Proximity Labeling: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface
Simple Summary
Abstract
1. Introduction
2. Historical Development of Proximity Labeling Techniques
Traditional biochemical approaches like affinity purification can miss weak or unstable interactions, resulting in an incomplete understanding of interaction networks [37,53]. In contrast, enzyme-based proximity methods label proteins irreversibly in a near-native cellular context before cell lysis, allowing for the capture of fleeting binding events, thereby providing a more comprehensive snapshot of target interaction networks [38,39]. Covalent enzyme-based labeling therefore allows one to map transient interactions between cell surface receptors and their transmembrane and intracellular binding partners, which can change rapidly in response to extracellular cues (ligand binding) or post-translational modifications, such as phosphorylation that cause structural changes that cause the recruitment of interaction partners [38,54,55,56]. Overexpression or hyperactivity of labeling enzymes can lead to widespread biotinylation beyond the desired area surrounding a target receptor [52,57]. APEX and TurboID also create reactive species like phenoxyl radicals and other reactive intermediates, which can disperse beyond the intended labeling zone, leading to non-specific biotinylation of proteins located further from the target protein [57]. APEX has also been shown to effectively label RNA in addition to proteins [20] but necessitates the use of hydrogen peroxide, which is toxic to live cells [47]. Conversely, while enzymes offer a gentler approach to studying living samples, high-level expression can contribute to non-specific labeling, including excessive enzyme activity, reactive species diffusion, and endogenous biotinylation [15,42,43,50,58]. For example, when continuously expressed in tissues, TurboID can deplete biotin, resulting in reduced survival and stunted growth [18], while extended labeling periods exceeding 24 h can negatively impact cell proliferation in vitro [18]. To address these concerns, researchers can provide exogenous biotin, limit labeling duration by using inducible enzyme expression systems, or restrict expression to specific cell types in animal models to maintain normal physiological function [18,20]. Directly fusing an enzyme to a target protein can potentially lead to other artifacts. For example, the enzyme may interfere with a receptor’s function, such as ligand binding or downstream signaling, potentially altering its interaction profile [17,59]. The enzyme fusion may also disrupt the proper localization or trafficking of the target protein to its intended subcellular compartment, resulting in the labeling of proteins in incorrect cellular contexts and confounding data interpretation [13,17,60]. To address these limitations, optimizing an enzyme construct by exploring different linker sequences, orientations, or alternative fusion strategies is essential [17,60]. Functional validation tests should also be conducted to independently verify that the resulting fusion protein retains its native function and subcellular localization [58]. The use of recombinant ProtA-TurboID offers a potentially more versatile approach as it is applicable to fixed and non-fixed sample applications and does not require altering genetic manipulation and so can be used to probe primary cells and tissue sections. Its utility relies heavily on the specificity and quality of the primary antibodies employed, which can pose challenges for some targets. For experiments focused on low-abundant targets, low signal-to-background labeling may complicate data analysis [61]. Regardless of the method, there are major practical challenges in performing proximity labeling and preparing samples for mass spectrometry that the authors of this paper have encountered. The target or ligase enzyme fused to the target often needs to be overexpressed in cells to achieve a sufficiently high labeling intensity. To address this issue, cells can be transfected or transduced to boost target levels. Additionally, using an antibody-based proximity labeling platform with ProtA-TurboID is not suitable for cells expressing Fc fragments or various immunoglobulins on their surface as Protein A may interact with these fragments in addition to the antibody-bound target of interest, leading to increased non-specific interactions and reduced labeling efficiency. To mitigate this, alternative proximity labeling platforms, such as photocatalytic-based labeling (see Box 2), can be employed. A common issue with immunoprecipitation/mass spectrometry is non-specific binding by non-biotinylated or biotinylated proteins to streptavidin beads, which can result in the co-purification of false positives. Other strategies can also be used to reduce background and non-specific binders, including optimizing harsh washing steps, reducing protein concentration, and minimizing the number of streptavidin beads to reduce non-specific background binding, increasing the signal-to-noise ratio (Table 1). |
Enzyme | Type | Enzyme Size (kDa) | Labeling Time | Modification Sites | Advantages | Limitations |
---|---|---|---|---|---|---|
BioID | Biotin ligase | 35 | 18 h | Lys | Non-toxic for in vivo applications | Poor temporal resolution, low catalytic activity |
BioID2 | Biotin ligase | 27 | 18 h | Lys | Non-toxic for in vivo applications, higher activity than BioID, and stable at higher temperatures | Poor temporal resolution, low catalytic activity |
TurboID | Biotin ligase | 35 | 10 min | Lys | Non-toxic for in vivo applications, highest activity biotin ligase | Potentially less control of labeling window, potential toxicity in long-term experiments |
miniTurbo | Biotin ligase | 28 | 10 min | Lys | Non-toxic for in vivo applications, high activity, smaller than TurboID, and high temporal resolution | Lower catalytic activity and stability compared with TurboID |
ProtA-TurboID | Biotin ligase | 35 | 10 min | Lys | Be applicable to studying any desired cell type or primary material | Depends on the abundance of the targeted protein |
APEX | Peroxidase | 28 | 1 min | Tyr, Trp, Cys, His | High temporal resolution, versatility for both protein and RNA labeling | Limited application in vivo because of the toxicity of H2O2 |
APEX2 | Peroxidase | 28 | 1 min | Tyr, Trp, Cys, His | High temporal resolution, versatility for both protein and RNA labeling | Limited application in vivo because of the toxicity of H2O2 |
HRP | Peroxidase | 44 | 1 min | Tyr, Trp, Cys, His | High temporal resolution, versatility for both protein and RNA labeling | Limited application in vivo because of the toxicity of H2O2, limited to the secretory pathway and extracellular applications |
3. Alternative Proximity Labeling Techniques
Compared to enzyme-based methods, photo-proximity labeling can achieve tighter spatial resolutions ranging from ~50 nm down to a few angstroms depending on the half-life of the reactive substrate used [20,24,46,49,53]. This tight radius can reduce non-specific labeling, ensuring the detection of only proteins directly bound to a target or in the immediate vicinity, enhancing confidence in terms of functional relevance. By allowing the capture of dynamic events at the cell surface, spatiotemporally controlled photo-labeling also provides greater biophysical insights [27,28,55]. This precision is crucial for understanding the complex signaling networks involving cell surface receptors, which regulate dynamic intracellular signaling processes that ultimately drive tumor cell proliferation, migration, and survival [38]. In terms of limitations, the success of photocatalyst-based micromapping is generally limited to abundant cell surface targets with suitable high-selectivity binding reagents and access to specialized equipment for photoactivation. The efficacy of photocatalytic labeling can be affected by several factors, most notably the depth of light penetration. This limitation is particularly significant when working with complex biological samples or dense tissue environments, where light may not reach all target areas uniformly. Despite the stringent purification process afforded by streptavidin enrichment, other challenges remain. Non-specific binding of non-biotinylated proteins to streptavidin beads or biotinylated proteins can lead to co-purification of false positives [46,52]. Although extended and rigorous washing steps can minimize non-specific binding [46], some cells or tissues naturally contain natively biotinylated proteins, which add to the background signal and complicate data interpretation [38,52]. Additionally, non-selective biotinylation of irrelevant but abundant surface proteins can increase background, making it difficult to distinguish genuine interactors from non-specific associations [59]. To mitigate these limitations, several strategies are employed. Optimizing labeling conditions—such as antibody levels, shortening labeling duration, or lowering substrate concentrations—can minimize off-target biotinylation while maintaining effective labeling near the target protein [19,58]. Quantitative proteomics approaches, such as isotope tagging or label-free quantification, that enable ratiometric analysis can also help differentiate specific interactors from the background based on enrichment ratios compared to negative (isotype IgG) controls [14,57]. Additionally, complementary validation experiments, including reciprocal co-immunoprecipitation and imaging-based proximity ligation assays, are essential for verifying interactions prioritized based on novelty and potential relevance to cancer biology [18,57]. |
4. Proximity Labeling Strategies to Study Receptor Signaling Networks in Cancer Cells
5. Precise Photocatalyst-Directed Micromapping of Surface Receptor Neighborhoods
6. Illuminating Pathways Driving Disease Progression
7. Applications for Proximity Labeling to Study Cancer Progression
8. Conclusions: Challenges, Emerging Trends, and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Antignani, A.; Ho, E.C.H.; Bilotta, M.T.; Qiu, R.; Sarnvosky, R.; FitzGerald, D.J. Targeting receptors on cancer cells with protein toxins. Biomolecules 2020, 10, 1331. [Google Scholar] [CrossRef]
- Shi, T.; Wang, M.; Li, H.; Wang, M.; Luo, X.; Huang, Y.; Wang, H.-H.; Nie, Z.; Yao, S. Simultaneous monitoring of cell-surface receptor and tumor-targeted photodynamic therapy via TdT-initiated poly-G-quadruplexes. Sci. Rep. 2018, 8, 5551. [Google Scholar] [CrossRef] [PubMed]
- Kavari, S.L.; Shah, K. Engineered stem cells targeting multiple cell surface receptors in tumors. Stem Cells 2020, 38, 34–44. [Google Scholar] [CrossRef]
- Brisset, M.; Grandin, M.; Bernet, A.; Mehlen, P.; Hollande, F. Dependence receptors: New targets for cancer therapy. EMBO Mol. Med. 2021, 13, e14495. [Google Scholar] [CrossRef]
- Shademan, B.; Karamad, V.; Nourazarian, A.; Avcı, C.B. CAR T cells: Cancer cell surface receptors are the target for cancer therapy. Adv. Pharm. Bull. 2022, 12, 476. [Google Scholar] [CrossRef] [PubMed]
- Rizwanullah, M.; Ahmad, M.Z.; Ghoneim, M.M.; Alshehri, S.; Imam, S.S.; Md, S.; Alhakamy, N.A.; Jain, K.; Ahmad, J. Receptor-mediated targeted delivery of surface-modifiednanomedicine in breast cancer: Recent update and challenges. Pharmaceutics 2021, 13, 2039. [Google Scholar] [CrossRef]
- Tafreshi, N.K.; Morse, D.L.; Lee, M.C. Narrowing the focus: Therapeutic cell surface targets for refractory triple-negative breast cancer. World J. Clin. Oncol. 2020, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Sukprasert, P.; Vegesna, R.; Sinha, S.; Schischlik, F.; Artzi, N.; Khuller, S.; Schäffer, A.A.; Ruppin, E. The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective. Nat. Commun. 2022, 13, 1613. [Google Scholar] [CrossRef] [PubMed]
- Heumos, S.; Dehn, S.; Bräutigam, K.; Codrea, M.C.; Schürch, C.M.; Lauer, U.M.; Nahnsen, S.; Schindler, M. Multiomics surface receptor profiling of the NCI-60 tumor cell panel uncovers novel theranostics for cancer immunotherapy. Cancer Cell Int. 2022, 22, 311. [Google Scholar] [CrossRef]
- Aloj, L.; Attili, B.; Lau, D.; Caraco, C.; Lechermann, L.M.; Mendichovszky, I.A.; Harper, I.; Cheow, H.; Casey, R.T.; Sala, E. The emerging role of cell surface receptor and protein binding radiopharmaceuticals in cancer diagnostics and therapy. Nucl. Med. Biol. 2021, 92, 53–64. [Google Scholar] [CrossRef]
- Zeromski, J. Significance of tumor-cell receptors in human cancer. Arch. Immunol. Ther. Exp. 2002, 50, 105–110. [Google Scholar]
- Becker, K.; Hofler, H. Mutant cell surface receptors as targets for individualized cancer diagnosis and therapy. Curr. Cancer Drug Targets 2001, 1, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Zafra, F.; Piniella, D. Proximity labeling methods for proteomic analysis of membrane proteins. J. Proteom. 2022, 264, 104620. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.A.; Chen, C.L.; Perrimon, N. Proximity-dependent labeling methods for proteomic profiling in living cells: An update. Wiley Interdiscip. Rev. Dev. Biol. 2021, 10, e392. [Google Scholar] [CrossRef]
- Varnaitė, R.; MacNeill, S.A. Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID. Proteomics 2016, 16, 2503–2518. [Google Scholar] [CrossRef] [PubMed]
- Trinkle-Mulcahy, L. Recent advances in proximity-based labeling methods for interactome mapping. F1000Research 2019, 8, F1000 Faculty Rev-135. [Google Scholar] [CrossRef]
- Cho, K.F.; Branon, T.C.; Udeshi, N.D.; Myers, S.A.; Carr, S.A.; Ting, A.Y. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 2020, 15, 3971–3999. [Google Scholar] [CrossRef] [PubMed]
- Branon, T.C.; Bosch, J.A.; Sanchez, A.D.; Udeshi, N.D.; Svinkina, T.; Carr, S.A.; Feldman, J.L.; Perrimon, N.; Ting, A.Y. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 2018, 36, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.I.; KC, B.; Zhu, W.; Motamedchaboki, K.; Doye, V.; Roux, K.J. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl. Acad. Sci. USA 2014, 111, E2453–E2461. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Guo, S.; Lu, S.; Gong, J.; Wang, L.; Ding, L.; Chen, Q.; Liu, W. The development of proximity labeling technology and its applications in mammals, plants, and microorganisms. Cell Commun. Signal. 2023, 21, 269. [Google Scholar] [CrossRef] [PubMed]
- Garcia, Y.A.; Velasquez, E.F.; Gao, L.W.; Gholkar, A.A.; Clutario, K.M.; Cheung, K.; Williams-Hamilton, T.; Whitelegge, J.P.; Torres, J.Z. Mapping proximity associations of core spindle assembly checkpoint proteins. J. Proteome Res. 2021, 20, 3414–3427. [Google Scholar] [CrossRef] [PubMed]
- Haugsten, E.M.; Sørensen, V.; Kunova Bosakova, M.; De Souza, G.A.; Krejci, P.; Wiedlocha, A.; Wesche, J. Proximity labeling reveals molecular determinants of FGFR4 endosomal transport. J. Proteome Res. 2016, 15, 3841–3855. [Google Scholar] [CrossRef] [PubMed]
- Bartholow, T.G.; Burroughs, P.W.; Elledge, S.K.; Byrnes, J.R.; Kirkemo, L.L.; Garda, V.; Leung, K.K.; Wells, J.A. Photoproximity Labeling from Single Catalyst Sites Allows Calibration and Increased Resolution for Carbene Labeling of Protein Partners In Vitro and on Cells. ACS Cent. Sci. 2023, 10, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Knutson, S.D.; Buksh, B.F.; Huth, S.W.; Morgan, D.C.; MacMillan, D.W. Current advances in photocatalytic proximity labeling. Cell Chem. Biol. 2024, 31, 1145–1161. [Google Scholar] [CrossRef]
- Roux, K.J.; Kim, D.I.; Raida, M.; Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 2012, 196, 801. [Google Scholar] [CrossRef]
- Kim, D.I.; Jensen, S.C.; Noble, K.A.; Kc, B.; Roux, K.H.; Motamedchaboki, K.; Roux, K.J. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell 2016, 27, 1188–1196. [Google Scholar] [CrossRef]
- Hung, V.; Zou, P.; Rhee, H.-W.; Udeshi, N.D.; Cracan, V.; Svinkina, T.; Carr, S.A.; Mootha, V.K.; Ting, A.Y. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell 2014, 55, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.S.; Martell, J.D.; Kamer, K.J.; Deerinck, T.J.; Ellisman, M.H.; Mootha, V.K.; Ting, A.Y. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 2015, 12, 51–54. [Google Scholar] [CrossRef]
- Geri, J.B.; Pao, W. Elucidating the Cell Surfaceome to Accelerate Cancer Drug Development. Cancer Discov. 2024, 14, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Zhao, Z.; Wu, M.; Xue, Q.; Yang, Y.; Ouyang, S.; Li, W.; Zhong, L.; Wang, W.; Yang, R. Use of intercellular proximity labeling to quantify and decipher cell-cell interactions directed by diversified molecular pairs. Sci. Adv. 2022, 8, eadd2337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, Q.; Sun, J.; Guo, Y.; Zhang, S.; Liang, S.; Dai, P.; Chen, X. Cellular-scale proximity labeling for recording cell spatial organization in mouse tissues. Sci. Adv. 2023, 9, eadg6388. [Google Scholar] [CrossRef] [PubMed]
- Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 2019, 20, 840. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, C.M.; Panagi, M.; Stylianopoulos, T.; Papageorgis, P. The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers 2021, 13, 2053. [Google Scholar] [CrossRef] [PubMed]
- Zolg, J.W.; Langen, H. How industry is approaching the search for new diagnostic markers and biomarkers. Mol. Cell. Proteom. 2004, 3, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Garulacan, L.-A.; Storm, S.M.; Opiteck, G.J.; Dubaquie, Y.; Hefta, S.A.; Dambach, D.M.; Dongre, A.R. Biomarker discovery in biological fluids. Methods 2005, 35, 291–302. [Google Scholar] [CrossRef]
- Shkel, O.; Kharkivska, Y.; Kim, Y.K.; Lee, J.S. Proximity Labeling Techniques: A Multi-Omics Toolbox. Chem.–Asian J. 2022, 17, e202101240. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qin, W. Revealing protein trafficking by proximity labeling-based proteomics. Bioorganic Chem. 2023, 143, 107041. [Google Scholar] [CrossRef] [PubMed]
- Maffuid, K.; Cao, Y. Utilizing a proximity dependent labeling strategy to study cancer-immune intercellular interactions in vitro and in vivo. J. Pharmacol. Exp. Ther. 2024, 389, 246–253. [Google Scholar] [CrossRef]
- Zhou, Y.; Zou, P. The evolving capabilities of enzyme-mediated proximity labeling. Curr. Opin. Chem. Biol. 2021, 60, 30–38. [Google Scholar] [CrossRef]
- Pfeiffer, C.T.; Paulo, J.A.; Gygi, S.P.; Rockman, H.A. Proximity labeling for investigating protein-protein interactions. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 2022; Volume 169, pp. 237–266. [Google Scholar]
- Oakley, J.V.; Buksh, B.F.; Fernández, D.F.; Oblinsky, D.G.; Seath, C.P.; Geri, J.B.; Scholes, G.D.; MacMillan, D.W. Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform. Proc. Natl. Acad. Sci. USA 2022, 119, e2203027119. [Google Scholar] [CrossRef] [PubMed]
- Nami, B.; Maadi, H.; Wang, Z. Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers 2018, 10, 342. [Google Scholar] [CrossRef] [PubMed]
- Grafone, T.; Palmisano, M.; Nicci, C.; Storti, S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment. Oncol. Rev. 2012, 6, e8. [Google Scholar] [CrossRef]
- Aughey, G.N.; Southall, T.D. Dam it’s good! DamID profiling of protein-DNA interactions. Wiley Interdiscip. Rev. Dev. Biol. 2016, 5, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Choi-Rhee, E.; Schulman, H.; Cronan, J.E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci. 2004, 13, 3043–3050. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Lee, S.-Y.; Kang, M.-G.; Jang, D.-G.; Kim, J.; Rhee, H.-W.; Kim, J.-S. Super-resolution proximity labeling with enhanced direct identification of biotinylation sites. Commun. Biol. 2024, 7, 554. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, C.; Gibson, A.; Stinchcombe, J.; Futter, C. Chimeric molecules employing horseradish peroxidase as reporter enzyme for protein localization in the electron microscope. Methods Enzymol. 2000, 327, 35–45. [Google Scholar]
- Naki, M.; Gourdomichali, O.; Zonke, K.; Kattan, F.-G.; Makridakis, M.; Kontostathi, G.; Vlahou, A.; Doxakis, E. APEX2-mediated proximity labeling resolves the DDIT4-interacting proteome. Int. J. Mol. Sci. 2022, 23, 5189. [Google Scholar] [CrossRef] [PubMed]
- Béganton, B.; Solassol, I.; Mangé, A.; Solassol, J. Protein interactions study through proximity-labeling. Expert Rev. Proteom. 2019, 16, 717–726. [Google Scholar] [CrossRef]
- Rega, C.; Kozik, Z.; Yu, L.; Tsitsa, I.; Martin, L.-A.; Choudhary, J. Exploring the Spatial Landscape of the Estrogen Receptor Proximal Proteome With Antibody-Based Proximity Labeling. Mol. Cell. Proteom. 2024, 23, 100702. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xie, Y.; Rice, R.; Maverakis, E.; Lebrilla, C.B. A proximity labeling method for protein–protein interactions on cell membrane. Chem. Sci. 2022, 13, 6028–6038. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Perrimon, N. Proximity-dependent labeling methods for proteomic profiling in living cells. Wiley Interdiscip. Rev. Dev. Biol. 2017, 6, e272. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-G.; Rhee, H.-W. Molecular spatiomics by proximity labeling. Acc. Chem. Res. 2022, 55, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Ummethum, H.; Hamperl, S. Proximity labeling techniques to study chromatin. Front. Genet. 2020, 11, 536839. [Google Scholar] [CrossRef]
- Murale, D.P.; Hong, S.C.; Haque, M.M.; Lee, J.-S. Photo-affinity labeling (PAL) in chemical proteomics: A handy tool to investigate protein-protein interactions (PPIs). Proteome Sci. 2016, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.; Bathla, S.; Williams, K.R.; Nairn, A.C. Deciphering spatial protein–protein interactions in brain using proximity labeling. Mol. Cell. Proteom. 2022, 21, 100422. [Google Scholar] [CrossRef]
- Nguyen, T.M.T.; Kim, J.; Doan, T.T.; Lee, M.-W.; Lee, M. APEX proximity labeling as a versatile tool for biological research. Biochemistry 2019, 59, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hisey, E.; Bradshaw, T.W.; Erata, E.; Brown, W.E.; Courtland, J.L.; Uezu, A.; Xiang, Y.; Diao, Y.; Soderling, S.H. Plug-and-play protein modification using homology-independent universal genome engineering. Neuron 2019, 103, 583–597.e8. [Google Scholar] [CrossRef]
- Di Meo, F.; Kale, B.; Koomen, J.M.; Perna, F. Mapping the cancer surface proteome in search of target antigens for immunotherapy. Mol. Ther. 2024, 32, 2892–2904. [Google Scholar] [CrossRef]
- Qin, W.; Cho, K.F.; Cavanagh, P.E.; Ting, A.Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 2021, 18, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Santos-Barriopedro, I.; van Mierlo, G.; Vermeulen, M. Off-the-shelf proximity biotinylation for interaction proteomics. Nat. Commun. 2021, 12, 5015. [Google Scholar] [CrossRef] [PubMed]
- Kanzler, C.R.; Donohue, M.; Dowdle, M.E.; Sheets, M.D. TurboID functions as an efficient biotin ligase for BioID applications in Xenopus embryos. Dev. Biol. 2022, 492, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Santos-Barriopedro, I.; van Mierlo, G.; Vermeulen, M. Off-the-shelf proximity biotinylation using ProtA-TurboID. Nat. Protoc. 2023, 18, 36–57. [Google Scholar] [CrossRef]
- Kreissl, F.K.; Banki, M.A.; Droujinine, I.A. Molecular methods to study protein trafficking between organs. Proteomics 2023, 23, 2100331. [Google Scholar] [CrossRef]
- Kim, K.-e.; Park, I.; Kim, J.; Kang, M.-G.; Choi, W.G.; Shin, H.; Kim, J.-S.; Rhee, H.-W.; Suh, J.M. Dynamic tracking and identification of tissue-specific secretory proteins in the circulation of live mice. Nat. Commun. 2021, 12, 5204. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Yao, Y.; Lyu, J.; Qiao, Q.; Mao, J.; Xu, Z.; Ye, M. Rapid enzyme-mediated biotinylation for cell surface proteome profiling. Anal. Chem. 2021, 93, 4542–4551. [Google Scholar] [CrossRef] [PubMed]
- Rhee, H.-W.; Zou, P.; Udeshi, N.D.; Martell, J.D.; Mootha, V.K.; Carr, S.A.; Ting, A.Y. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 2013, 339, 1328–1331. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Robles, T.; Olow, A.K.; Bechtel, T.J.; Lesley, S.A.; Fadeyi, O.O.; Oslund, R.C. Nanoscale mapping of EGFR and c-MET protein environments on lung cancer cell surfaces via therapeutic antibody photocatalyst conjugates. ACS Chem. Biol. 2022, 17, 2304–2314. [Google Scholar] [CrossRef]
- Oslund, R.C.; Reyes-Robles, T.; White, C.H.; Tomlinson, J.H.; Crotty, K.A.; Bowman, E.P.; Chang, D.; Peterson, V.M.; Li, L.; Frutos, S. Detection of cell–cell interactions via photocatalytic cell tagging. Nat. Chem. Biol. 2022, 18, 850–858. [Google Scholar] [CrossRef]
- Geri, J.B.; Oakley, J.V.; Reyes-Robles, T.; Wang, T.; McCarver, S.J.; White, C.H.; Rodriguez-Rivera, F.P.; Parker Jr, D.L.; Hett, E.C.; Fadeyi, O.O. Microenvironment mapping via Dexter energy transfer on immune cells. Science 2020, 367, 1091–1097. [Google Scholar] [CrossRef]
- Zhai, Y.; Huang, X.; Zhang, K.; Huang, Y.; Jiang, Y.; Cui, J.; Zhang, Z.; Chiu, C.K.; Zhong, W.; Li, G. Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling. Nat. Commun. 2022, 13, 4906. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, D.C.; Lee, G.; Carlos, A.; Montgomery, J.E.; Moellering, R.E. Photoproximity profiling of protein–protein interactions in cells. J. Am. Chem. Soc. 2019, 142, 146–153. [Google Scholar] [CrossRef]
- Kim, D.I.; Cutler, J.A.; Na, C.H.; Reckel, S.; Renuse, S.; Madugundu, A.K.; Tahir, R.; Goldschmidt, H.L.; Reddy, K.L.; Huganir, R.L. BioSITe: A method for direct detection and quantitation of site-specific biotinylation. J. Proteome Res. 2018, 17, 759–769. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Yao, W.; Shi, D.; Shao, X.; Lu, Z.; Chai, Y.; Song, J.; Tang, W.; Wang, X. Mechanism insights and therapeutic intervention of tumor metastasis: Latest developments and perspectives. Signal Transduct. Target. Ther. 2024, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Meurette, O.; Mehlen, P. Notch signaling in the tumor microenvironment. Cancer Cell 2018, 34, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Yang, J.; Liu, J.; Wang, Y.; Mu, J.; Zeng, Q.; Deng, S.; Zhou, H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Target. Ther. 2021, 6, 218. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, G.; Zhang, H.; Qiu, L. MUC1 induces the accumulation of Foxp3+ Treg cells in the tumor microenvironment to promote the growth and metastasis of cholangiocarcinoma through the EGFR/PI3K/Akt signaling pathway. Int. Immunopharmacol. 2023, 118, 110091. [Google Scholar] [CrossRef]
- Liu, J.; Isaji, T.; Komatsu, S.; Sun, Y.; Xu, X.; Fukuda, T.; Fujimura, T.; Takahashi, S.; Gu, J. BRCC36 associates with FLT3-ITD to regulate its protein stability and intracellular signaling in acute myeloid leukemia. Cancer Sci. 2024, 115, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.; Chorzalska, A.; Pardo, M.; Rodriguez, A.; Morgan, J.; Ahsan, N.; Zhao, T.C.; Liang, O.; Kotula, L.; Bertone, P. Proximity proteomics reveals role of Abelson interactor 1 in the regulation of TAK1/RIPK1 signaling. Mol. Oncol. 2023, 17, 2356–2379. [Google Scholar] [CrossRef]
- Geng, J.; Zhang, R.; Yuan, X.; Xu, H.; Zhu, Z.; Wang, X.; Wang, Y.; Xu, G.; Guo, W.; Wu, J. DRAM1 plays a tumor suppressor role in NSCLC cells by promoting lysosomal degradation of EGFR. Cell Death Dis. 2020, 11, 768. [Google Scholar] [CrossRef]
- Nieto, C.; Miller, B.; Alzofon, N.; Chimed, T.; Himes, J.; Joshi, M.; Gomez, K.; Chowdhury, F.N.; Le, P.N.; Weaver, A. The programmed death ligand 1 interactome demonstrates bidirectional signaling coordinating immune suppression and cancer progression in head and neck squamous cell carcinoma. JNCI J. Natl. Cancer Inst. 2023, 115, 1392–1403. [Google Scholar] [CrossRef]
- Zhen, Y.; Haugsten, E.M.; Singh, S.K.; Wesche, J. Proximity Labeling by a recombinant APEX2–FGF1 fusion protein reveals interaction of FGF1 with the proteoglycans CD44 and CSPG4. Biochemistry 2018, 57, 3807–3816. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.S.; Cheung, L.C.; Hamaia, S.W.; Davies, G.; Sandercock, A.; Lilley, K.S.; Tigue, N.; Jackson, A.P. Identification of the cis-molecular neighbours of the immune checkpoint protein B7-H4 in the breast cancer cell-line SK-BR-3 by proteomic proximity labelling. Int. J. Oncol. 2020, 57, 87–99. [Google Scholar] [CrossRef]
- Seo, Y.R.; Lee, J.; Ryu, H.S.; Kim, E.G.; Kim, S.H.; Jeong, J.; Jung, H.; Jung, Y.; Kim, H.B.; Jo, Y.H. Lateral interactions between CD276 and CD147 are essential for stemness in breast cancer: A novel insight from proximal proteome analysis. Sci. Rep. 2023, 13, 14242. [Google Scholar] [CrossRef]
- Kovalski, J.R.; Shanderson, R.L.; Khavari, P.A. Ras functional proximity proteomics establishes mTORC2 as new direct ras effector. Oncotarget 2019, 10, 5126. [Google Scholar] [CrossRef]
- Prikas, E.; Poljak, A.; Ittner, A. Mapping p38α mitogen-activated protein kinase signaling by proximity-dependent labeling. Protein Sci. 2020, 29, 1196–1210. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zou, P. Photocatalytic proximity labeling for profiling the subcellular organization of biomolecules. ChemBioChem 2023, 24, e202200745. [Google Scholar] [CrossRef]
- Lin, Z.; Schaefer, K.; Lui, I.; Yao, Z.; Fossati, A.; Swaney, D.L.; Palar, A.; Sali, A.; Wells, J.A. Multiscale photocatalytic proximity labeling reveals cell surface neighbors on and between cells. Science 2024, 385, eadl5763. [Google Scholar] [CrossRef]
- Datta, S.; Chen, D.-Y.; Tavares, A.H.; Reyes-Robles, T.; Ryu, K.A.; Khan, N.; Bechtel, T.J.; Bertoch, J.M.; White, C.H.; Hazuda, D.J. High-resolution photocatalytic mapping of SARS-CoV-2 spike interactions on the cell surface. Cell Chem. Biol. 2023, 30, 1313–1322.e7. [Google Scholar] [CrossRef] [PubMed]
- Niland, S.; Riscanevo, A.X.; Eble, J.A. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int. J. Mol. Sci. 2021, 23, 146. [Google Scholar] [CrossRef]
- Tang, H.; Xu, X.; Chen, Y.; Xin, H.; Wan, T.; Li, B.; Pan, H.; Li, D.; Ping, Y. Reprogramming the tumor microenvironment through second-near-infrared-window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, 2006003. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Karalis, J.D.; Liu, C.; Murimwa, G.Z.; Voth Park, J.; Heid, C.A.; Reznik, S.I.; Huang, E.; Minna, J.D.; Brekken, R.A. The colorectal cancer tumor microenvironment and its impact on liver and lung metastasis. Cancers 2021, 13, 6206. [Google Scholar] [CrossRef] [PubMed]
- Mlecnik, B.; Bindea, G.; Kirilovsky, A.; Angell, H.K.; Obenauf, A.C.; Tosolini, M.; Church, S.E.; Maby, P.; Vasaturo, A.; Angelova, M. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl. Med. 2016, 8, 327ra326. [Google Scholar] [CrossRef]
- Noman, M.Z.; Messai, Y.; Muret, J.; Hasmim, M.; Chouaib, S. Crosstalk between CTC, immune system and hypoxic tumor microenvironment. Cancer Microenviron. 2014, 7, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.G.; Wanjari, U.R.; Namachivayam, A.; Murali, R.; Prabakaran, D.; Ganesan, R.; Renu, K.; Dey, A.; Vellingiri, B.; Ramanathan, G. Role of immune cells and receptors in cancer treatment: An immunotherapeutic approach. Vaccines 2022, 10, 1493. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.A.; Nisar, S.; Maacha, S.; Carneiro-Lobo, T.C.; Akhtar, S.; Siveen, K.S.; Wani, N.A.; Rizwan, A.; Bagga, P.; Singh, M. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol. Cancer 2021, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Saha, T.; Solomon, J.; Samson, A.O.; Gil-Henn, H. Invasion and metastasis as a central hallmark of breast cancer. J. Clin. Med. 2021, 10, 3498. [Google Scholar] [CrossRef]
- Leth-Larsen, R.; Lund, R.; Hansen, H.V.; Laenkholm, A.-V.; Tarin, D.; Jensen, O.N.; Ditzel, H.J. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol. Cell. Proteom. 2009, 8, 1436–1449. [Google Scholar] [CrossRef]
- Sun, B.; Li, G.; Yu, Q.; Liu, D.; Tang, X. HSP60 in cancer: A promising biomarker for diagnosis and a potentially useful target for treatment. J. Drug Target. 2022, 30, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, J.; Lubman, D.M.; Gao, C. Aberrant glycosylation and cancer biomarker discovery: A promising and thorny journey. Clin. Chem. Lab. Med. (CCLM) 2019, 57, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, I.D.; Escobar, B.P.; Tuomivaara, S.T.; Lin, Y.-H.T.; Nix, M.A.; Leung, K.K.; Hale, M.; Choudhry, P.; Lopez-Girona, A.; Ramos, E. Defining the cell surface proteomic landscape of multiple myeloma reveals immunotherapeutic strategies and biomarkers of drug resistance. BioRxiv 2021. [Google Scholar] [CrossRef]
- Luque-Garcia, J.L.; Neubert, T.A. Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J. Chromatogr. A 2007, 1153, 259–276. [Google Scholar] [CrossRef]
- Ferguson, I.D.; Patiño-Escobar, B.; Tuomivaara, S.T.; Lin, Y.-H.T.; Nix, M.A.; Leung, K.K.; Kasap, C.; Ramos, E.; Nieves Vasquez, W.; Talbot, A. The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance. Nat. Commun. 2022, 13, 4121. [Google Scholar] [CrossRef]
- Tian, X.P.; Cai, J.; Ma, S.Y.; Fang, Y.; Huang, H.Q.; Lin, T.Y.; Rao, H.L.; Li, M.; Xia, Z.J.; Kang, T.B. BRD2 induces drug resistance through activation of the RasGRP1/Ras/ERK signaling pathway in adult T-cell lymphoblastic lymphoma. Cancer Commun. 2020, 40, 245–259. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Shi, J. MSN anti-cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater. 2014, 26, 391–411. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Meyer, A.S.; Droujinine, I.A.; Udeshi, N.D.; Hu, Y.; Guo, J.; McMahon, J.A.; Carey, D.K.; Xu, C.; Fang, Q. A genetic model for in vivo proximity labelling of the mammalian secretome. Open Biol. 2022, 12, 220149. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.F.; Seath, C.P.; Knutson, S.D.; Lu, W.; Rabinowitz, J.D.; MacMillan, D.W. Photoproximity labeling of sialylated glycoproteins (GlycoMap) reveals sialylation-dependent regulation of ion transport. J. Am. Chem. Soc. 2022, 144, 23633–23641. [Google Scholar] [CrossRef] [PubMed]
- Tay, N.E.S.; Ryu, K.A.; Weber, J.L.; Olow, A.K.; Cabanero, D.C.; Reichman, D.R.; Oslund, R.C.; Fadeyi, O.O.; Rovis, T. Targeted activation in localized protein environments via deep red photoredox catalysis. Nat. Chem. 2023, 15, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Roas, M.; Vick, B.; Kasper, M.-A.; Able, M.; Polzer, H.; Gerlach, M.; Kremmer, E.; Hecker, J.S.; Schmitt, S.; Stengl, A. Targeting FLT3 with a new-generation antibody-drug conjugate in combination with kinase inhibitors for treatment of AML. Blood J. Am. Soc. Hematol. 2023, 141, 1023–1035. [Google Scholar] [CrossRef]
- Perna, F.; Berman, S.H.; Soni, R.K.; Mansilla-Soto, J.; Eyquem, J.; Hamieh, M.; Hendrickson, R.C.; Brennan, C.W.; Sadelain, M. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 2017, 32, 506–519.e5. [Google Scholar] [CrossRef] [PubMed]
- Shepard, H.M.; Lewis, G.D.; Sarup, J.C.; Fendly, B.M.; Maneval, D.; Mordenti, J.; Figari, I.; Kotts, C.E.; Palladino, M.A.; Ullrich, A. Monoclonal antibody therapy of human cancer: Taking the HER2 protooncogene to the clinic. J. Clin. Immunol. 1991, 11, 117–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Helmink, B.A.; Khan, M.W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J.A. The microbiome, cancer, and cancer therapy. Nat. Med. 2019, 25, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Fares, J.; Kanojia, D.; Rashidi, A.; Ulasov, I.; Lesniak, M.S. Landscape of combination therapy trials in breast cancer brain metastasis. Int. J. Cancer 2020, 147, 1939–1952. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, X.; Hu, H.; Jiang, H.; Xiong, W.; Mei, H.; Hu, Y. Elevating the potential of CAR-T cell therapy in solid tumors: Exploiting biomaterials-based delivery techniques. Front. Bioeng. Biotechnol. 2024, 11, 1320807. [Google Scholar] [CrossRef]
- Abrantes, R.; Duarte, H.O.; Gomes, C.; Wälchli, S.; Reis, C.A. CAR-Ts: New perspectives in cancer therapy. FEBS Lett. 2022, 596, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Orentas, R.J.; Yang, J.J.; Wen, X.; Wei, J.S.; Mackall, C.L.; Khan, J. Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers. Front. Oncol. 2012, 2, 194. [Google Scholar] [CrossRef]
- Konner, J.A.; Bell-McGuinn, K.M.; Sabbatini, P.; Hensley, M.L.; Tew, W.P.; Pandit-Taskar, N.; Els, N.V.; Phillips, M.D.; Schweizer, C.; Weil, S.C. Farletuzumab, a humanized monoclonal antibody against folate receptor α, in epithelial ovarian cancer: A phase I study. Clin. Cancer Res. 2010, 16, 5288–5295. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.; Meetze, K.; Vo, N.Y.; Kollipara, S.; Mazsa, E.K.; Winston, W.M.; Weiler, S.; Poling, L.L.; Chen, T.; Ismail, N.S. GP369, an FGFR2-IIIb–Specific antibody, exhibits potent antitumor activity against human cancers driven by activated FGFR2 signaling. Cancer Res. 2010, 70, 7630–7639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mohan, N.; Nussinov, R.; Ma, B.; Wu, W.J. Trastuzumab blocks the receiver function of HER2 leading to the population shifts of HER2-containing homodimers and heterodimers. Antibodies 2021, 10, 7. [Google Scholar] [CrossRef]
- Polson, A.G.; Yu, S.-F.; Elkins, K.; Zheng, B.; Clark, S.; Ingle, G.S.; Slaga, D.S.; Giere, L.; Du, C.; Tan, C. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood J. Am. Soc. Hematol. 2007, 110, 616–623. [Google Scholar] [CrossRef]
- Mussai, F.; Campana, D.; Bhojwani, D.; Stetler-Stevenson, M.; Steinberg, S.M.; Wayne, A.S.; Pastan, I. Cytotoxicity of the anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. Br. J. Haematol. 2010, 150, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Li, Z.; Bussing, D.; Shah, D.K. Evaluation of quantitative relationship between target expression and antibody-drug conjugate exposure inside cancer cells. Drug Metab. Dispos. 2020, 48, 368–377. [Google Scholar] [CrossRef]
- Masucci, G.V.; Cesano, A.; Hawtin, R.; Janetzki, S.; Zhang, J.; Kirsch, I.; Dobbin, K.K.; Alvarez, J.; Robbins, P.B.; Selvan, S.R. Validation of biomarkers to predict response to immunotherapy in cancer: Volume I—Pre-analytical and analytical validation. J. Immunother. Cancer 2016, 4, 76. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.C.; Low, T.Y.; Lee, P.Y.; Lim, L.C. Single-cell proteomics by mass spectrometry: Advances and implications in cancer research. Proteomics 2024, 24, 2300210. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Cao, C.; Kumar, M.; Sinha, S.; Chanda, A.; McNeil, R.; Samuel, D.; Arora, R.K.; Matthews, T.W.; Chandarana, S. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nat. Commun. 2023, 14, 5029. [Google Scholar] [CrossRef]
- Huang, S.; Ouyang, L.; Tang, J.; Qian, K.; Chen, X.; Xu, Z.; Ming, J.; Xi, R. Spatial transcriptomics: A new frontier in cancer research. Clin. Cancer Bull. 2024, 3, 13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmati, S.; Emili, A. Proximity Labeling: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface. Cancers 2025, 17, 179. https://doi.org/10.3390/cancers17020179
Rahmati S, Emili A. Proximity Labeling: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface. Cancers. 2025; 17(2):179. https://doi.org/10.3390/cancers17020179
Chicago/Turabian StyleRahmati, Saman, and Andrew Emili. 2025. "Proximity Labeling: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface" Cancers 17, no. 2: 179. https://doi.org/10.3390/cancers17020179
APA StyleRahmati, S., & Emili, A. (2025). Proximity Labeling: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface. Cancers, 17(2), 179. https://doi.org/10.3390/cancers17020179