Allogeneic hematopoietic cell transplantation for patients with acute myeloid leukemia not in remission. Leukemia 2024, 38, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Lu, X.; Wei, R.; Zhang, A.; Chen, H.; Shi, W.; Xia, L. Salvage hematopoietic stem cell transplantation for patients with higher leukemia burden in relapsed or refractory acute myeloid leukemia: A ten-year study. Ann. Hematol. 2023, 102, 3205–3216. [Google Scholar] [CrossRef]
- Maffini, E.; Labopin, M.; Kroger, N.; Finke, J.; Stelljes, M.; Schroeder, T.; Einsele, H.; Tischer, J.; Bornhauser, M.; Bethge, W.; et al. Allogeneic hematopoietic cell transplantation for older patients with AML with active disease. A study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2024, 59, 983–990. [Google Scholar] [CrossRef]
- Shimomura, Y.; Kitamura, T.; Yanada, M.; Mizuno, S.; Kondo, T.; Yoshihara, S.; Tanaka, M.; Inai, K.; Katayama, Y.; Onizuka, M.; et al. Allogeneic hematopoietic stem cell transplantation using reduced intensity conditioning regimen for patients with acute myeloid leukemia not in complete remission. Cytotherapy 2025, 27, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Stelljes, M.; Bornhauser, M.; Kroger, N.; Beyer, J.; Sauerland, M.C.; Heinecke, A.; Berning, B.; Scheffold, C.; Silling, G.; Buchner, T.; et al. Cooperative German Transplant Study Group: Conditioning with 8-Gy total body irradiation and fludarabine for allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Blood 2005, 106, 3314–3321. [Google Scholar] [CrossRef]
- Singhal, S.; Powles, R.; Henslee-Downey, P.J.; Chiang, K.Y.; Treleaven, J.; Godder, K.; Kulkarni, S.; van Rhee, F.; Sirohi, B.; Pinkerton, C.R.; et al. Allogeneic transplantation from HLA-matched sibling or partially HLA-mismatched related donors for primary refractory acute leukemia. Bone Marrow Transplant. 2002, 29, 291–295. [Google Scholar] [CrossRef]
- Oyekunle, A.A.; Kroger, N.; Zabelina, T.; Ayuk, F.; Schieder, H.; Renges, H.; Fehse, N.; Waschke, O.; Fehse, B.; Kabisch, H.; et al. Allogeneic stem-cell transplantation in patients with refractory acute leukemia: A long-term follow-up. Bone Marrow Transplant. 2006, 37, 45–50. [Google Scholar] [CrossRef]
- Scott, B.L.; Pasquini, M.C.; Logan, B.R.; Wu, J.; Devine, S.M.; Porter, D.L.; Maziarz, R.T.; Warlick, E.D.; Fernandez, H.F.; Alyea, E.P.; et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J. Clin. Oncol. 2017, 35, 1154–1161. [Google Scholar] [CrossRef]
- Kroger, N.; Iacobelli, S.; Franke, G.N.; Platzbecker, U.; Uddin, R.; Hubel, K.; Scheid, C.; Weber, T.; Robin, M.; Stelljes, M.; et al. Dose-reduced versus standard conditioning followed by allogeneic stem-cell transplantation for patients with myelodysplastic syndrome: A prospective randomized phase-III study of the EBMT (RICMAC Trial). J. Clin. Oncol. 2017, 35, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Bornhauser, M.; Kienast, J.; Trenschel, R.; Burchert, A.; Hegenbart, U.; Stadler, M.; Baurmann, H.; Schafer-Eckart, K.; Holler, E.; Kroger, N.; et al. Reduced-intensity conditioning versus standard conditioning before allogeneic haemopoietic cell transplantation in patients with acute myeloid leukaemia in first complete remission: A prospective, open-label randomised phase 3 trial. Lancet Oncol. 2012, 13, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Craddock, C.; Jackson, A.; Loke, J.; Siddique, S.; Hodgkinson, A.; Mason, J.; Andrew, G.; Nagra, S.; Malladi, R.; Peniket, A.; et al. Augmented reduced-intensity regimen does not improve postallogeneic transplant outcomes in acute myeloid leukemia. J. Clin. Oncol. 2021, 39, 768–778. [Google Scholar] [CrossRef]
- Gyurkocza, B.; Lazarus, H.M.; Giralt, S. Allogeneic hematopoietic cell transplantation in patients with AML not achieving remission: Potentially curative therapy. Bone Marrow Transplant. 2017, 52, 1083–1090. [Google Scholar] [CrossRef]
- Schmid, C.; Schleuning, M.; Ledderose, G.; Tischer, J.; Kolb, H.J. Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J. Clin. Oncol. 2005, 23, 5675–5687. [Google Scholar] [CrossRef]
- Schmid, C.; Schleuning, M.; Schwerdtfeger, R.; Hertenstein, B.; Mischak-Weissinger, E.; Bunjes, D.; Harsdorf, S.V.; Scheid, C.; Holtick, U.; Greinix, H.; et al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 2006, 108, 1092–1099. [Google Scholar] [CrossRef]
- Schneidawind, D.; Federmann, B.; Faul, C.; Vogel, W.; Kanz, L.; Bethge, W.A. Allogeneic hematopoietic cell transplantation with reduced-intensity conditioning following FLAMSA for primary refractory or relapsed acute myeloid leukemia. Ann. Hematol. 2013, 92, 1389–1395. [Google Scholar] [CrossRef]
- Holtick, U.; Shimabukuro-Vornhagen, A.; Chakupurakal, G.; Theurich, S.; Leitzke, S.; Burst, A.; Hallek, M.; von Bergwelt-Baildon, M.; Scheid, C.; Chemnitz, J.M. FLAMSA reduced-intensity conditioning is equally effective in AML patients with primary induction failure as well as in first or second complete remission. Eur. J. Haematol. 2016, 96, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Pfrepper, C.; Klink, A.; Behre, G.; Schenk, T.; Franke, G.-N.; Jentzsch, M.; Schwind, S.; Al-Ali, H.-K.; Hochhaus, A.; Niederwieser, D.; et al. Risk factors for outcome in refractory acute myeloid leukemia patients treated with a combination of fludarabine, cytarabine, and amsacrine followed by a reduced-intensity conditioning and allogeneic stem cell transplantation. J. Cancer Res. Clin. Oncol. 2016, 142, 317–324. [Google Scholar] [CrossRef]
- Middeke, J.M.; Herbst, R.; Parmentier, S.; Bug, G.; Hanel, M.; Stuhler, G.; Schafer-Eckart, K.; Rosler, W.; Klein, S.; Bethge, W.; et al. Clofarabine salvage therapy before allogeneic hematopoietic stem cell transplantation in patients with relapsed or refractory AML: Results of the BRIDGE trial. Leukemia 2016, 30, 261–267. [Google Scholar] [CrossRef]
- Jaiswal, S.R.; Zaman, S.; Chakrabarti, A.; Sen, S.; Mukherjee, S.; Bhargava, S.; Ray, K.; O’Donnell, P.V.; Chakrabarti, S. Improved outcome of refractory/relapsed acute myeloid leukemia after post-transplantation cyclophosphamide-based haploidentical transplantation with myeloablative conditioning and early prophylactic granulocyte colony-stimulating-factor-mobilized donor lymphocyte infusions. Biol. Blood Marrow Transplant. 2016, 22, 1867–1873. [Google Scholar]
- Mohty, M.; Malard, F.; Blaise, D.; Milpied, N.; Socié, G.; Huynh, A.; Reman, O.; Yakoub-Agha, I.; Furst, S.; Guillaume, T.; et al. Sequential regimen of clofarabine, cytosine arabinoside and reduced-intensity conditioned transplantation for primary refractory acute myeloid leukemia. Haematologica 2017, 102, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Ringden, O.; Labopin, M.; Schmid, C.; Sadeghi, B.; Polge, E.; Tischer, J.; Ganser, A.; Michallet, M.; Kanz, L.; Schwerdtfeger, R.; et al. Sequential chemotherapy followed by reduced-intensity conditioning and allogeneic haematopoietic stem cell transplantation in adult patients with relapse or refractory acute myeloid leukaemia: A survey from the Acute Leukaemia Working Party of EBMT. Br. J. Haematol. 2017, 176, 431–439. [Google Scholar] [CrossRef]
- Davies, J.K.; Hassan, S.; Sarker, S.J.; Besley, C.; Oakervee, H.; Smith, M.; Taussig, D.; Gribben, J.G.; Cavenagh, J.D. Durable graft-versus-leukaemia effects without donor lymphocyte infusions- results of a phase II study of sequential T-replete allogeneic transplantation for high-risk acute myeloid leukaemia and myelodysplasia. Br. J. Haematol. 2018, 180, 346–355. [Google Scholar] [PubMed]
- Dulery, R.; Menard, A.L.; Chantepie, S.; El-Cheikh, J.; Francois, S.; Delage, J.; Giannotti, F.; Ruggeri, A.; Brissot, E.; Battipaglia, G.; et al. Sequential conditioning with thiotepa in T-cell replete hematopoietic stem cell transplantation for the treatment of refractory hematologic malignancies: Comparison with matched related, haplo-mismatched, and unrelated donors. Biol. Blood Marrow Transplant. 2018, 24, 1013–1021. [Google Scholar] [CrossRef]
- Steckel, N.K.; Groth, C.; Mikesch, J.H.; Trenschel, R.; Ottinger, H.; Kordelas, H.; Mueller-Tidow, C.; Schliemann, C.; Reicherts, C.; Albring, J.C.; et al. High-dose melphalan-based sequential conditioning chemotherapy followed by allogeneic haematopoietic stem cell transplantation in adult patients with relapsed or refractory acute myeloid leukaemia. Br. J. Haematol. 2018, 180, 840–853. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Fei, X.; Yin, Y.; Cheng, H.; Zhang, W.; Gu, J.; Yang, F.; Yang, Y.; Xue, S.; et al. A new intensive conditioning regimen for allogeneic hematopoietic stem cell transplantation in patients with refractory or relapsed acute myeloid leukemia. Medicine 2018, 97, e0228. [Google Scholar] [CrossRef]
- Saraceni, F.; Labopin, M.; Brecht, A.; Kroger, N.; Eder, M.; Tischer, J.; Labussiere-Wallet, H.; Einsele, H.; Beelen, D.; Bunjes, D.; et al. Fludarabine-treosulfan compared to thiotepa-busulfan-fludarabine or FLAMSA as conditioning regimen for patients with primary refractory or relapsed acute myeloid leukemia: A study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). J. Hematol. Oncol. 2019, 12, 44. [Google Scholar] [CrossRef]
- Rodriguez-Arboli, E.; Labopin, M.; Tischer, J.; Brecht, A.; Ganser, A.; Finke, J.; Blau, I.W.; Kroger, N.; Kalhs, P.; Forcade, E.; et al. FLAMSA-based reduced-intensity conditioning versus myeloablative conditioning in younger patients with relapsed/refractory acute myeloid leukemia with active disease at the time of allogeneic stem cell transplantation: An analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 2165–2173. [Google Scholar]
- Le Bourgeois, A.; Labopin, M.; Marcais, A.; de Latour, R.P.; Blaise, D.; Chantepie, S.; N’Guyen, S.; Maillard, N.; Forcade, E.; Yakoub-Agha, I.; et al. Sequential allogeneic hematopoietic stem cell transplantation for active refractory/relapsed myeloid malignancies: Results of a reduced-intensity conditioning preceded by clofarabine and cytosine arabinoside, a retrospective study on behalf of the SFGM-TC. Ann. Hematol. 2020, 99, 1855–1862. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Long, B.; Zhang, X.; Wen, R.; He, Y.; Li, X. A novel intensive conditioning regimen for allogeneic hematopoietic stem cell transplantation in the treatment of relapsed/refractory acute myeloid leukemia. Neoplasma 2021, 68, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Sockel, K.; Stolzel, F.; Honl, F.; Baldauf, H.; Rollig, C.; Wermke, M.; von Bonin, M.; Teipel, R.; Link-Rachner, C.; Brandt, K.; et al. Allogeneic stem cell transplantation with sequential melphalan-based conditioning in AML: Residual morphological blast count determines the risk of relapse. Cancer Manag. Res. 2022, 14, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Guijarro, F.; Bataller, A.; Diaz-Beya, M.; Garrido, A.; Coll-Ferrà, C.; Vives, S.; Salamero, O.; Valcarcel, D.; Tormo, M.; Arnan, M.; et al. Long-term outcomes in patients with relapsed/refractory acute myeloid leukemia and other high-risk myeloid malignancies after undergoing sequential conditioning regimen based on IDA-FLAG and high-dose melphalan. Bone Marrow Transplant. 2022, 57, 1304–1312. [Google Scholar] [CrossRef]
- Weller, J.F.; Mezger, M.; Seifert, L.L.; Vogel, W.; Schneidawind, D.; Faul, C.; Bethge, W.; Lengerke, C.; Christopeit, M. Time-dependent analysis of adoptive immunotherapy following sequential FLAMSA-reduced intensity conditioning and allogeneic hematopoietic stem cell transplantation in patients with high-risk myeloid neoplasia. Eur. J. Haematol. 2022, 108, 244–263. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Zhang, W.; Gu, J.; Yang, F.; Li, T.; Wang, W.; Wang, J. CLAG combined with total body irradiation as intensive conditioning chemotherapy prior to allogeneic hematopoietic stem cell transplantation in patients with refractory or relapsed acute myeloid leukemia. Ann. Hematol. 2024, 103, 241–249. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, H.; Yan, X.; Qi, M.; Zhang, J. Efficacy and safety of cladribine in combination with busulfan and cyclophosphamide as an intensive conditioning regimen preceding allogeneic hematopoietic stem cell transplantation in relapsed or refractory acute myeloid leukemia. Transpl. Immunol. 2024, 84, 102037. [Google Scholar] [CrossRef] [PubMed]
- Ronnacker, J.; Urbahn, M.-A.; Reicherts, C.; Kolloch, L.; Berning, P.; Sandmann, S.; Eßeling, E.; Call, S.; Floeth, M.; Marx, J.; et al. Early blast clearance during sequential conditioning prior to allogeneic stem cell transplantation in patients with acute myeloid leukemia. Br. J. Haematol. 2024, 205, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Ronnacker, J.; Urbahn, M.-A.; Reicherts, C.; Call, S.; Esseling, E.; Floeth, M.; Marx, J.; Albring, J.; Mikesch, J.-H.; Schliemann, C.; et al. High-dose Melphalan followed by Busulfan and Fludarabine conditioning prior to allogeneic stem cell transplantation in elderly patients with active Acute Myeloid Leukemia—A retrospective single center study. Transplant. Cell. Ther. 2025, 31, 820.e1–820.e11. [Google Scholar] [CrossRef]
- Fraccaroli, A.; Stauffer, E.; Haebe, S.; Prevalsek, D.; Weiss, L.; Dorman, K.; Drolle, H.; von Bergwelt-Baildon, M.; Stemmler, H.-J.; Herold, T.; et al. Treosulfan-versus Melphalan-based reduced intensity conditioning in HLA-haploidentical transplantation for patients ≥50 years with advanced MDS/AML. Cancers 2024, 16, 2859. [Google Scholar] [CrossRef]
- Kolb, H.-J.; Schmid, C. The FLAMSA concept—Past and future. Ann. Hematol. 2020, 99, 1979–1988. [Google Scholar] [CrossRef] [PubMed]
- Saure, C.; Schroeder, T.; Zohren, F.; Groten, A.; Bruns, I.; Czibere, A.; Galonska, L.; Kondakci, M.; Weigelt, C.; Fenk, R.; et al. Upfront allogeneic blood stem cell transplantation for patients with high-risk myelodysplastic syndrome or secondary acute myeloid leukemia using a FLAMSA-based high-dose sequential conditioning regimen. Biol. Blood Marrow Transplant. 2012, 18, 466–472. [Google Scholar] [CrossRef]
- Jondreville, L.; Roos-Weil, D.; Uzunov, M.; Boussen, I.; Grenier, A.; Norol, F.; Morel, V.; Nguyen, S.; Souchet, L. FLAMSA-Busulfan-Melphalan as a sequential conditioning regimen in HLA-matched or haploidentical hematopoietic stem cell transplantation for high-risk myeloid diseases. Transplant. Cell. Ther. 2021, 27, 915.e1–915.e8. [Google Scholar] [CrossRef]
- Lv, M.; Yan, C.-H.; Ma, R.; He, Y.; Zhang, Y.-Y.; Wang, Z.-D.; Chen, Y.-H.; Han, W.; Kong, J.; Han, T.-T.; et al. Mega-dose decitabine conditioning and prophylactic donor lymphocyte infusions for patients with relapsed/refractory AML with active disease at the time of allogeneic haematopoietic cell transplantation: A multicenter prospective phase II study. Br. J. Haematol. 2024, 205, 1910–1920. [Google Scholar] [CrossRef]
- Garcia, J.S.; Kim, H.T.; Murdock, H.M.; Cutler, C.S.; Brock, J.; Gooptu, M.; Ho, V.T.; Koreth, J.; Nikiforow, S.; Romee, R.; et al. Adding venetoclax to fludarabine/busulfan RIC transplant for high-risk MDS and AML is feasible, safe, and active. Blood Adv. 2021, 5, 5536–5545. [Google Scholar] [CrossRef]
- Garcia, J.S.; Kim, H.T.; Murdock, H.M.; Ansuinelli, M.; Brock, J.; Cutler, C.S.; Gooptu, M.; Ho, V.T.; Koreth, J.; Nikiforow, S.; et al. Prophylactic maintenance with venetoclax/azacitidine after reduced-intensity conditioning allogeneic transplant for high-risk MDS and AML. Blood Adv. 2024, 8, 978–990. [Google Scholar] [CrossRef]
- Duda, K.; Wieczorkiewicz-Kabut, A.; Koclega, A.; Zielinska, P.; Wozniczka, K.; Krzemien, H.; Armatys, A.; Helbig, G. Allogeneic hematopoietic stem cell transplantation remains a feasible approach for elderly with acute myeloid leukemia: A 10-year experience. Ann. Hematol. 2023, 102, 1907–1914. [Google Scholar] [CrossRef]
- Solomon, S.R.; Sizemore, C.A.; Zhang, X.; Brown, S.; Holland, H.K.; Morris, L.E.; Solh, M.; Bashey, A. Impact of donor type on outcome after allogeneic hematopoietic cell transplantation for acute leukemia. Biol. Blood Marrow Transplant. 2016, 22, 1816–1822. [Google Scholar] [CrossRef]
- Warlick, E.D.; de Latour, R.P.; Shanley, R.; Robin, M.; Bejanyan, N.; Xhaard, A.; Brunstein, C.; de Fontbrune, F.S.; Ustun, C.; Weisdorf, D.J.; et al. Allogeneic hematopoietic cell transplantation outcomes in acute myeloid leukemia: Similar outcomes regardless of donor type. Biol. Blood Marrow Transplant. 2015, 21, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Savani, B.N.; Mohty, M.; Labopin, M.; Ruggeri, A.; Schmid, C.; Baron, F.; Esteve, J.; Gorin, N.C.; Giebel, S.; et al. Haploidentical hematopoietic cell transplantation for adult acute myeloid leukemia: A position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2017, 102, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Joncker, N.T.; Raulet, D.H. Regulation of NK cell responsiveness to achieve self-tolerance and maximal responses to diseased target cells. Immunol. Rev. 2008, 224, 85–97. [Google Scholar] [CrossRef]
- Nakamura, K.; Nakayama, M.; Kawano, M.; Ishii, T.; Harigae, H.; Ogasawara, K. NK-cell fratricide: Dynamic crosstalk between NK and cancer cells. Oncoimmunology 2023, 2, e26529. [Google Scholar] [CrossRef]
- Suzue, K.; Reinherz, E.L.; Koyasu, S. Critical role of NK but not NKT cells in acute rejection of parental bone marrow cells in F1 hybrid mice. Eur. J. Immunol. 2001, 31, 3147–3152. [Google Scholar] [CrossRef] [PubMed]
- Velardi, A.; Ruggeri, L.; Mancusi, A.; Aversa, F.; Christiansen, F.T. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: A tool for immunotherapy of leukemia. Curr. Opin. Immunol. 2009, 21, 525–530. [Google Scholar] [CrossRef]
- Moesta, A.K.; Parham, P. Diverse functionality among human NK ell reeptors for the C1 epitope of GLA-C: KIR2DS2, KIR2DL2, and KIR2DL3. Front. Immunol. 2012, 3, 336. [Google Scholar] [CrossRef]
- Moffett, A.; Colucci, F. Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol. Rev. 2015, 267, 283–297. [Google Scholar] [CrossRef]
- Verheyden, S.; Demanet, C. NK cell receptors and their ligands in leukemia. Leukemia 2007, 22, 249–257. [Google Scholar] [CrossRef]
- Ruggeri, L.; Vago, L.; Eikema, D.J.; de Wreede, L.C.; Ciceri, F.; Diaz, M.A.; Locatelli, F.; Jindra, P.; Milone, G.; Diez-Martin, J.L.; et al. Natural Killer cell alloreactivity in HLA-haploidentical hematopoietic transplantation: A study on behalf of the CTIWP of the EBMT. Bone Marrow Transplant. 2021, 56, 1900–1907. [Google Scholar] [CrossRef]
- Ruggeri, L.; Capanni, M.; Urbani, E.; Perruccio, K.; Shlomchik, W.D.; Tosti, A.; Posati, S.; Rogaia, D.; Frassoni, F.; Aversa, F.; et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002, 295, 2097–2100. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Pende, D.; Falco, M.; Della Chiesa, M.; Moretta, A.; Moretta, L. NK cells mediate a crucial Graft-versus-Leukemia effect in haploidentical-HSCT to cure high-risk acute leukemia. Trends Immunol. 2018, 39, 577–590. [Google Scholar] [CrossRef]
- Shilling, H.G.; McQueen, K.L.; Cheng, N.W.; Shizuru, J.A.; Negrin, R.S.; Parham, P. Reconstitution of NK cell receptor repertoire followingHLA-matched hematopoietic cell transplantation. Blood 2003, 101, 3730–3740. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.C.; Keever-Taylor, C.; Wilton, A.; Pinto, C.; Heller, G.; Arkun, K.; O’Reilly, R.J.; Horowitz, M.M.; Dupont, B. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 2005, 105, 4878–4884. [Google Scholar] [CrossRef]
- Bjorklund, A.T.; Schaffer, M.; Fauriat, C.; Ringden, O.; Remberger, M.; Hammarstedt, C.; Barrett, A.J.; Ljungman, P.; Ljunggren, H.-G.; Malmberg, K.-J. NK cells expressing inhibitory KIR for non-self-ligands remain tolerant in HLA-matched sibling stem cell transplantation. Blood 2010, 115, 2686–2694. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.C.; Gooley, T.; Malkki, M.; Pinto-Agnello, C.; Dupont, B.; Bignon, J.-D.; Bornhauser, M.; Christiansen, F.; Gratwohl, A.; Morishima, Y.; et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol. Blood Marrow Transplant. 2006, 12, 828–836. [Google Scholar] [CrossRef]
- Venstrom, J.M.; Pittari, G.; Gooley, T.A.; Chewning, J.H.; Spellman, S.; Haagenson, M.; Gallagher, M.M.; Malkki, M.; Petersdorf, E.; Dupont, B.; et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N. Engl. J. Med. 2012, 367, 805–816. [Google Scholar] [CrossRef]
- Gagne, K.; Busson, M.; Bignon, J.-D.; Balere-Appert, M.-L.; Loiseau, P.; Dormoy, A.; Dubois, V.; Perrier, P.; Jollet, I.; Bois, M.; et al. Donor KIR3DL1/3DS1 gene and recipient Bw4 KIR ligand as prognostic markers for outcome in unrelated hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2009, 15, 1366–1375. [Google Scholar] [CrossRef]
- Venstrom, J.M.; Gooley, T.A.; Spellman, S.; Pring, J.; Malkki, M.; Dupont, B.; Petersdorf, E.; Hsu, K.C. Donor activating KIR3DS1 is associated with decreased acute GVHD in unrelated allogeneic hematopoietic stem cell transplantation. Blood 2010, 115, 3162–3165. [Google Scholar] [CrossRef]
- Cooley, S.; Weisdorf, D.J.; Guethlein, L.A.; Klein, J.P.; Wang, T.; Le, C.T.; Marsh, S.G.E.; Geraghty, D.; Spellman, S.; Haagenson, M.D.; et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 2010, 116, 2411–2419. [Google Scholar] [CrossRef]
- Guethlein, L.A.; Beyzaie, N.; Nemat-Gorgani, N.; Wang, T.; Ramesh, V.; Marin, W.M.; Hollenbach, J.A.; Schetelig, J.; Spellman, S.R.; Marsh, S.G.E.; et al. Following transplantation for acute myelogenous leukemia, donor KIR Cen B02 better protects against relapse than KIR Cen B01. J. Immunol. 2021, 206, 3064–3072. [Google Scholar] [CrossRef]
- Symons, H.J.; Leffell, M.S.; Rossiter, N.D.; Zahurak, M.; Jones, R.J.; Fuchs, E.J. Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol. Blood Marrow Transplant. 2010, 16, 533–542. [Google Scholar] [CrossRef]
- Bastos-Oreiro, M.; Anguita, J.; Martinez-Laperche, C.; Fernandez, L.; Buces, E.; Navarro, A.; Pascual, C.; Perez-Corral, A.M.; Balsalobre, P.; Munoz, C.; et al. Inhibitory killer cell immunoglobulin-like receptor (iKIR) mismatches improve survival after T-cell-repleted haploidentical transplantation. Eur. J. Haematol. 2016, 96, 483–491. [Google Scholar] [CrossRef]
- Wanquet, A.; Bramanti, S.; Harbi, S.; Furst, S.; Legrand, F.; Faucher, C.; Granata, A.; Calmels, B.; Lemarie, C.; Picard, C.; et al. Killer cell immunoglobulin-like receptor-ligand mismatch in donor versus recipient direction provides better graft-versus-tumor effect in patients with hematologic malignancies undergoing allogeneic T cell-replete haploidentical transplantation followed by post-transplant cyclophosphamide. Biol. Blood Marrow Transplant. 2018, 24, 549–554. [Google Scholar] [PubMed]
- Solomon, S.R.; Aubrey, M.T.; Zhang, X.; Piluso, A.; Freed, B.M.; Brown, S.; Jackson, K.C.; Morris, L.E.; Holland, H.K.; Solh, M.M.; et al. Selecting the best donor for haploidentical transplant: Impact of HLA, killer cell immunoglobulin-like receptor genotyping and other clinical variables. Biol. Blood Marrow Transplant. 2018, 24, 789–798. [Google Scholar] [CrossRef]
- Willem, C.; Makanga, D.R.; Guillaume, T.; Maniangou, B.; Legrand, N.; Gagne, K.; Peterlin, P.; Garnier, A.; Béné, M.C.; Cesbron, A.; et al. Impact of KIR/HLA incompatibilities on NK cell reconstitution and clinical outcome after T cell-replete haploidentical hematopoietic stem cell transplantation with posttransplant cyclophosphamide. J. Immunol. 2019, 202, 2141–2152. [Google Scholar] [CrossRef] [PubMed]
- Shimoni, A.; Labopin, M.; Finke, J.; Ciceri, F.; Deconinck, E.; Kroger, N.; Gramatzki, M.; Stelljes, M.; Blaise, D.; Stoelzel, F.; et al. Donor selection for a second allogeneic stem cell transplantation in AML patients relapsing after a first transplant: A study of the Acute Leukemia Working Party of EBMT. Blood Cancer J. 2019, 9, 88. [Google Scholar] [CrossRef]
- Brissot, E.; Labopin, M.; Stelljes, M.; Ehninger, G.; Schwerdtfeger, R.; Finke, J.; Kolb, H.-J.; Ganser, A.; Schafer-Eckart, K.; Zander, A.R.; et al. Comparison of matched sibling donors versus unrelated donors in allogeneic stem cell transplantation for primary refractory acute myeloid leukemia: A study on behalf of the Acute Leukemia Working Party of the EBMT. J. Hematol. Oncol. 2017, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Konuma, T.; Yamasaki, S.; Ishiyama, K.; Mizuno, S.; Hayashi, H.; Uchida, N.; Shimabukuro, M.; Tanaka, M.; Kuriyama, T.; Onizuka, M.; et al. Comparison of allogeneic transplant outcomes between matched sibling donors and alternative donors in patients over 50 years of age with acute myeloid leukemia: 8/8 allele-matched unrelated donors and unrelated cord blood provide better leukemia-free survival compared with matched sibling donors during nonremission status. Transplant. Cell. Ther. 2024, 30, 215.e1–215.e18. [Google Scholar] [CrossRef]
- Brissot, E.; Labopin, M.; Ehninger, G.; Stelljes, M.; Brecht, A.; Ganser, A.; Tischer, J.; Kroger, N.; Afanasyev, B.; Finke, J.; et al. Haploidentical versus unrelated allogeneic stem cell transplantation for relapsed/refractory acute myeloid leukemia: A report on 1578 patients from the Acute Leukemia Working Party of the EBMT. Haematologica 2019, 104, 524–532. [Google Scholar] [CrossRef]
- Doppelhammer, M.; Fraccaroli, A.; Prevalsek, D.; Bucklein, V.; Habe, S.; Schulz, C.; Hubmann, M.; Hausmann, A.; Claus, R.; Rank, A.; et al. Comparable outcome after haploidentical and HLA-matched allogeneic stem cell transplantation for high-risk acute myeloid leukemia following sequential conditioning—A matched pair analysis. Ann. Hematol. 2019, 98, 753–762. [Google Scholar] [CrossRef]
- Mehta, R.S.; Saliba, R.M.; Ghanem, S.; Alousi, A.M.; Rondon, G.; Anderlini, P.; Al-Atrash, G.; Bashir, Q.; Hosing, C.M.; Im, J.S.; et al. Haploidentical versus matched unrelated versus matched sibling donor hematopoietic cell transplantation with post-transplantation cyclophosphamide. Transplant. Cell. Ther. 2022, 28, 395.e1–395.e11. [Google Scholar] [CrossRef]
- Tarantino, S.; Labopin, M.; Zeiser, R.; Stelljes, M.; Schroeder, T.; Kroger, N.; Bethge, W.; Passweg, J.; Bornhauser, M.; Schmid, C.; et al. Allogeneic stem cell transplantation in de novo core-binding factor acute myeloid leukemia in active disease: A study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2025, 60, 1027–1035. [Google Scholar] [CrossRef]
- Verheyden, S.; Ferrone, S.; Mulder, A.; Claas, F.H.; Schots, R.; De Moerloose, B.; Benoit, Y.; Demanet, C. Role of the inhibitory KIR ligand HLA-Bw4 and HLA-C expression levels in the recognition of leukemic cells by Natural Killer cells. Cancer Immunol. Immunother. 2008, 58, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Varbanova, V.; Naumova, E.; Mihaylova, A. Killer-cell immunoglobulin-like receptor genes and ligands and their role in hematologic malignancies. Cancer Immunol. Immunother. 2016, 65, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Hiraki, A.; Fujii, N.; Watanabe, T.; Tanaka, M.; Matsue, K.; Ogama, Y.; Ouchida, M.; Shimizu, K.; Ikeda, K.; et al. Loss or down-regulation of HLA class I expression at the allelic level in freshly isolated leukemic blasts. Cancer Sci. 2007, 98, 102–108. [Google Scholar] [CrossRef]
- Vago, L.; Perna, S.K.; Zanussi, M.; Mazzi, B.; Barlassina, C.; Stanghellini, M.T.L.; Perrelli, N.F.; Cosentino, C.; Torri, F.; Angius, A.; et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N. Engl. J. Med. 2009, 361, 478–488. [Google Scholar] [CrossRef]
- Zeiser, R.; Vago, L. Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood 2019, 133, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Sobue, T.; Hirabayashi, S.; Kondo, T.; Mizuno, S.; Kanda, J.; Fujino, T.; Kataoka, K.; Uchida, N.; Eto, T.; et al. Comparing cord blood transplantation and matched related donor transplantation in non-remission acute myeloid leukemia. Leukemia 2022, 36, 1132–1138. [Google Scholar] [CrossRef]
- Matsuda, K.; Konuma, T.; Fuse, K.; Masuko, M.; Kawamura, K.; Hirayama, M.; Uchida, N.; Ikegame, K.; Wake, A.; Eto, T.; et al. Comparison of transplant outcomes between haploidentical transplantation and single cord blood transplantation in non-remission acute myeloid leukaemia: A nationwide retrospective study. Br. J. Haematol. 2023, 201, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Baron, F.; Labopin, M.; Ruggeri, A.; Ehninger, G.; Bonifazi, F.; Stelljes, M.; Sanz, J.; Stuhler, G.; Bosi, A.; Kroger, N.; et al. Umbilical cord blood versus unrelated donor transplantation in adults with primary refractory or relapsed acute myeloid leukemia: A report from Eurocord, the Acute Leukemia Working Party and the Cord Blood Committee of the Cellular Therapy and Immunobiology Working Party of the EBMT. Blood Cancer J. 2019, 9, 46. [Google Scholar] [CrossRef]
- Gale, R.P.; Horowitz, M.M.; Ash, R.C.; Champlin, R.E.; Goldman, J.M.; Rimm, A.A.; Ringden, O.; Stone, J.A.; Bortin, M.M. Identical-twin bone marrow transplants for leukemia. Ann. Intern. Med. 1994, 120, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Baron, F.; Labopin, M.; Savani, B.N.; Beohou, E.; Niederwieser, D.; Eder, M.; Potter, V.; Kroger, N.; Beelen, D.; Socié, G.; et al. Graft-versus-host disease and graft-versus-leukaemia effects in secondary acute myeloid leukaemia: A retrospective, multicentre registry analysis from the Acute Leukaemia Working Party of the EBMT. Br. J. Haematol. 2020, 188, 428–437. [Google Scholar] [CrossRef]
- Socie, G. Challenges in GVHD and GVL after hematopoietic stem cell transplantation for myeloid malignancies. Blood 2025, 146, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.T.; Soiffer, R.J.; Cutler, C.; Koreth, J.; Nikiforow, S.; Shapiro, R.M.; Kelkar, A.; Gooptu, M.; Romee, R.; Wu, C.J.; et al. Reduced incidence of relapse and graft-versus-host disease in acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Haematologica 2025, 110, 1998–2008. [Google Scholar] [CrossRef]
- Schmid, C.; Labopin, M.; Schaap, N.; Veelken, H.; Brecht, A.; Stadler, M.; Finke, J.; Baron, F.; Collin, M.; Bug, G.; et al. Long-term results and GvHD after prophylactic and preemptive donor lymphocyte infusion after allogeneic stem cell transplantation for acute leukemia. Bone Marrow Transplant. 2022, 57, 215–223. [Google Scholar] [CrossRef]
- Pagliuca, S.; Schmid, C.; Santoro, N.; Simonetta, F.; Battipaglia, G.; Guillaume, T.; Greco, R.; Onida, F.; Sanchez-Ortega, I.; Yakoub-Agha, I.; et al. Donor lymphocyte infusion after allogeneic haematopoietic cell transplantation for haematological malignancies: Basic considerations and best practice recommendations from the EBMT. Lancet Haematol. 2024, 11, e448–e458. [Google Scholar] [CrossRef]
- Dholaria, B.; Savani, B.N.; Labopin, M.; Luznik, L.; Ruggeri, A.; Mielke, S.; Al Malki, M.M.; Kongtim, P.; Fuchs, E.; Huang, X.J.; et al. Clinical applications of donor lymphocyte infusion from an HLA-haploidentical donor: Consensus recommendations from the Acute Leukemia Working Party of the EBMT. Haematologica 2020, 105, 47–58. [Google Scholar] [CrossRef]
- Platzbecker, U.; Middeke, J.M.; Sockel, K.; Herbst, R.; Wolf, D.; Baldus, C.D.; Oelschlagel, U.; Mutherig, A.; Fransecky, L.; Noppeney, R.; et al. Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): An open-label, multicentre, phsse 2 trial. Lancet Oncol. 2018, 19, P1668–P1679. [Google Scholar] [CrossRef]
- Gooptu, M.; Murdock, H.M.; Soiffer, R.J. How I treat AML relapse after allogeneic HSCT. Blood 2025, 145, 2128–2137. [Google Scholar] [CrossRef]
- Shin, D.Y. TP53 mutation in acute myeloid leukemia: An old foe revisited. Cancers 2023, 15, 4816. [Google Scholar] [CrossRef]
- Liu, Y.; Tavana, O.; Gu, W. P53 modifications: Exquisite decorations of the powerful guardian. J. Mol. Cell Biol. 2019, 11, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M. Census and evaluation of p53 target genes. Oncogene 2017, 36, 3943–3956. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, M.; Riscal, R.; Arena, G.; Linares, L.K.; LE Cam, L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol. Metab. 2019, 33, 2–22. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; Stahl, M. TP53-mutated acute myeloid leukemia: How can we improve outcomes? Blood 2025, 145, 2828–2833. [Google Scholar] [CrossRef]
- Middeke, J.M.; Fang, M.; Cornelissen, J.J.; Mohr, B.; Appelbaum, F.R.; Stadler, M.; Sanz, J.; Baurmann, H.; Bug, G.; Schäfer-Eckart, K.; et al. Outcome of patients with abnl(17p) acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Blood 2014, 123, 2960–2967. [Google Scholar] [CrossRef]
- Middeke, J.M.; Herold, S.; Rucker-Braun, E.; Berdel, W.E.; Stelljes, M.; Kaufmann, M.; Schäfer-Eckart, K.; Baldus, C.D.; Stuhlmann, R.; Ho, A.D.; et al. TP53 mutation in patients with high-risk acute myeloid leukaemia treated with allogeneic haematopoietic stem cell transplantation. Br. J. Haematol. 2016, 172, 914–922. [Google Scholar] [CrossRef]
- Luskin, M.R.; Carrol, M.; Lieberman, D.; Morrissette, J.J.D.; Zhao, J.; Crisalli, L.; Roth, D.B.; Luger, S.M.; Porter, D.L.; Reshef, R. Clinical utility of next-generation sequencing for oncogenic mutations in patients with acute myeloid leukemia undergoing allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 2016, 22, 1961–1967. [Google Scholar] [CrossRef]
- Lindsley, R.C.; Saber, W.; Mar, B.G.; Redd, R.; Wang, T.; Haagenson, M.D.; Grauman, P.V.; Hu, Z.H.; Spellman, S.R.; Lee, S.J.; et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N. Engl. J. Med. 2017, 376, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Yoshizato, T.; Nannya, Y.; Atsuta, Y.; Shiozawa, Y.; Iijima-Yamashita, Y.; Yoshida, K.; Shiraishi, Y.; Suzuki, H.; Nagata, Y.; Sato, Y.; et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: Impact on outcome of stem cell transplantation. Blood 2017, 129, 2347–2358. [Google Scholar] [CrossRef] [PubMed]
- Poiré, X.; Labopin, M.; Maertens, J.; Yakoub-Agha, I.; Blaise, D.; Ifrah, N.; Socie, G.; Gedde-Dhal, T.; Schaap, N.; Cornelissen, J.J.; et al. Allogeneic stem cell transplantation in adult patients with acute myeloid leukemia and 17p abnormalities in first complete remission: A study from the Acute Leukaemia Working Party (ALWP) of the European Society for Blood and Marrow Transplantation (EBMT). J. Hematol. Oncol. 2017, 10, 20. [Google Scholar] [CrossRef]
- Najima, Y.; Sadato, D.; Harada, Y.; Hirama, C.; Oboki, K.; Toya, T.; Doki, N.; Haraguchi, K.; Yoshifuji, K.; Akiyama, M.; et al. Presence of TP53 mutation and monosomal karyotype predict the outcome of patients with acute myeloid leukemia in non-remission at allogeneic stem cell transplantation. Blood 2018, 132 (Suppl. S1), 2168. [Google Scholar] [CrossRef]
- Grob, T.; Al Hinai, A.S.A.; Sanders, M.A.; Kavelaars, F.G.; Rijken, M.; Gradowska, P.L.; Biemond, B.J.; Breems, D.A.; Maertens, J.; van Marwijk Kooy, M.; et al. Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 2022, 139, 2347–2354. [Google Scholar] [CrossRef]
- Loke, J.; Labopin, M.; Craddock, C.; Cornelissen, J.J.; Labussiere-Wallet, H.; Wagner-Drouet, E.M.; Van Gorkom, G.; Schaap, N.P.M.; Kroger, N.M.; Veelken, J.H.; et al. Additional cytogenetic features determine outcome in patients allografted for TP53 mutant acute myeloid leukemia. Cancer 2022, 128, 2922–2931. [Google Scholar] [CrossRef]
- Lontos, K.; Saliba, R.M.; Kanagal-Shamanna, R.; Ozcan, G.; Ramdial, J.; Chen, G.; Kadia, T.; Short, N.J.; Daver, N.G.; Kantarjian, H.; et al. TP53 mutant variant allele frequency and cytogenetics determine prognostic groups in MDS/AML for transplantation. Blood Adv. 2025, 9, 2845–2854. [Google Scholar] [CrossRef]
- Qin, G.; Han, X. The prognostic value of TP53 mutations in adult acute myeloid leukemia: A meta-analysis. Transfus. Med. Hemotherapy 2022, 50, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zarif, M.; Zhou, Q.; Capo-Chichi, J.-M.; Schuh, A.; Minden, M.D.; Atenafu, E.G.; Kumar, R.; Chang, H. TP53 mutations in AML patients are associated with dismal clinical outcome irrespective of frontline induction regimen and allogeneic hematopoietic cell transplantation. Cancers 2023, 15, 3210. [Google Scholar] [CrossRef]
- Nawas, M.T.; Kosuri, S. Utility or futility? A contemporary approach to allogeneic hematopoietic cell transplantation for TP53-mutated MDS/AML. Blood Adv. 2024, 8, 553–561. [Google Scholar] [CrossRef]
- Badar, T.; Atallah, E.; Shallis, R.M.; Goldberg, A.D.; Patel, A.; Abaza, Y.; Bewersdorf, J.P.; Saliba, A.N.; De Camargo Correia, G.S.; Murthy, G.; et al. Outcomes of TP53-mutated AML with evolving frontline therapies: Impact of allogeneic stem cell transplantation on survival. Am. J. Hematol. 2022, 97, E232–E235. [Google Scholar] [CrossRef] [PubMed]
- Hunter, A.M.; Sallman, D.A. Current status and new treatment approaches in TP53 mutated AML. Best Pract. Res. Clin. Haematol. 2019, 32, 134–144. [Google Scholar] [CrossRef]
- Shahzad, M.; Tariq, E.; Chaudhary, S.G.; Anwar, I.; Iqbal, Q.; Fatima, H.; Abdelhakim, H.; Ahmed, N.; Balusu, R.; Hematti, P.; et al. Outcomes with allogeneic hematopoietic stem cell transplantation in TP53-mutated acute myeloid leukemia: A systematic review and meta-analysis. Leuk. Lymphoma 2022, 63, 3409–3417. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of myeloid neoplasms and acute leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Montalban-Bravo, G.; Hwang, H.; Ning, J.; Franquiz, M.J.; Kanagal-Shamanna, R.; Patel, K.P.; DiNardo, C.D.; Ravandi, F.; Garcia-Manero, G.; et al. Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Adv. 2020, 4, 5681–5689. [Google Scholar] [CrossRef]
- Vadakekolathu, J.; Lai, C.; Reeder, S.; Church, S.E.; Hood, T.; Lourdusamy, A.; Rettig, M.P.; Aldoss, I.; Advani, A.S.; Godwin, J.; et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020, 4, 5011–5024. [Google Scholar] [CrossRef]
- Williams, P.; Basu, S.; Garcia-Manero, G.; Hourigan, C.S.; Oetjen, K.A.; Cortes, J.E.; Ravandi, F.; Jabbour, E.J.; Al-Hamal, Z.; Konopleva, M.; et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer 2019, 125, 1470–1481. [Google Scholar] [CrossRef]
- Abolhalaj, M.; Sincic, V.; Lilljebjorn, H.; Sanden, C.; Aab, A.; Hagerbrand, K.; Ellmark, P.; Borrebaeck, C.A.K.; Firoetos, T.; Lundberg, K. Transcriptional profiling demonstrates altered characteristics of CD8+ cytotoxic T-cells and regulatory T-cels in TP53-mutated acute myeloid leukemia. Cancer Med. 2022, 11, 3023–3032. [Google Scholar] [CrossRef]
- Marvin-Peek, J.; Mason, E.F.; Kishtagari, A.; Jayani, R.V.; Dholaria, B.; Kim, T.K.; Engelhardt, B.G.; Chen, H.; Strickland, S.; Savani, B.; et al. TP53 mutations are associated with increased infections and reduced hematopoietic cell transplantation rates in myelodysplastic syndrome and acute myeloid leukemia. Transplant. Cell. Ther. 2023, 29, 390.e1–390.e10. [Google Scholar] [CrossRef] [PubMed]
- Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J. Clin. Oncol. 2020, 38, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Badar, T.; Atallah, E.; Shallis, R.; Saliba, A.N.; Patel, A.; Bewersdorf, J.P.; Grenet, J.; Stahl, M.; Duvall, A.; Burkart, M.; et al. Survival of TP53-mutated acute myeloid leukemia patients receiving allogeneic stem cell transplantation after first induction or salvage therapy: Results from the Consortium on Myeloid Malignancies and Neoplastic Diseases (COMMAND). Leukemia 2023, 37, 799–806. [Google Scholar] [CrossRef]
- Byrne, M.T.; Kurian, T.J.; Patel, D.A.; Tamari, R.; Hong, S.; Abdelhakim, H.; Klein, V.; Rojas, P.; Madhavan, R.; Kent, A.; et al. Non-relapse mortality in TP53-mutated MDS/AML—A multi-center collaborative study. Blood 2021, 138 (Suppl. S1), 2922. [Google Scholar] [CrossRef]
- Daver, N.G.; Iqbal, S.; Huang, J.; Renard, C.; Lin, J.; Pan, Y.; Williamson, M.; Ramsingh, G. Clinical characteristics and overall survival among acute myeloid leukemia patients with TP53 gene mutation or chromosome 17p deletion. Am. J. Hematol. 2023, 98, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.F.; Bouligny, I.M.; Ho, T.; Gor, J.; Zacholski, K.; Wages, N.A.; Grant, S.; Maher, K.R. Clonal evolution in 207 cases of refractory or relapsed acute myeloid leukemia. Eur. J. Haematol. 2025, 114, 98–104. [Google Scholar] [PubMed]
- Sorror, M.L.; Maris, M.B.; Storb, R.; Baron, F.; Sandmaier, B.M.; Maloney, D.G.; Storer, B. Hematopoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT. Blood 2005, 106, 2912–2919. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.J.; Gergis, U. Management of refractory acute myeloid leukemia: Re-induction therapy or straight to transplantation? Curr. Hematol. Malig. Rep. 2012, 7, 74–77. [Google Scholar] [CrossRef]
Authors | N | Study | Median Age | Inclusion Criteria | Donor Type | Conditioning | GvHD Prophylaxis | pDLI | OS | RI | NRM |
---|---|---|---|---|---|---|---|---|---|---|---|
Michallet et al., 2000 [7] | 230 | Retrospective | - | PIF, untreated and refractory relapse | MRD/MUD | MAC | CSA + MTX +/− ATG | No | (5 yr) 9–13% | - | (5 yr) 45% |
Duval et al., 2010 [8] | 2255 | Retrospective | 38 | PIF, untreated and refractory relapse | MRD/MUD | MAC | FK/CSA +/− MTX (T-cell depletion 13%) | No | (3 yr) 19% (6–42%) | - | (3 yr) 38% |
Craddock et al., 2011 [9] | 168 | Retrospective | 40 | PIF | MRD/MUD | MAC/RIC | - | No | (5 yr) 22% | - | - |
Hemmati et al., 2014 [10] | 131 | Retrospective | 52 | PIF + refractory relapse | MRD/MUD | MAC/RIC/FLAMSA-RIC | CSA + MTX/MMF | Yes | - | (5 yr) 48% | (3 yr) 26% |
Liu et al., 2015 [11] | 133 | Retrospective | 40, 30, 21 | PIF + refractory relapse | MRD/MUD/Haplo | MAC | CSA + MTX +/− MMF Others (GIAC) | No | (3 yr) 40% | - | (3 yr) 19% |
Nagler et al., 2015 [12] | 852 | Retrospective | 43, 39 | PIF + refractory relapse | MRD/MUD | MAC | CSA + MTX + ATG | No | (2 yr) 31% and 33% | (2 yr) 53% and 54% | (2 yr) 21% and 17% |
Todisco et al., 2017 [13] | 227 | Retrospective | 49 | PIF | MRD/MUD/Haplo/CB | MAC/RIC | T-cell depletion 50% | No | (3 yr) 14% | (3 yr) 61% | (3 yr) 27% |
Weisdorf et al., 2017 [14] | 2696 | Retrospective | 49–52 | CR2 + PIF + refractory relapse | MRD/MUD/mMUD | MAC/RIC | CSA + MTX +/− ATG | No | (2 yr) 18–21% | (2 yr) 41–40% | (2 yr) 28–25% |
Poiani et al., 2021 [15] | 2089 | Retrospective | 55 | PIF + untreated and refractory relapse | MRD/MUD/mMUD | MAC/RIC | CSA + MTX/MMF +/− ATG | No | (2 yr) 22–41% | (2 yr) 42–61% | (2 yr) 21% |
Nagler et al., 2022 [16] | 3430 | Retrospective | 55 | PIF + refractory relapse | MRD/MUD/Haplo | MAC/RIC/FLAMSA-RIC | CSA + MTX/MMF +/− ATG (78%) or PTCy (4%) | No | (2 yr) 36% | (2 yr) 48% | (2 yr) 24% |
Bonifazi et al., 2022 [17] | 101 | Prospective | 54 | PIF + refractory relapse | MUD/Haplo/CB | TBF | ATG-based/PTCy-based | No | (2 yr) 19% | (2 yr) 53% | (1 yr) 35% |
Yanada et al., 2023 [18] | 6927 | Retrospective | 53 | PIF + refractory relapse | MRD/MUD/CB | MAC/RIC | FK/CSA-based | No | (5 yr) 23% | (5 yr) 53% | (5 yr) 27% |
Jiang et al., 2023 [19] | 44 | Retrospective | - | PIF + refractory relapse | MRD/MUD | MAC | CSA-MMF +/− ATG | No | (2 yr) 44.4% | (2 yr) 53% | (2 yr) 26.7% |
Maffini et al., 2024 [20] | 360 (≥70 yrs) | Retrospective | 72 | PIF + refractory relapse | MRD/MUD/Haplo | RIC | CSA-MMF + ATG/PTCy | No | (2 yr) 25.9–62.4% | (2 yr) 29.6–34.9% | (2 yr) 17.5–43.9% |
Shimomura et al., 2025 [21] | 707 | Retrospective | 53 | PIF + refractory relapse | MRD/MUD | RIC | FK/CSA-based | No | (5 yr) 22% | (5 yr) 53.6% | (5 yr) 27.5% |
Authors | N | Study | Median Age | Inclusion Criteria | Donor Type | Conditioning | GvHD Prophylaxis | pDLI | OS | RI | NRM |
---|---|---|---|---|---|---|---|---|---|---|---|
Schmid et al., 2005 [30] | 75 | Prospective | 52 | PIF, early and refractory relapse, ≥2nd relapse, secondary AML/MDS | MRD/MUD | FLAMSA + TBI(4 Gy)Cy | CSA + MMF + ATG | Yes | (2 yr) 42% | (2 yr) 20% | (1 yr) 33% |
Schmid et al., 2006 [31] | 103 | Prospective | 51 | PIF, early and refractory relapse, ≥2nd relapse | MRD/MUD | FLAMSA + TBI(4 Gy)Cy | CSA + MMF + ATG | Yes | (2 yr) 40% | (2 yr) 37% | (1 yr) 17% |
Schneidawind et al., 2013 [32] | 62 | Retrospective | - | PIF + relapse | MRD/MUD/mMUD/Haplo | FLAMSA + BuFlu/BuCy/TBICy | CSA + MMF + ATG | No | (2 yr) 31–46% | - | (2 yr) 20–26% |
Holtick et al., 2015 [33] | 130 | Retrospective | - | CR1 + CR2 + PIF + relapse | MRD/MUD/mMUD/Haplo | FLAMSA + BuFlu/ TreoFlu | CSA + MMF + ATG | Yes | (4 yr) 45% | (4 yr) 40% | (4 yr) 20% |
Pfrepper et al., 2016 [34] | 44 | Retrospective | 52 | PIF + relapsed refractory | MRD/MUD/mMUD | FLAMSA + TBI(4 Gy)Cy | CSA + MMF | Yes | (3 yr) 15% | (3 yr) 69% | (3 yr) 18% |
Middeke et al., 2016 [35] | 84 | Prospective | 61 | PIF + relapse | MRD/MUD/mMUD | CL-A + CL-HD-MEL | CSA + MMF + ATG (mMUD only) | No | (2 yr) 43% | (2 yr) 26% | (2 yr) 23% |
Jaiswal et al., 2016 [36] | 41 | Prospective | 26 | PIF + refractory relapse | Haplo | BuFlu-HD-MEL | CSA + MMF + PTCy | Yes | (18 mo) 53% | (1 yr) 43% | (1 yr) 19% |
Mohty et al., 2017 [37] | 24 | Prospective | 47 | PIF + persisting hypoplasia | MRD/MUD/mMUD | CL-A + BuCy | CSA + MMF (MUD/mMUD only) + ATG | Yes | (2 yr) 38% | (2 yr) 54.2% | (2 yr) 12% |
Ringden et al., 2017 [38] | 267 | Retrospective | 51 | PIF + refractory relapse | MRD/MUD | FLAMSA + TBI/Cy/Bu-based/HD-MEL | CSA + MTX/MMF + ATG | No | (3 yr) 30% | (3 yr) 48% | (3 yr) 26% |
Davies et al., 2018 [39] | 47 | Prospective | 53 | PIF + early and refractory relapse | MRD/MUD | Dauno-Ara-C + FluCy | CSA + MTX | No | (2 yr) 39% | (3 yr) 30% | (1 yr) 35% |
Dulery et al., 2018 [40] | 72 | Retrospective | 54 | PIF + refractory relapse | MRD/MUD/Haplo | TEC + BuFlu | CSA + MMF + ATG | Yes | (2 yr) 57% | (2 yr) 38% | (2 yr) 24% |
Steckel et al., 2018 [41] | 292 | Retrospective | 56 | PIF + untreated relapse | MRD/MUD | HD-MEL+ TBI(8Gy)Flu/TreoFlu | CSA + MTX/MMF + ATG | No | (3 yr) 34% | (1 yr) 34% | (1 yr) 36% |
Wang et al., 2018 [42] | 36 | Prospective | 26.6 | PIF + refractory relapse | MRD/MUD/Haplo | CLAG + BuCy | CSA + MTX + MMF +/− ATG | No | (1 yr) 69.4% | - | - |
Saraceni et al., 2019 [43] | 856 | Retrospective | 51, 58 | PIF + refractory relapse | MRD/MUD | FLAMSA + TBI-Bu/TreoFlu/TBF | CSA + MTX/MMF + ATG | Yes | (2 yr) 34% and 37% and 24% | (2 yr) 53% and 46% and 54% | (2 yr) 20% and 26% and 24% |
Rodriguez-Arboli et al., 2020 [44] | 1018 | Retrospective | 39 | PIF + refractory relapse | MRD/MUD | FLAMSA + TBI-based/chemo-based MAC | CSA + MTX/MMF + ATG | No | (2 yr) 36% and 50%and 33% | (2 yr) 55% and 53% and 51% | (2 yr) 18% and 7% and 19% |
Le Bourgeois et al., 2020 [45] | 131 | Retrospective | 52 | PIF + refractory relapse | MRD | CL-A + BuCy | CSA + MTX/MMF + ATG | No | (2 yr) 38% | (2 yr) 45% | (2 yr) 35% |
Sun 2021 [46] | 24 | Prospective | 32 | PIF + refractory relapse | MRD/MUD/Haplo | CLAG-M + BuCy | CSA + MTX + MMF + ATG | No | (2 yr) 61.4% | (2 yr) 34.8% | (2 yr) 9.1% |
Sockel et al., 2022 [47] | 173 | Retrospective | 56 | refractory relapse | MRD/MUD/Haplo | CL-A + Flu-HD-MEL/CL-HD-MEL | CSA + MTX/MMF + PTCy | No | (4 yr) 43% | (4 yr) 30% | (4 yr) 36% |
Guijarro 2022 [48] | 140 | Retrospective | 55 | PIF + refractory relapse | MRD/MUD/Haplo | FLAG-Ida + HD-MEL | CSA + MTX/MMF + ATG/PTCy | No | (5 yr) 25% | (5 yr) 30% | (5 yr) 45% |
Weller 2022 [49] | 114 | Retrospective | 60 | PIF + refractory relapse | MRD/MUD/Haplo | FLAMSA + RIC | CSA + MTX/MMF + ATG/PTCy | Yes | (2 yr) 45% | (2 yr) 41% | (2 yr) 27% |
Fei et al., 2023 [50] | 70 | Retrospective | - | PIF + refractory relapse | MRD/MUD/Haplo | CLAG + TBI/TBI + Cy | CSA + MMF + ATG | No | (3 yr) 46% | (1 yr) 38.6% | (1 yr) 11.6% |
Xiao et al., 2024 [51] | 23 | Retrospective | 33 | PIF + refractory relapse | MRD/MUD/mMUD | Cladribine + BuCy | FK + MTX + MMF + anti-CD25 + ATG | No | (2 yr) 64% | (1 yr) 13% | (1 yr) 13% |
Ronnacker et al., 2024 [52] | 176 | Retrospective | 61 | PIF + refractory relapse | MRD/MUD/mMUD | HD-MEL + TBI(8Gy)Flu + BuFlu + TreoFlu | FK/CSA + MMF + ATG | No | (3 yr) 52% | (3 yr) 27% | (3 yr) 26% |
Ronnacker et al., 2024 [53] | 103 (≥55 yrs) | Retrospective | 67 | PIF + refractory relapse | MRD/MUD/mMUD | HD-MEL + BuFlu | FK/CSA + MMF + ATG | No | (3 yr) 44% | (3 yr) 28% | (3 yr) 32% |
Fraccaroli et al., 2024 [54] | 42 (≥50 yrs) | Retrospective (match-paired) | 65 | PIF + refractory relapse | MRD/MUD | FluCy + HD-MEL/Treo | FK/CSA-based | No | (2 yr) 66% (both) | (5 yr) 0% vs. 24% | (5 yr) 33% vs. 10% |
Authors | N | Study | Median Age | Inclusion Criteria | Patients Transplanted with TP53mut or 17p abn | Subset with High-Risk Cytogenetics | Conditioning | OS | Median OS | NRM |
---|---|---|---|---|---|---|---|---|---|---|
Middeke et al., 2014 [118] | 201 | Retrospective | 54 | AML | 201 | Monosomal: 77 Complex: 180 | MAC: 35% RIC: 52% NMA: 9% | (5 yr) 12% | 8.0 mo | 14–40% |
Middeke et al., 2016 [119] | 97 | Prospective (3 trials) | 51 | AML | 40 | High-risk: 40 | MAC/RIC | (3 yr) 10% (high-risk) | - | - |
Luskin et al., 2016 [120] | 112 | Retrospective | 55.5 | AML | 9 | High-risk: 6 | MAC: 69% RIC: 31% | All relapsed | 1.6–18.6 mo | - |
Lindsley et al., 2017 [121] | 1514 | Retrospective | 84% >40 yrs | MDS | 289 | - | MAC: 52% RIC: 38% NMA: 9% | (3 yr) 20% | 8.4 mo | - |
Yoshizato et al., 2017 [122] | 797 | Retrospective | - | MDS + sAML | 98 | Complex: 86 | MAC: 65.2% RIC: 34.8% | (3 yr) 10% (high-risk) | 4.8 mo | - |
Poiré et al., 2017 [123] | 125 | Retrospective | 54 | AML | 125 | Monosomal: 86 Monosomy 5/5q-: 58 | MAC: 41% RIC: 59% | (2 yr) 16–28% | 10.5 mo | (2 yr) 15% |
Najima et al., 2018 [124] | 120 (all active AML) | Retrospective | 51 | AML | 23 | Monosomal: 11 | MAC/RIC | (2 yr) 27.3% | - | (2 yr) 32.5–41.7% |
Grob et al., 2022 [125] | 2200 | Prospective (4 trials) | 62 | MDS + AML | 230 | High-risk: 112 | MAC/RIC | (3 yr) 10% | 10.0 mo | - |
Loke et al., 2022 [126] | 179 | Retrospective | 60.2 | AML | 179 | High-risk: 126 | MAC: 34.9% RIC: 65.1% | (2 yr) 24.6% (high-risk) | 9.5 mo | (2 yr) 22% |
Lontos et al., 2025 [127] | 250 (AML: 126) | Retrospective | 62 | MDS + AML | 250 | High-risk: 189 | MAC: 59% RIC: 41% | (2 yr) 34% | 9 mo | (2 yr) 22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzetta, D.; Cavattoni, I.M.; Mosna, F. Allogeneic Hematopoietic Stem Cell Transplantation as a Platform to Treat Chemorefractory Acute Myeloid Leukemia in Adult Patients. Cancers 2025, 17, 3285. https://doi.org/10.3390/cancers17203285
Alzetta D, Cavattoni IM, Mosna F. Allogeneic Hematopoietic Stem Cell Transplantation as a Platform to Treat Chemorefractory Acute Myeloid Leukemia in Adult Patients. Cancers. 2025; 17(20):3285. https://doi.org/10.3390/cancers17203285
Chicago/Turabian StyleAlzetta, Daniel, Irene M. Cavattoni, and Federico Mosna. 2025. "Allogeneic Hematopoietic Stem Cell Transplantation as a Platform to Treat Chemorefractory Acute Myeloid Leukemia in Adult Patients" Cancers 17, no. 20: 3285. https://doi.org/10.3390/cancers17203285
APA StyleAlzetta, D., Cavattoni, I. M., & Mosna, F. (2025). Allogeneic Hematopoietic Stem Cell Transplantation as a Platform to Treat Chemorefractory Acute Myeloid Leukemia in Adult Patients. Cancers, 17(20), 3285. https://doi.org/10.3390/cancers17203285