Novel Therapeutic Approaches for Cutaneous Angiosarcoma, Particularly Focusing on Immune Checkpoint Inhibitors
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Surgery
4. Chemotherapy
4.1. Doxorubicin
4.2. Paclitaxel
4.3. Docetaxel
4.4. Eribulin
4.5. Combination and Cytotoxic Alternatives
4.6. Chemoradiation
4.7. Summary
5. Molecular Targeted Therapy
5.1. VEGF Pathway
5.1.1. Bevacizumab
5.1.2. Sorafenib
5.1.3. Pazopanib
5.2. Other Pathways
5.2.1. MYC
5.2.2. PI3K/mTOR
5.3. Molecular Targeted Therapy: Summary
6. Immune Checkpoint Inhibitors
6.1. Tumor Mutational Burden (TMB) and Genomic Landscape
6.2. Clinical Trials of ICIs
6.3. Biomarkers and Predictors
6.4. Resistance Mechanisms
6.5. Future Perspective
6.6. Immune Checkpoint Inhibitors: Summary
7. Combination Strategies
7.1. Radiotherapy Plus ICI
7.2. ICI Plus TKI
7.3. Other Emerging Strategies
7.4. Challenges and Future Directions
8. Conclusions
Funding
Conflicts of Interest
References
- Fayette, J.; Martin, E.; Piperno-Neumann, S.; Le Cesne, A.; Robert, C.; Bonvalot, S.; Ranchère, D.; Pouillart, P.; Coindre, J.M.; Blay, J.Y. Angiosarcomas, a heterogeneous group of sarcomas with specific behavior depending on primary site: A retrospective study of 161 cases. Ann. Oncol. 2007, 18, 2030–2036. [Google Scholar] [CrossRef]
- Mark, R.J.; Poen, J.C.; Tran, L.M.; Fu, Y.S.; Juillard, G.F. Angiosarcoma: A report of 67 patients and a review of the literature. Cancer 1996, 77, 2400–2406. [Google Scholar] [CrossRef]
- Pawlik, T.M.; Paulino, A.F.; McGinn, C.J.; Baker, L.H.; Cohen, D.S.; Morris, J.S.; Rees, R.; Sondak, V.K. Cutaneous angiosarcoma of the scalp: A multidisciplinary approach. Cancer 2003, 98, 1716–1726. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, W.M.; Mendenhall, C.M.; Werning, J.W.; Reith, J.D.; Mendenhall, N.P. Cutaneous angiosarcoma. Am. J. Clin. Oncol. 2006, 29, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J.; Brown, N.J.; Reed, M.W.; Hughes, D.; Woll, P.J. Angiosarcoma. Lancet Oncol. 2010, 11, 983–991. [Google Scholar] [CrossRef]
- Hong, N.J.L.; Pandalai, P.K.; Hornick, J.L.; Shekar, P.S.; Harmon, D.C.; Chen, Y.-L.; Butrynski, J.E.; Baldini, E.H.; Raut, C.P. Cardiac Angiosarcoma Management and Outcomes: 20-Year Single-institution Experience. Ann. Surg. Oncol. 2012, 19, 2707–2715. [Google Scholar] [CrossRef]
- Billings, S.D.; McKenney, J.K.; Folpe, A.L.; Hardacre, M.C.; Weiss, S.W. Cutaneous angiosarcoma following breast-conserving surgery and radiation: An analysis of 27 cases. Am. J. Surg. Pathol. 2004, 28, 781–788. [Google Scholar] [CrossRef]
- Sharma, A.; Schwartz, R.A. Stewart-Treves syndrome: Pathogenesis and management. J. Am. Acad. Dermatol. 2012, 67, 1342–1348. [Google Scholar] [CrossRef]
- Cozzi, S.; Ghersi, S.F.; Tava, F.; Bardoscia, L.; Najafi, M.; Ruggieri, M.P.; Serre, A.-A.; Roukoz, C.; Miguelez, C.G.; Lazrek, A.; et al. Radiation-Associated Angiosarcoma of the Breast: The State of the Art of a Rare and Aggressive Disease. J. Pers. Med. 2024, 14, 859. [Google Scholar] [CrossRef]
- Shon, W.; Sukov, W.R.; Jenkins, S.M.; Folpe, A.L. MYC amplification and overexpression in primary cutaneous angiosarcoma: A fluorescence in-situ hybridization and immunohistochemical study. Mod. Pathol. 2014, 27, 509–515. [Google Scholar] [CrossRef]
- Murali, R.; Chandramohan, R.; Möller, I.; Scholz, S.L.; Berger, M.; Huberman, K.; Viale, A.; Pirun, M.; Socci, N.D.; Bouvier, N.; et al. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway. Oncotarget 2015, 6, 36041–36052. [Google Scholar] [CrossRef] [PubMed]
- Yoder, A.K.; Farooqi, A.S.; Wernz, C.; Subramaniam, A.; Ravi, V.; Goepfert, R.; Sturgis, E.M.; Mitra, D.; Bishop, A.J.; Guadagnolo, B.A. Outcomes after definitive treatment for cutaneous angiosarcomas of the face and scalp: Reevaluating the role of surgery and radiation therapy. Head. Neck 2023, 45, 1943–1951. [Google Scholar] [CrossRef]
- Mizukami, S.; Taguchi, M.; Suzuki, T. Toward the development of angiosarcoma treatment guidelines: Results of a nationwide survey by the Japanese Society for Dermatosurgery. Skin. Cancer 2010, 24, 350–362. (In Japanese) [Google Scholar] [CrossRef]
- Painter, C.A.; Jain, E.; Tomson, B.N.; Dunphy, M.; Stoddard, R.E.; Thomas, B.S.; Damon, A.L.; Shah, S.; Kim, D.; Gómez Tejeda Zañudo, J.; et al. The Angiosarcoma Project: Enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nat. Med. 2020, 26, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Guadagnolo, B.A.; Zagars, G.K.; Araujo, D.; Ravi, V.; Shellenberger, T.D.; Sturgis, E.M. Outcomes after definitive treatment for cutaneous angiosarcoma of the face and scalp. Head. Neck 2011, 33, 661–667. [Google Scholar] [CrossRef]
- Penel, N.; Marréaud, S.; Robin, Y.M.; Hohenberger, P. Angiosarcoma: State of the art and perspectives. Crit. Rev. Oncol. Hematol. 2011, 80, 257–263. [Google Scholar] [CrossRef]
- Sinnamon, A.J.; Neuwirth, M.G.; McMillan, M.T.; Ecker, B.L.; Bartlett, E.K.; Zhang, P.J.; Kelz, R.R.; Fraker, D.L.; Roses, R.E.; Karakousis, G.C. A prognostic model for resectable soft tissue and cutaneous angiosarcoma. J. Surg. Oncol. 2016, 114, 557–563. [Google Scholar] [CrossRef]
- Abraham, J.A.; Hornicek, F.J.; Kaufman, A.M.; Harmon, D.C.; Springfield, D.S.; Raskin, K.A.; Mankin, H.J.; Kirsch, D.G.; Rosenberg, A.E.; Nielsen, G.P.; et al. Treatment and outcome of 82 patients with angiosarcoma. Ann. Surg. Oncol. 2007, 14, 1953–1967. [Google Scholar] [CrossRef]
- Vogt, T.; Müller, C.S.L.; Melchior, P.; Rübe, C.; Ugurel, S.; Schimming, T.T.; Utikal, J.; Esser, S.; Helbig, D.; Hadaschik, E.; et al. S1-Guideline Cutaneous Angiosarcomas—Update 2021. J. Dtsch Dermatol. Ges. 2021, 19, 1801–1812. [Google Scholar] [CrossRef]
- Bramwell, V.H.; Anderson, D.; Charette, M.L. Doxorubicin-based chemotherapy for the palliative treatment of adult patients with locally advanced or metastatic soft tissue sarcoma. Cochrane Database Syst. Rev. 2003, 2003, Cd003293. [Google Scholar] [CrossRef]
- Jäckel, A.; Deichmann, M.; Waldmann, V.; Bock, M.; Näher, H. Regression of metastatic angiosarcoma of the skin after systemic treatment with liposome-encapsulated doxorubicin and interferon-alpha. Br. J. Dermatol. 1999, 140, 1187–1188. [Google Scholar]
- Judson, I.; Verweij, J.; Gelderblom, H.; Hartmann, J.T.; Schöffski, P.; Blay, J.-Y.; Kerst, J.M.; Sufliarsky, J.; Whelan, J.; Hohenberger, P.; et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: A randomised controlled phase 3 trial. Lancet Oncol. 2014, 15, 415–423. [Google Scholar] [CrossRef]
- Fata, F.; O’Reilly, E.; Ilson, D.; Pfister, D.; Leffel, D.; Kelsen, D.P.; Schwartz, G.K.; Casper, E.S. Paclitaxel in the treatment of patients with angiosarcoma of the scalp or face. J. Clin. Oncol. 1999, 86, 2034–2037. [Google Scholar] [CrossRef]
- Penel, N.; Bui, B.N.; Bay, J.-O.; Cupissol, D.; Ray-Coquard, I.; Piperno-Neumann, S.; Kerbrat, P.; Fournier, C.; Taieb, S.; Jimenez, M.; et al. Phase II Trial of Weekly Paclitaxel for Unresectable Angiosarcoma: The ANGIOTAX Study. J. Clin. Oncol. 2008, 26, 5269–5274. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Furudate, S.; Maekawa, T.; Kato, H.; Ito, T.; Matsushita, S.; Yoshino, K.; Hashimoto, A.; Muto, Y.; Ohuchi, K.; et al. Cutaneous Angiosarcoma Treated with Taxane-Based Chemoradiotherapy: A Multicenter Study of 90 Japanese Cases. Ski. Health Dis. 2022, 3, e180. [Google Scholar] [CrossRef]
- Italiano, A.; Cioffi, A.; Penel, N.; Levra, M.G.; Delcambre, C.; Kalbacher, E.; Chevreau, C.; Bertucci, F.; Isambert, N.; Blay, J.; et al. Comparison of doxorubicin and weekly paclitaxel efficacy in metastatic angiosarcomas. Cancer 2011, 118, 3330–3336. [Google Scholar] [CrossRef]
- Ray-Coquard, I.L.; Domont, J.; Tresch-Bruneel, E.; Bompas, E.; Cassier, P.A.; Mir, O.; Piperno-Neumann, S.; Italiano, A.; Chevreau, C.; Cupissol, D.; et al. Paclitaxel Given Once Per Week with or Without Bevacizumab in Patients with Advanced Angiosarcoma: A Randomized Phase II Trial. J. Clin. Oncol. 2015, 33, 2797–2802. [Google Scholar] [CrossRef] [PubMed]
- van Hoesel, Q.M.; Verweij, J.; Catimel, G.; Clavel, M.; Kerbrat, P.; van Oosterom, A.; Kerger, J.; Tursz, T.; van Glabbeke, M.; van Pottelsberghe, C.; et al. Phase II study with Docetaxel (Taxotere®) in advanced soft tissue sarcomas of the adult. Ann. Oncol. 1994, 5, 539–542. [Google Scholar] [CrossRef]
- Nagano, T.; Yamada, Y.; Ikeda, T.; Kanki, H.; Kamo, T.; Nishigori, C. Docetaxel: A therapeutic option in the treatment of cutaneous angiosarcoma: Report of 9 patients. Cancer 2007, 110, 648–651. [Google Scholar] [CrossRef]
- Nakamura, Y.; Nakamura, Y.; Hori, E.; Furuta, J.; Kawachi, Y.; Otsuka, F. Complete long-term response of angiosarcoma of the scalp with cervical lymph node metastases treated with a combination of weekly and monthly docetaxel. Br. J. Dermatol. 2010, 163, 1357–1358. [Google Scholar] [CrossRef]
- Yonekura, S.; Endo, Y.; Fujii, H.; Ishikawa, M.; Egawa, G.; Kabashima, K. Clinical benefit of switching from paclitaxel to docetaxel or vice versa in cutaneous angiosarcoma patients resistant to first taxane chemotherapy. J. Dermatol. 2023, 50, 1493–1496. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Maekawa, T.; Kato, H.; Ito, T.; Matsushita, S.; Yoshino, K.; Fujisawa, Y.; Ishizuki, S.; Segawa, K.; Yamamoto, J.; et al. Treatment for taxane-resistant cutaneous angiosarcoma: A multicenter study of 50 Japanese cases. J. Dermatol. 2023, 50, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, Y.; Fujimura, T.; Matsushita, S.; Yamamoto, Y.; Uchi, H.; Otsuka, A.; Funakoshi, T.; Miyagi, T.; Hata, H.; Gosho, M.; et al. The efficacy of eribulin mesylate for patients with cutaneous angiosarcoma previously treated with taxane: A multicentre prospective observational study. Br. J. Dermatol. 2020, 183, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Towle, M.J.; Salvato, K.A.; Wels, B.F.; Aalfs, K.K.; Zheng, W.; Seletsky, B.M.; Zhu, X.; Lewis, B.; Kishi, Y.; Yu, M.J.; et al. Eribulin Induces Irreversible Mitotic Blockade: Implications of Cell-Based Pharmacodynamics for In vivo Efficacy under Intermittent Dosing Conditions. Cancer Res. 2011, 71, 496–505. [Google Scholar] [CrossRef]
- Schöffski, P.; Chawla, S.; Maki, R.G.; Italiano, A.; Gelderblom, H.; Choy, E.; Grignani, G.; Camargo, V.; Bauer, S.; Rha, S.Y.; et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: A randomised, open-label, multicentre, phase 3 trial. Lancet 2016, 387, 1629–1637. [Google Scholar] [CrossRef]
- Smrke, A.; Benson, C. Eribulin for recurrent cutaneous angiosarcoma. Br. J. Dermatol. 2020, 183, 797–798. [Google Scholar] [CrossRef]
- Suppiah, R.; Wood, L.; Elson, P.; Budd, G.T. Phase I/II study of docetaxel, ifosfamide, and doxorubicin in advanced, recurrent, or metastatic soft tissue sarcoma (STS). Investig. New Drugs 2006, 24, 509–514. [Google Scholar] [CrossRef]
- Lewcun, J.A.; Pameijer, C.; Kass, R.; Cream, L.; Hershock, D.; Brooks, A.J.; Dodge, D.G. Doxorubicin, paclitaxel, and cisplatin based chemotherapy for the treatment of angiosarcoma: Two case reports. Int. J. Surg. Case Rep. 2020, 68, 83–87. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Palassini, E.; Sanfilippo, R.; Vincenzi, B.; Arena, M.; Bochicchio, A.; De Rosa, P.; Nuzzo, A.; Turano, S.; Morosi, C.; et al. Gemcitabine in advanced angiosarcoma: A retrospective case series analysis from the Italian Rare Cancer Network. Ann. Oncol. 2012, 23, 501–508. [Google Scholar] [CrossRef]
- Skubitz, K.M.; Haddad, P.A. Paclitaxel and pegylated-liposomal doxorubicin are both active in angiosarcoma. Cancer 2005, 104, 361–366. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Yoshino, K.; Kadono, T.; Miyagawa, T.; Nakamura, Y.; Fujimoto, M. Chemoradiotherapy with taxane is superior to conventional surgery and radiotherapy in the management of cutaneous angiosarcoma: A multicentre, retrospective study. Br. J. Dermatol. 2014, 171, 1493–1500. [Google Scholar] [CrossRef]
- Yamakawa, K.; Ogata, D.; Namikawa, K.; Nakano, E.; Yamaguchi, Y.; Yamazaki, N. A review of cutaneous angiosarcoma: Epidemiology, diagnosis, prognosis, and treatment options. Jpn. J. Clin. Oncol. 2025, 55, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Gabani, P.; Davis, E.J.; Oppelt, P.; Merfeld, E.; Keedy, V.L.; Zoberi, I.; Chrisinger, J.S.; Michalski, J.M.; Van Tine, B.; et al. Concurrent paclitaxel and radiation therapy for the treatment of cutaneous angiosarcoma. Clin. Transl. Radiat. Oncol. 2021, 27, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, Y.; Yoshioka, Y.; Yoshino, K.; Fujimura, T.; Naito, Y.; Masuzawa, M.; Oashi, K.; Nakano, E.; Kato, H.; Muto, Y.; et al. Secondary Publication of Japanese Dermatological Association Guidelines: Clinical Questions of Guidelines for Cutaneous Angiosarcoma 2025. J. Dermatol. Sci. 2025, 70, 116–122. [Google Scholar] [CrossRef]
- Hoshina, D.; Abe, R.; Yoshioka, N.; Saito, N.; Hata, H.; Fujita, Y.; Aoyagi, S.; Shimizu, H. Establishment of a novel experimental model of human angiosarcoma and a VEGF-targeting therapeutic experiment. J. Dermatol. Sci. 2013, 70, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Itakura, E.; Yamamoto, H.; Oda, Y.; Tsuneyoshi, M. Detection and characterization of vascular endothelial growth factors and their receptors in a series of angiosarcomas. J. Surg. Oncol. 2008, 97, 74–81. [Google Scholar] [CrossRef]
- Agulnik, M.; Yarber, J.; Okuno, S.; von Mehren, M.; Jovanovic, B.; Brockstein, B.; Evens, A.; Benjamin, R. An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas. Ann. Oncol. 2013, 24, 257–263. [Google Scholar] [CrossRef]
- Ray-Coquard, I.; Italiano, A.; Bompas, E.; Le Cesne, A.; Robin, Y.-M.; Chevreau, C.; Bay, J.-O.; Bousquet, G.; Piperno-Neumann, S.; Isambert, N.; et al. Sorafenib for Patients with Advanced Angiosarcoma: A Phase II Trial from the French Sarcoma Group (GSF/GETO). Oncology 2012, 17, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Maki, R.G.; D’ADamo, D.R.; Keohan, M.L.; Saulle, M.; Schuetze, S.M.; Undevia, S.D.; Livingston, M.B.; Cooney, M.M.; Hensley, M.L.; Mita, M.M.; et al. Phase II Study of Sorafenib in Patients with Metastatic or Recurrent Sarcomas. J. Clin. Oncol. 2009, 27, 3133–3140. [Google Scholar] [CrossRef]
- Tomita, H.; Koike, Y.; Asai, M.; Ogawa, F.; Abe, K.; Tanioka, M.; Utani, A. Angiosarcoma of the scalp successfully treated with pazopanib. J. Am. Acad. Dermatol. 2014, 70, e19–e21. [Google Scholar] [CrossRef]
- Kitamura, S.; Hata, H.; Imafuku, K.; Haga, N.; Homma, E.; Shimizu, H. Pazopanib can preserve cosmetic quality of life even in end-stage angiosarcoma. Clin. Exp. Dermatol. 2015, 40, 931–933. [Google Scholar] [CrossRef]
- Fujiwara, S.; Nakano, E.; Nakamura, K.; Washio, K.; Ogura, K.; Nishigori, C. Pazopanib as a potential chemotherapy for cutaneous angiosarcoma: A case series of 10 patients from a single institution. J. Dermatol. 2020, 47, e273–e274. [Google Scholar] [CrossRef] [PubMed]
- Thiebaud, J.A.; Ravi, V.; Litwin, S.; Schuetze, S.M.; Movva, S.; Agulnik, M.; Kraft, A.S.; Tetzlaff, E.D.; Somaiah, N.; von Mehren, M. OER-073, A multicenter phase 2 study evaluating the role of pazopanib in angiosarcoma. Cancer 2022, 128, 3516–3522. [Google Scholar] [CrossRef] [PubMed]
- Ogata, D.; Yanagisawa, H.; Suzuki, K.; Oashi, K.; Yamazaki, N.; Tsuchida, T. Pazopanib treatment slows progression and stabilizes disease in patients with taxane-resistant cutaneous angiosarcoma. Med. Oncol. 2016, 33, 116. [Google Scholar] [CrossRef] [PubMed]
- Oashi, K.; Shibata, T.; Namikawa, K.; Takahashi, A.; Yokota, K.; Nakano, E.; Teramoto, Y.; Tsutsumida, A.; Maeda, T.; Yamazaki, N.; et al. A single-arm confirmatory trial of pazopanib in patients with paclitaxel-pretreated primary cutaneous angiosarcoma: Japan Clinical Oncology Group study (JCOG1605, JCOG-PCAS protocol). BMC Cancer 2020, 20, 1–6. [Google Scholar] [CrossRef]
- Manner, J.; Radlwimmer, B.; Hohenberger, P.; Mössinger, K.; Küffer, S.; Sauer, C.; Belharazem, D.; Zettl, A.; Coindre, J.-M.; Hallermann, C.; et al. MYC High Level Gene Amplification Is a Distinctive Feature of Angiosarcomas after Irradiation or Chronic Lymphedema. Am. J. Pathol. 2010, 176, 34–39. [Google Scholar] [CrossRef]
- Styring, E.; Seinen, J.; Dominguez-Valentin, M.; ADomanski, H.; Jönsson, M.; von Steyern, F.V.; Hoekstra, H.J.; Suurmeijer, A.J.H.; Nilbert, M. Key Roles for MYC, KIT and RET signaling in secondary angiosarcomas. Br. J. Cancer 2014, 111, 407–412. [Google Scholar] [CrossRef]
- Italiano, A.; Chen, C.L.; Thomas, R.; Breen, M.; Bonnet, F.; Sevenet, N.; Longy, M.; Maki, R.G.; Coindre, J.M.; Antonescu, C.R. Alterations of the p53 and PIK3CA/AKT/mTOR pathways in angiosarcomas: A pattern distinct from other sarcomas with complex genomics. Cancer 2012, 118, 5878–5887. [Google Scholar] [CrossRef]
- Chadwick, M.L.; Lane, A.; Thomas, D.; Smith, A.R.; White, A.R.; Davidson, D.; Feng, Y.; Boscolo, E.; Zheng, Y.; Adams, D.M.; et al. Combined mTOR and MEK inhibition is an effective therapy in a novel mouse model for angiosarcoma. Oncotarget 2018, 9, 24750–24765. [Google Scholar] [CrossRef]
- Mukherjee, B.; Tomimatsu, N.; Amancherla, K.; Camacho, C.V.; Pichamoorthy, N.; Burma, S. The dual PI3K/mTOR inhibitor NVP-BEZ235 is a potent inhibitor of ATM- and DNA-PKCs-mediated DNA damage responses. Neoplasia 2012, 14, 34–43. [Google Scholar] [CrossRef]
- Chan, T.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2018, 30, 44–56. [Google Scholar] [CrossRef]
- van Ravensteijn, S.G.; de Haan, J.J.; Gelderblom, H.; Nederkoorn, M.J.L.; Hillebrandt-Roeffen, M.H.S.; Gorris, M.A.J.; de Bitter, T.J.J.; Boleij, A.; Gusinac, A.; Ederveen, T.H.A. Cemiplimab in Locally Advanced or Metastatic Secondary Angiosarcomas (CEMangio): A Phase II Clinical Trial and Biomarker Analyses. Clin. Cancer Res. 2025, 31, 3678–3691. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.J.; Othus, M.; Patel, S.P.; Ryan, C.; Sangal, A.; Powers, B.; Budd, G.T.; Victor, A.I.; Hsueh, C.T.; Chugh, R. Multicenter phase II trial (SWOG S1609, cohort 51) of ipilimumab and nivolumab in metastatic or unresectable angiosarcoma: A substudy of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART). J. Immunother. Cancer 2021, 9, e002990. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Namikawa, K.; Ishitsuki, S.; Yoshino, K.; Isei, T.; Kato, H.; Yanagi, T.; Yamamoto, Y.; Uchi, H.; Yasuda, M.; et al. Phase II trial dedicated to non-selected, pretreated cutaneous angiosarcoma: Efficacy of nivolumab (AngioCheck Study). Eur. J. Cancer 2025, 224, 115537. [Google Scholar] [CrossRef]
- Honda, Y.; Otsuka, A.; Ono, S.; Yamamoto, Y.; Seidel, J.A.; Morita, S.; Hirata, M.; Kataoka, T.R.; Takenouchi, T.; Fujii, K.; et al. Infiltration of PD-1-positive cells in combination with tumor site PD-L1 expression is a positive prognostic factor in cutaneous angiosarcoma. OncoImmunology 2016, 6, e1253657. [Google Scholar] [CrossRef] [PubMed]
- Tomassen, T.; Weidema, M.E.; Hillebrandt-Roeffen, M.H.S.; van der Horst, C.; PALGAgroup*; Desar, I.M.E.; Flucke, U.E.; Versleijen-Jonkers, Y.M.H. Analysis of PD-1, PD-L1, and T-cell infiltration in angiosarcoma pathogenetic subgroups. Immunol. Res. 2022, 70, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Sade-Feldman, M.; Jiao, Y.J.; Chen, J.H.; Rooney, M.S.; Barzily-Rokni, M.; Eliane, J.-P.; Bjorgaard, S.L.; Hammond, M.R.; Vitzthum, H.; Blackmon, S.M.; et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 2017, 8, 31. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Chen, Z.; Luo, J.; Guo, W.; Sun, L.; Lin, L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. npj Precis. Oncol. 2024, 8, 145. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; To, K.K.W.; Zhu, S.; Wang, F.; Fu, L. Tumor-associated macrophages remodel the suppressive tumor immune microenvironment and targeted therapy for immunotherapy. J. Exp. Clin. Cancer Res. 2025, 44, 145. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Kong, L.; Shi, F.; Zhu, H.; Yu, J. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J. Hematol. Oncol. 2018, 11, 104. [Google Scholar] [CrossRef]
- Florou, V.; Rosenberg, A.E.; Wieder, E.; Komanduri, K.V.; Kolonias, D.; Uduman, M.; Castle, J.C.; Buell, J.S.; Trent, J.C.; Wilky, B.A. Angiosarcoma patients treated with immune checkpoint inhibitors: A case series of seven patients from a single institution. J. Immunother. Cancer 2019, 7, 213. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F.; et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA 2012, 109, 17561–17566. [Google Scholar] [CrossRef] [PubMed]
- Grilley-Olson, J.E.; Allred, J.B.; Schuetze, S.; Davis, E.J.; Wagner, M.J.; Poklepovic, A.S.; Waechter, B.; Riedel, R.F.; Welliver, M.X.; Berg, S.A.; et al. A multicenter phase II study of cabozantinib + nivolumab for patients (pts) with advanced angiosarcoma (AS) previously treated with a taxane (Alliance A091902). J. Clin. Oncol. 2023, 41, 11503. [Google Scholar] [CrossRef]
- Hines, J.B.; Kacew, A.J.; Sweis, R.F. The Development of STING Agonists and Emerging Results as a Cancer Immunotherapy. Curr. Oncol. Rep. 2023, 25, 189–199. [Google Scholar] [CrossRef] [PubMed]
Trials | Design | Primary Site | No. of Patients | ORR | Median PFS (Months) | Median OS (Months) |
---|---|---|---|---|---|---|
Fata 1999 [23] | Retrospective | Cutaneous | N = 9 | 89% | 5.0 | N.S. |
Penel 2008 [24] | Phase 2, single arm | All sites | N = 30 | 18% | 4.0 | 8.0 |
Cutaneous | N = 6 | N.S. | ||||
Italiano 2012 [26] | Retrospective | All sites | N = 68 | 53% | 4.9 | 8.5 |
Cutaneous | N = 25 | 78% | 8.9 | 20.0 | ||
Ray-Coquard 2015 [27] | Phase 2, randomized | All sites | N = 24 | 45.8% | 6.6 | 19.5 |
Fujimura 2023 [25] | Retrospective | Cutaneous | N = 55 | N.S. | N.S. | 20.8 |
Trials | Design | Treatment | No. of Patients | ORR | Median PFS (Months) | Median OS (Months) |
---|---|---|---|---|---|---|
Yonekura 2023 [31] | Retrospective | DTX | N = 6 | 17% | 3.5 | 22.7 |
Fujimura 2023 [25] | Retrospective | DTX | N = 19 | 32% | 5.8 | 12.2 |
Eribulin | N = 20 | 20% | 2.8 | 9.1 | ||
Fujisawa 2020 [33] | Single-arm, prospective | Eribulin | N = 25 | 20% | 3.0 | 8.6 |
Trials | Design | Treatment | No. of Patients | ORR | Median PFS (Months) | Median OS (Months) |
---|---|---|---|---|---|---|
Thiebaud 2022 [53] | Single-arm, prospective | Pazopanib | N = 29 | 3% | 3.6 | 16.1 |
Ogata 2016 [54] | Retrospective | Pazopanib | N = 5 | 40% | 3.1 | Not stated |
Fujimura 2023 [25] | Retrospective | Pazopanib | N = 11 | 27% | 4.4 | 18.4 |
Trials | Design | Treatment | No. of Patients | ORR | Median PFS (95%CI) | Median OS (95%CI) |
---|---|---|---|---|---|---|
Wagner 2021 [63] | Phase 2, single-arm | nivolumab + ipilimumab | All sites N = 16 | 25% | PFS ratio at 6 months: 38% | Not reached |
Cutaneous N = 9 | 60% | Not stated | Not stated | |||
Fujisawa 2025 [64] | Phase 2, single-arm | Nivolumab | Cutaneous N = 23 | 13.0% | 59 days (57–112) | 259 days (188–387) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujisawa, Y. Novel Therapeutic Approaches for Cutaneous Angiosarcoma, Particularly Focusing on Immune Checkpoint Inhibitors. Cancers 2025, 17, 3163. https://doi.org/10.3390/cancers17193163
Fujisawa Y. Novel Therapeutic Approaches for Cutaneous Angiosarcoma, Particularly Focusing on Immune Checkpoint Inhibitors. Cancers. 2025; 17(19):3163. https://doi.org/10.3390/cancers17193163
Chicago/Turabian StyleFujisawa, Yasuhiro. 2025. "Novel Therapeutic Approaches for Cutaneous Angiosarcoma, Particularly Focusing on Immune Checkpoint Inhibitors" Cancers 17, no. 19: 3163. https://doi.org/10.3390/cancers17193163
APA StyleFujisawa, Y. (2025). Novel Therapeutic Approaches for Cutaneous Angiosarcoma, Particularly Focusing on Immune Checkpoint Inhibitors. Cancers, 17(19), 3163. https://doi.org/10.3390/cancers17193163