Diagnosis and Therapy of Soft Tissue Sarcomas: Spanish Group for Research in Sarcomas (GEIS) Guidelines
Simple Summary
Abstract
1. Introduction
2. Methodology
3. Recommendations
3.1. Section 1: Diagnostic Approach
3.1.1. Question: What Are the Key Warning Signs to Rule out Sarcomas, and How Should We Proceed?
- There are four warning signs for suspicion of sarcomas (IV,A):
- -
- Mass > golf ball (4.3 cm).
- -
- Recent increase in tumour size.
- -
- Depth location.
- -
- Pain.
- Sarcoma early recognition and referral to a reference/expert centre, preferably before biopsy, are crucial since the first approach is critical for functional results (III,A).
3.1.2. Question: What Imaging Studies Should Be Performed When an STS Is Suspected?
- Magnetic resonance imaging (MRI) is the modality of choice for the diagnosis and local staging of soft tissue sarcomas of extremities, trunk wall, pelvis, and head/neck (IV,A). MRI should be performed with intravenous contrast administration, and it is mandatory to obtain images in at least two planes (IV,A).
- When MRI is contraindicated, computed tomography (CT) with intravenous contrast should be performed, preferably with sagittal and coronal reconstructions (IV,A). CT can also be appropriate as a modality of choice in retroperitoneal/intra-abdominal and pleuropulmonary sarcomas (IV,A).
- Ultrasound (US) may be used as first-line imaging in cases of superficial, small lesions, but if the lesion is considered indeterminate, additional MRI or CT should be performed (III,A).
3.1.3. Question: What Essential Data Should Be Included in the MRI Report?
- The MRI report should describe the following lesion characteristics (IV,B):
- -
- Size (measured in all three dimensions).
- -
- Location in relation to the fascia (superficial or deep). Revisar inglés
- -
- Compartment/s involved (muscle involvement and extension through the fascia and to the skin).
- -
- Relationship with neurovascular structures.
- -
- Bone involvement (cortical and marrow space).
- -
- Extension of perilesional oedema/perilesional enhancement.
- -
- The pattern of contrast enhancement (identification of necrosis).
- -
- Suggestions of areas for biopsy.
- MRI signs that suggest the diagnosis of a sarcoma include a size larger than 5 cm, a deep location relative to the fascia, and heterogeneous signal intensity/contrast enhancement. Since there is some overlap in the MRI characteristics between STSs and some benign soft tissue tumours, it is important to note that any lesion that cannot be unequivocally characterized by MRI as benign should be considered “indeterminate” and requires biopsy. The approach to such indeterminate lesions is that they are sarcomas until proven otherwise (IV,B).
3.1.4. Question: Which Modality of Biopsy Should Be Performed?
- Core needle biopsy (CNB) should be the standard procedure for any suspicious sarcoma lesion (IV,A):
- -
- Needles of 14–16 G should be used.
- -
- Several cores must be taken.
- A minimum of 3–4 cores for diagnosis purposes.
- A total of 4–6 cores for research purposes/biobanking.
- Planification of the site of the biopsy is mandatory (IV,A):
- -
- It should preferably be performed in the same hospital where the surgery is going to be performed.
- -
- It should be guided by images.
- -
- The biopsy tract should be included in the final surgical specimen.
- Excisional biopsy is possible when dealing with small (<3 cm) superficial lesions. Incisional biopsies (IBs) must be relegated to exceptional cases. Fine needle aspiration (FNA) is not generally recommended (IV,A).
3.1.5. Question: What Essential Information Should the Pathological Report Include for Diagnostic Biopsies and Surgical Resection Specimens?
- Core biopsy/incisional biopsy (IV,A):
- -
- Biopsy procedure.
- -
- Site and depth (based on clinical information).
- -
- Histological subtype (according to the current WHO classification).
- When non-diagnostic: descriptive category (pleomorphic, spindle, epithelioid, or round cell sarcomas).
- -
- Histological grade (according to the FNCLCC).
- Sometimes only a provisional grade can be provided in core biopsies (“at least grade”).
- Some sarcoma subtypes deserve a specific grade with the histological diagnosis (grade histological subtype-dependent).
- Some others do not fit into the FNCLCC system.
- -
- Mitotic rate.
- -
- Percentage of necrosis.
- -
- Immunohistochemistry and molecular tests performed.
- Surgical specimen (IV,A):
- -
- Surgical procedure and orientation (indicated by the surgeon).
- -
- Neoadjuvant treatment.
- -
- Macroscopic description.
- -
- Site and depth (tissue plane involvement).
- -
- Size (largest diameter).
- -
- Histological subtype (according to the current WHO classification).
- -
- Histological grade (according to the FNCLCC and specifying each of the 3 items).
- Sarcomas are not gradable after neoadjuvant treatment.
- -
- Mitotic rate.
- -
- Percentage of necrosis.
- -
- Neoadjuvant treatment effect.
- -
- Immunohistochemistry and molecular tests performed.
- -
- Involvement of any structure (fascia, nerves, vessels, muscle, organs…).
- -
- Lymph node involvement (only in a few subtypes).
- -
- Margins (a microscopic distance to all margins that is closer to 20 mm) with the description of any anatomic barrier presented between the tumour and margins (fascia, periosteum…).
- -
- Diagnostic biopsy:
- Exceptions to the FNCLCC system [39]:
- ○
- Atypical lipomatous tumours/well-differentiated liposarcomas, dermatofibrosarcoma protuberans, and infantile fibrosarcomas are considered Grade 1 by definition.
- ○
- Ewing sarcomas and other undifferentiated round cell sarcomas, rhabdomyosarcomas (all types), angiosarcomas, pleomorphic liposarcomas, soft tissue osteosarcomas, mesenchymal chondrosarcomas, desmoplastic small round cell tumours, extra-renal rhabdoid tumours, and intimal sarcomas are defined as Grade 3.
- ○
- Other examples such as alveolar soft part sarcomas, clear cell sarcomas, epithelioid sarcomas, low-grade fibromyxoid sarcomas, and sclerosing epithelioid sarcomas are not graded. Synovial sarcomas can be included in this group, although some studies have shown differences between G2 and G3 using the FNCLCC system.
- ○
- Histological subtypes which do not fit into the FNCLCC system deserve specific risk models or high-grade criteria: myxoid liposarcomas and solitary fibrous tumours (SFTs).
- ○
- Grading malignant peripheral nerve sheath tumours may be prognostic, but this is currently being debated.
- ○
- Grading parameters are not yet well defined to predict behaviour for extraeskeletal myxoid chondrocarcoma and epithelioid haemangioendothelioma (EHE).
- -
- Surgical specimen.
- Histological subtype remains the main factor to predict outcome and sensitivity to therapy in sarcomas [40,41]. Grade, size, vascular invasion, necrosis, and growth pattern have been identified as prognostic factors [42,43]. The clearance of the excision margin is an important factor in predicting local recurrences [44,45]. After neoadjuvant therapy, histological grading is not applicable. Therapy-related changes, like necrosis and fibrosis, can complicate the assessment. The EORTC-STBSG response score suggests evaluating stainable tumour cells, though other changes, like fibrosis, may also have prognostic value [46,47].
- Any involvement of surrounding structures (e.g., fascia and nerves) should be reported. Lymph node involvement is rare [48]. The most common subtypes which can spread to the lymph nodes are synovial sarcomas, epithelioid sarcomas, clear cell sarcomas, rhabdomyosarcomas, and angiosarcomas.
3.1.6. Question: When Should Molecular Studies and NGS/High-Throughput Molecular Technologies Be Performed?
- Morphology and immunohistochemistry, along with clinical information, are usually enough to guarantee an accurate diagnosis when they show typical characteristics. A wide range of surrogate markers of molecular alterations is available (IV,A).
- Molecular analyses are useful (IV,A):
- -
- When the neoplasm presents atypical characteristics (uncommon clinical setting, overlapping morphology, or doubtful immunohistochemistry).
- -
- In small round cell tumours.
- -
- To label entities currently defined by a distinctive molecular aberration.
- -
- For prognostic stratification.
- -
- To find predictive biomarkers.
- -
- For clinical trial enrolment.
- Indications for NGS are currently being described and may change in the next few years. They include cases in which at least two FISH assays are required to perform diagnosis/differential diagnosis of a given case (IV,A).
3.1.7. Question: What Is the Recommended Approach for Staging STSs?
- A chest CT scan is indicated in all cases of STS to rule out pulmonary metastases (IV,A).
- In cases of myxoid liposarcomas, a whole-body MRI study is recommended [IV,B]. If whole-body MRI is not available, thoracoabdominal CT and spine and pelvic MRI are recommended (IV,B).
- The clinical benefit of performing an abdominal CT scan in cases of epithelioid sarcomas, synovial sarcomas, angiosarcomas, and leiomyosarcomas should be assessed individually (IV,B).
- Brain MRI should be considered in patients with clear cell sarcomas, angiosarcomas, and alveolar soft tissue part sarcomas (IV,B).
- FDG PET-CT is recommended for the detection of malignant transformation of neurofibromas in patients with neurofibromatosis type 1 and for distant staging in cases of local recurrence of STSs in which aggressive salvage surgery is considered (III,A).
3.2. Section 2: Treatment of Localized Disease
3.2.1. Question: What Is the Appropriate Surgical Procedure for a Patient with a Localized STS?
- An en bloc surgery free of tumour margins, causing the least possible functional impairment, is the recommended treatment (II,A).
- In patients with a prior STS resection with positive margins for the tumour, re-intervention, if feasible, must be considered to expand margins (III,A).
- However, marginal surgery could be accepted in some selected cases of low-grade STSs, such as atypical lipomatous tumours (III,A).
- In case of a previous unplanned suboptimal surgery (whoops surgery), re-excision is the first option to be considered.
3.2.2. Question: In Which Cases Is Limb Amputation Indicated?
- Limb amputation is indicated in the following cases:
- -
- When there is a wide infiltration of major neurovascular structures of the limb (II,A).
- -
- When free margins, i.e., an R0 or R1 resection planned in a reference centre, cannot be guaranteed (II,A).
- -
- When reconstruction and appropriate functional results are not feasible or at least the expected results are similar to those of conservative surgery (II,A).
3.2.3. Question: What Reconstructive Procedures Are Used in Sarcoma Surgery and in Which Cases?
- Reconstruction using free flaps or pedicle flaps provides well blood-supplied tissue, making great resections feasible and facilitating subsequent adjuvant treatments (III,A). They are especially indicated in irradiated areas and head and neck localizations (IV,B).
3.2.4. Question: In Which Cases Should Perioperative Radiotherapy (RT) Be Administered, and What Is the Preferred Timing (Preoperative or Postoperative) and Dosage?
- Pre- and postoperative RT are considered standard approaches for most intermediate or high-grade STSs (usually G2–3, deep tumours, >5 cm) if there is no resection of the entire compartment (II,A).
- RT is never a substitute for an R0 resection, and re-resection should be considered to achieve negative margins in patients with prior suboptimal surgery, if feasible (IV,A).
- Pre- and postoperative RT achieve similar outcomes in local control and survival. Although both modalities are acceptable (I,A), preoperative RT would be preferable, especially in large tumours (II,C).
- Preoperative RT is administered 3 to 6 weeks before surgery with a dose of 50 Gy in 1.8–2 Gy/fraction. Postoperative RT requires higher doses, 50 Gy + 10–16 Gy, in R0 resections and larger fields of treatment. Higher radiation doses should be administered in R1 and R2 resections (II,IA).
3.2.5. Question: When Should Neoadjuvant Chemotherapy Be Administered? What Is the Recommended Regimen, and How Can It Be Combined with RT?
- Neoadjuvant chemotherapy (NACT), instead of an adjuvant one, is an option of treatment for patients with a high-risk (high grade, deep, and >5 cm or >60% risk of mortality at 10 years estimated by Sarculator) localized STS located in the extremities or trunk wall (I,A). It is specially indicated in large STSs that are marginally resectable or require very aggressive surgery without assuring clean margins (IIIA).
- Histotype also has to be considered for selecting patients for NACT, being indicated, but not restricted, in the following tumours: high-grade myxoid liposarcomas, leiomyosarcomas, synovial sarcomas, malignant peripheral nerve sheath tumours, and undifferentiated pleomorphic sarcomas (I,A). STS histotypes that are considered chemo-resistant (such as alveolar STSs or clear cell sarcomas) should not be treated with NACT (IV,A).
- A regimen including anthracycline and ifosfamide is recommended. The highest level of evidence supports 3 cycles of epirrubicin 60 mg/m2 on days 1–2 and ifosfamide 3 g/m2 on days 1–3 (I,A)
- The use of an alternative neoadjuvant histotype-driven therapy was not associated with a better DFS or OS (I,A). Only in high-grade myxoid liposarcomas could trabectedin be an alternative to the standard scheme in case of contraindication for anthracycline (II,B).
- The addition of radiation therapy to NACT could be considered, based upon institutional preference and expertise. The optimal approach has not been established, but concurrent epirrubicin–ifosfamide and RT at a total dose of 50 Gy is feasible (III,B).
3.2.6. Question: When Should Adjuvant Chemotherapy Be Administered? What Is the Recommended Schedule? How Should Postoperative Chemotherapy and Radiation Be Combined?
- Adjuvant chemotherapy constitutes a standard option of treatment for patients with high-grade, deep, and >5 cm localized STSs (I,A), especially if they are located in the extremities and trunk wall (II,A). Adjuvant therapy is not recommended for retroperitoneal and visceral sarcomas (II,B).
- However, close observation without chemotherapy could also be an option, especially in patients with a high risk of associated toxicity. The decision of whether to treat or not should be made in each individual case, after a discussion of potential benefits and risks with the patient (V,B).
- A regimen including anthracyclines and ifosfamide is recommended (II,A). For patients younger than 65, a regimen including high doses of both agents, such as that of Frustaci et al., is preferred (II,B). A total of three cycles of adjuvant chemotherapy seems to be enough (II,B). When adjuvant chemotherapy is administered, postoperative radiotherapy could be administered upon its completion (II,B).
3.2.7. Question: How Do We Treat an Isolated Local Relapse?
- Limb-sparing surgery is the treatment of choice when achieving adequate margins, if possible; otherwise, amputation should be recommended (III,B).
- Perioperative radiotherapy must be considered if not previously administrated (II,A). In selected cases, re-irradiation can be considered (IV,B).
3.2.8. Question: How Should Patients with STSs Be Followed After Their Primary Tumour Treatment?
- A follow-up after primary treatment should be performed at 3- to 6-month intervals for the first 2 years and at 6-month intervals until the 5th year (III,B), tailoring according to tumour grade and other tumour- and patient-related factors (IV,B). The role of follow-ups after five years is unclear (V,C).
- For local control, history-taking and physical examinations should be a part of every follow-up visit (III,B). MRI scans are the imaging test for local control. Ultrasonography can be an alternative in superficial or palpable tumours (IV,C).
- Thoracic imaging should be conducted at every follow-up visit; a chest X-ray or a thoracic CT are the imaging tests of choice (III,B).
- Routine brain or extra-thoracic imaging is not recommended, except if there is a clinical suspicion of metastatic disease in these locations (V,C). Spine or whole-body MRI may be considered in myxoid liposarcomas. FDG-PET is not recommended as the 1st choice for the detection of local relapses and pulmonary metastases, although it can be useful in selected cases for the detection of extrapulmonary visceral spread (V,C).
3.3. Section 3: Management of Metastatic Disease
3.3.1. Question: When Should Surgery Be Considered for Metastatic Patients? Should It Be Combined with Systemic Treatment?
- Metastasectomy should be considered, particularly in patients with pulmonary metastases, when the following criteria are met (IV,B):
- The primary tumour is controlled, without evidence of multiple metastatic disease at different organs.
- It should be considered in cases of metacronic pulmonary metastases, considering the interval between a surgical resection of the primary tumour and the development of metastases (>1 year) and the ability to achieve a complete resection.
- In rare histologies, without evidence of any benefit of systemic treatment, surgery should be considered the preferred option (IV,C).
- There is no evidence of the benefit of systemic therapy after a complete resection of metastasis; thus, it is not routinely recommended (IV,C).
3.3.2. Question: What Is the Role of Stereotactic Body Radiotherapy (SBRT) in Metastatic STSs?
- In oligometastatic patients with both pulmonary and extrapulmonary metastases, SBRT should be considered, particularly for lesions located in sites that are unresectable or where surgery would entail significant morbidity (III,B).
3.3.3. Question: What Is the Role of Ablative Focal Treatments Like Cryotherapy and Radiofrequency in Advanced/Metastatic Disease?
- In oligometastatic disease, imaging-guided percutaneous ablative focal treatments may be indicated in patients with small volume and bilateral pulmonary disease, in which a surgical resection is not an option; in cases of multiorgan involvement where radical treatment is planned for all sites, but there is a desire to avoid multiple major resections (IV,B); and in patients with locally advanced disease, who are unable to tolerate other treatments (IV,B).
3.3.4. Question: What Is the Best First-Line Option for Metastatic Patients Who Are Not Candidates to Surgery?
- Anthracycline monotherapy is the first-line standard treatment for most metastatic patients that are not candidates for local treatment (I,A).
- Combination therapy with anthracycline plus ifosfamide should be considered for patients who may benefit from tumour reduction for symptom palliation or improving resectability (I,B).
- Doxorubicin plus trabectedin should be considered for fit leiomyosarcoma patients (I,A).
- Other options could be considered for specific subtypes, such as high-dose ifosfamide for synovial sarcomas (III,A) or weekly paclitaxel for angiosarcomas (III,B).
3.3.5. Question: What Are the Alternative First-Line Therapies for Patients Who Are Not Eligible for Anthracyclines?
- Ifosfamide (III,A) and pegylated liposomal doxorubicin (IIB) are alternatives when anthracyclines are contraindicated because of prior treatment with anthracyclines in the neo/adjuvant setting or during the treatment of another cancer.
- Other options in this setting are approved drugs for a second line and beyond, like pazopanib, trabectedin, and DTIC–gemcitabine (see section on second lines) (IV).
- Metronomic oral cyclophosphamide plus prednisolone could be an alternative for patients >65 years (III,B).
3.3.6. Question: What Systemic Treatment Options Are Available for Advanced STS Patients in the Second and Subsequent Lines? In Which Cases and at What Point Should Each Option Be Administered?
- For low-grade or poorly chemotherapy-sensitive sarcomas, especially in asymptomatic patients, active surveillance may be a good option (IV,C).
- Second and further lines in advanced disease have a palliative objective and should mainly be considered in fit and symptomatic patients (I,B).
- There are several treatments in this setting, and mostly, the decision is based on histology, toxicity profile, and patient preferences (IV,C):
- -
- Trabectedin should be considered for the treatment of patients diagnosed with all sarcoma subtypes after progression or who are ineligible for doxorubicin and ifosfamide [IIB]. There is more evidence of drug activity in leiomyosarcomas and liposarcomas (L-sarcomas) [I, A]. In myxoid liposarcomas, it achieves a high response rate and should be given as the first choice until progression (IV,A).
- -
- Pazopanib is indicated for the treatment of pre-treated patients diagnosed with non-adipocytic sarcomas (I,A).
- -
- Eribulin constitutes an alternative in the treatment of liposarcomas after progression to anthracycline (I,A).
- -
- Although both combinations of gemcitabine with dacarbazine or docetaxel are active in the treatment of these tumours, the former has a better tolerance profile and is, therefore, the best option, being especially useful in leiomyosarcomas [II,B].
- -
- Ifosfamide at doses higher than 9 g/m2 in patients who have not received it in the first line, or at high doses (>10 g/m2), subsequent to standard doses constitutes an option, especially in synovial sarcomas [III,B].
- For the majority of STSs, there is no evidence that a particular sequence is better than another, and most patients with a good performance status will probably benefit from being exposed to the largest number of available drugs (IV,C).
3.3.7. Question: Is There Any Role for Immunotherapy in STSs?
- Immunotherapy with anti-PD1/PDL1 is not standard in any sarcoma subtype but can be strongly recommended in selected subtypes (III,B).
- Other sarcoma subtypes that have demonstrated signs of activity with anti-PD1/PDL1 in prospective studies are undifferentiated pleomorphic sarcomas, dedifferentiated chondrosarcomas, dedifferentiated chordomas, angiosarcomas, and epithelioid sarcomas. The option of clinical trials with anti-PD1/PDL1 is particularly recommended in these patients [126] (III,B).
- Adaptive immunomodulation with TCR-T cell therapy against sarcomas expressing neoantigens (NY-ESO1 and MAGEA4) as synovial sarcomas or myxoid liposarcomas is a promising approach, showing responses in up to 50% of cases. However, this is not a standard treatment, and inclusion in clinical trials is strongly recommended [127,128] (III,B).
3.4. Section 4: Therapeutic Considerations for Specific Subtypes of STSs
3.4.1. Question: What Are the Diagnostic and Therapeutic Peculiarities of Retroperitoneal Sarcomas (RPSs)?
- These patients should be managed by expert surgeons at referral centres with multidisciplinary units and oncology committees [III,A]. Chest–abdominal CT scan and extraperitoneal core needle biopsy are the procedures of choice for primary diagnosis [IV,A].
- An en bloc resection of the tumour, including adjacent organs, is the only curative treatment for RPSs [III,A].
- Postoperative radiotherapy after a complete gross resection should not be used in retroperitoneal sarcomas (RPSs) due to a lack of evidence of benefits [I,B]. Preoperative radiotherapy is not a standard treatment but could be considered in selected patients with low-grade liposarcomas in a multidisciplinary sarcoma tumour board [IV,D].
- Adjuvant and neoadjuvant chemotherapy should not be routinely employed in RPSs due to a lack of evidence of benefits [IV,D]. Neoadjuvant chemotherapy may be considered in the case of technically unresectable/borderline resectable RPSs and chemosensitive histologies [IV,B].
- Surgery of local recurrences should be considered, especially in cases with a disease-free interval of more than 6 months between an initial resection and recurrence [V,B].
- Treatment of advanced disease is similar to all other locations [II,B].
3.4.2. Question: What Is the Recommended Treatment for Desmoid Tumours?
- Active surveillance should be the first approach after diagnosis in the majority of patients (IIIA). Active treatments should only be considered in case of persistent progression or if the disease is located in a critical location (IIIA).
- In case of progression (radiological or clinical), surgery can be proposed if the tumour is located in the abdominal wall. For all other locations, medical treatment is usually preferred (IIIA).
- Medical treatment options, along with their evidence levels, are as follows: nirogacestat (I,A), sorafenib (I,A), pazopanib (II,B), imatinib (III,A), chemotherapy (III,A), and anti-hormonal therapies or NSAIDs (IV,B)
- Other treatments include cryoablation, radiotherapy, and surgery (IIIB), which should be evaluated in a case-by-case scenario.
3.4.3. Question: Which Peculiarities Does the Treatment of Gynaecological Sarcomas Have?
- Surgery: en bloc total hysterectomy and bilateral oophorectomy. Lymphadenectomy is not routinely indicated. Morcellation is not indicated (II,A). Bilateral oophorectomy could be omitted in stage I low-grade endometrial stromal sarcomas (III,B).
- Adjuvant chemotherapy is not the standard of care in stage I (II,D). It should be considered in stages II and III in a case-by-case multidisciplinary discussion (II,C). Adjuvant radiotherapy is generally not recommended (II,C).
- Adjuvant chemotherapy and first-line advanced disease: anthracycline-based chemotherapy (I,A).
- Stage IV low-grade endometrial stromal sarcomas: consider hormonal treatment as a first-line treatment (II,A).
3.4.4. Question: What Sarcoma Pathological/Molecular Histotypes Require a Specific Approach?
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dykewicz, C.A. Summary of the Guidelines for Preventing Opportunistic Infections among Hematopoietic Stem Cell Transplant Recipients. Clin. Infect. Dis. 2001, 33, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Nandra, R.; Forsberg, J.; Grimer, R. If your lump is bigger than a golf ball and growing, think Sarcoma. Eur. J. Surg. Oncol. (EJSO) 2015, 41, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.J.; Pynsent, P.B.; Grimer, R.J. Clinical features of soft tissue sarcomas. Ann. R. Coll. Surg. Engl. 2001, 83, 203–205. [Google Scholar]
- Dyrop, H.B.; Vedsted, P.; Safwat, A.; Maretty-Nielsen, K.; Hansen, B.H.; Jørgensen, P.H.; Baad-Hansen, T.; Keller, J. Alarm symptoms of soft-tissue and bone sarcoma in patients referred to a specialist center. Acta Orthop. 2014, 85, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Blay, J.Y.; Honore, C.; Stoeckle, E.; Meeus, P.; Jafari, M.; Gouin, F.; Anract, P.; Ferron, G.; Rochwerger, A.; Ropars, M.; et al. Surgery in reference centers improves survival of sarcoma patients: A nationwide study. Ann. Oncol. 2019, 30, 1143–1153. [Google Scholar] [CrossRef]
- Martin-Broto, J.; Hindi, N.; Cruz, J.; Martinez-Trufero, J.; Valverde, C.; De Sande, L.M.; Sala, A.; Bellido, L.; De Juan, A.; Rubió-Casadevall, J.; et al. Relevance of Reference Centers in Sarcoma Care and Quality Item Evaluation: Results from the Prospective Registry of the Spanish Group for Research in Sarcoma (GEIS). Oncologist 2018, 24, e338–e346. [Google Scholar] [CrossRef]
- Ray-Coquard, I.; Thiesse, P.; Ranchère-Vince, D.; Chauvin, F.; Bobin, J.-Y.; Sunyach, M.-P.; Carret, J.-P.; Mongodin, B.; Marec-Bérard, P.; Philip, T.; et al. Conformity to clinical practice guidelines, multidisciplinary management and outcome of treatment for soft tissue sarcomas. Ann. Oncol. 2004, 15, 307–315. [Google Scholar] [CrossRef]
- van Rijswijk, C.S.P.; Geirnaerdt, M.J.A.; Hogendoorn, P.C.W.; Taminiau, A.H.M.; van Coevorden, F.; Zwinderman, A.H.; Pope, T.L.; Bloem, J.L. Soft-tissue tumors: Value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 2004, 233, 493–502. [Google Scholar] [CrossRef]
- Hung, E.H.Y.; Griffith, J.F.; Yip, S.W.Y.; Ivory, M.; Lee, J.C.H.; Ng, A.W.H.; Tong, C.S.L. Accuracy of ultrasound in the characterization of superficial soft tissue tumors: A prospective study. Skelet. Radiol. 2020, 49, 883–892. [Google Scholar] [CrossRef]
- Gielen, J.L.M.A.; De Schepper, A.M.; Vanhoenacker, F.; Parizel, P.M.; Wang, X.L.; Sciot, R.; Weyler, J. Accuracy of MRI in characterization of soft tissue tumors and tumor-like lesions. A prospective study in 548 patients. Eur. Radiol. 2004, 14, 2320–2330. [Google Scholar] [CrossRef]
- Holzapfel, K.; Regler, J.; Baum, T.; Rechl, H.; Specht, K.; Haller, B.; von Eisenhart-Rothe, R.; Gradinger, R.; Rummeny, E.J.; Woertler, K. Local Staging of Soft-Tissue Sarcoma: Emphasis on Assessment of Neurovascular Encasement—Value of MR Imaging in 174 Confirmed Cases. Radiology 2015, 275, 501–509. [Google Scholar] [CrossRef]
- Crombé, A.; Marcellin, P.-J.; Buy, X.; Stoeckle, E.; Brouste, V.; Italiano, A.; Le Loarer, F.; Kind, M. Soft-Tissue Sarcomas: Assessment of MRI Features Correlating with Histologic Grade and Patient Outcome. Radiology 2019, 291, 710–721. [Google Scholar] [CrossRef]
- White, L.M.; Wunder, J.S.; Bell, R.S.; O’sUllivan, B.; Catton, C.; Ferguson, P.; Blackstein, M.; Kandel, R.A. Histologic assessment of peritumoral edema in soft tissue sarcoma. Int. J. Radiat. Oncol. 2005, 61, 1439–1445. [Google Scholar] [CrossRef]
- Zhao, F.; Ahlawat, S.; Farahani, S.J.; Weber, K.L.; Montgomery, E.A.; Carrino, J.A.; Fayad, L.M. Can MR Imaging Be Used to Predict Tumor Grade in Soft-Tissue Sarcoma? Radiology 2014, 272, 192–201. [Google Scholar] [CrossRef]
- Machado, I.; Cruz, J.; Righi, A.; Gambarotti, M.; Ferrari, C.; Ruengwanichayakun, P.; Giner, F.; Rausell, N.; Lavernia, J.; Sugita, S.; et al. Ki-67 immunoexpression and radiological assessment of necrosis improves accuracy of conventional and modified core biopsy systems in predicting the final grade assigned to adult-soft tissue sarcomas. An international collaborative study. Pathol.-Res. Pract. 2021, 225, 153562. [Google Scholar] [CrossRef]
- Casali, P.G.; Abecassis, N.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brodowicz, T.; Broto, J.; et al. Soft tissue and visceral sarcomas: ESMO–EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. S4), iv51–iv67. [Google Scholar] [CrossRef] [PubMed]
- Ray-Coquard, I.; Ranchère-Vince, D.; Thiesse, P.; Ghesquières, H.; Biron, P.; Sunyach, M.-P.; Rivoire, M.; Lancry, L.; Méeus, P.; Sebban, C.; et al. Evaluation of core needle biopsy as a substitute to open biopsy in the diagnosis of soft-tissue masses. Eur. J. Cancer 2003, 39, 2021–2025. [Google Scholar] [CrossRef]
- Welker, J.A.; Henshaw, R.M.; Jelinek, J.; Shmookler, B.M.; Malawer, M.M. The percutaneous needle biopsy is safe and recommended in the diagnosis of musculoskeletal masses. Cancer 2000, 89, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Birgin, E.; Yang, C.; Hetjens, S.; Reissfelder, C.; Hohenberger, P.; Rahbari, N.N. Core needle biopsy versus incisional biopsy for differentiation of soft-tissue sarcomas: A systematic review and meta-analysis. Cancer 2020, 126, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Almond, L.M.; Tirotta, F.; Tattersall, H.; Hodson, J.; Cascella, T.; Barisella, M.; Marchianò, A.; Greco, G.; Desai, A.; Ford, S.J.; et al. Diagnostic accuracy of percutaneous biopsy in retroperitoneal sarcoma. Br. J. Surg. 2019, 106, 395–403. [Google Scholar] [CrossRef]
- Errani, C.; Traina, F.; Perna, F.; Calamelli, C.; Faldini, C. Current concepts in the biopsy of musculo-skeletal tumors. Sci. World J. 2013, 2013, 538152. [Google Scholar] [CrossRef]
- Kubo, T.; Furuta, T.; Johan, M.P.; Sakuda, T.; Ochi, M.; Adachi, N. A meta-analysis supports core needle biopsy by radiologists for better histological diagnosis in soft tissue and bone sarcomas. Medicine 2018, 97, e11567. [Google Scholar] [CrossRef] [PubMed]
- Traina, F.; Errani, C.; Toscano, A.; Pungetti, C.; Fabbri, D.; Mazzotti, A.; Donati, D.; Faldini, C. Current concepts in the bi-opsy of musculoskeletal tumors: AAOS exhibit selection. J. Bone Joint Surg. Am. 2015, 97, e7. [Google Scholar] [CrossRef]
- Le, H.B.; Lee, S.T.; Munk, P.L. Image-Guided Musculoskeletal Biopsies. Semin. Interv. Radiol. 2010, 27, 191–198. [Google Scholar] [CrossRef]
- Kiatisevi, P.; Thanakit, V.; Sukunthanak, B.; Boonthatip, M.; Bumrungchart, S.; Witoonchart, K. Computed Tomography-Guided Core Needle Biopsy versus Incisional Biopsy in Diagnosing Musculoskeletal Lesions. J. Orthop. Surg. 2013, 21, 204–208. [Google Scholar] [CrossRef]
- Pohlig, F.; Kirchhoff, C.; Lenze, U.; Schauwecker, J.; Burgkart, R.; Rechl, H.; von Eisenhart-Rothe, R. Percutaneous core needle biopsy versus open biopsy in diagnostics of bone and soft tissue sarcoma: A retrospective study. Eur. J. Med. Res. 2012, 17, 29. [Google Scholar] [CrossRef]
- Berger-Richardson, D.; Swallow, C.J. Needle tract seeding after percutaneous biopsy of sarcoma: Risk/benefit considerations. Cancer 2016, 123, 560–567. [Google Scholar] [CrossRef]
- Hornick, J.L. Limited biopsies of soft tissue tumors: The contemporary role of immunohistochemistry and molecular diagnostics. Mod. Pathol. 2019, 32, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Ng, V.Y.; Thomas, K.; Crist, M.; Wakely, P.E.; Mayerson, J. Fine Needle Aspiration for Clinical Triage of Extremity Soft Tissue Masses. Clin. Orthop. Relat. Res. 2010, 468, 1120–1128. [Google Scholar] [CrossRef]
- Rekhi, B.; Kattoor, J.; Jennifer, A.; Govindarajan, N.; Uppin, S.; Jambhekar, N.A.; Jojo, A.; Chatterjee, U.; Banerjee, D.; Singh, P. Grossing and re-porting of a soft tissue tumor specimen in surgical pathology: Rationale, current evidence, and recommenda-tions. Indian J. Cancer 2021, 58, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Machado, I.; Pozo, J.J.; Marcilla, D.; Cruz, J.; Tardío, J.C.; Astudillo, A.; Bagué, S. Protocol for the study of bone tumours and standardization of pathology reports. Rev. Esp. Patol. 2017, 50, 34–44. [Google Scholar]
- Fisher, C. Standards and datasets for reporting cancers. In Dataset for Cancer Histopathology Reports on Soft Tissue Sarcomas, 5th ed.; Royal College of Pathologists: Sydney, Australia, 2022. [Google Scholar]
- Protocol for the Ex-Amination of Biopsy Specimens from Patients with Soft Tissue Tumors. Version: Soft Tissue Biopsy 4.0.2.0. College of American Pathologists (CAP), 2020. Available online: https://www.cap.org/cancerprotocols (accessed on 19 August 2025).
- Fletcher, C.D.M.; Bridge, J.A.; Hogendoorn, P.C.W.; Mertens, F. (Eds.) WHO Classification of Tumours of Soft Tissue and Bone, 5th ed.; IARC Press: Lyon, France, 2020. [Google Scholar]
- Fletcher, C.D.M.; Lazar, A.J.; Singer, S.; Blay, J.W.; Gronchi, A.; Pollock, R.E.; Mertens, F.; Bacchi, C.E.; Miccio, A.; Dickson, B.C.; et al. Introduction. In WHO Classification of Tumours of Soft Tissue and Bone, 5th ed.; World Health Organization (WHO) Classification of Tumours Editorial Board, Ed.; IARC Press: Lyon, France, 2020; pp. 6–12. [Google Scholar]
- Coindre, J.-M. Grading of soft tissue sarcomas: Review and update. Arch. Pathol. Lab. Med. 2006, 130, 1448–1453. [Google Scholar] [CrossRef] [PubMed]
- Guillou, L.; Coindre, J.M.; Bonichon, F.; Nguyen, B.B.; Terrier, P.; Collin, F.; OVilain, M.; Mandard, A.M.; Le Doussal, V.; Leroux, A.; et al. Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J. Clin. Oncol. 1997, 15, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Davion, S.; Bertsch, E.C.; Omar, I.; Nayar, R.; Laskin, W.B. Federation Nationale des Centers de Lutte Contre le Cancer grading of soft tissue sarcomas on needle core biopsies using surrogate markers. Hum. Pathol. 2016, 56, 147–154. [Google Scholar] [CrossRef]
- Deyrup, A.T.; Weiss, S.W. Grading of soft tissue sarcomas: The challenge of providing precise information in an imprecise world. Histopathology 2005, 48, 42–50. [Google Scholar] [CrossRef]
- Martín-Broto, J.; Reichardt, P.; Jones, R.L.; Stacchiotti, S. Different approaches to advanced soft tissue sarcomas depending on treatment line, goal of therapy and histological subtype. Expert Rev. Anticancer. Ther. 2020, 20, 15–28. [Google Scholar] [CrossRef]
- Blay, J.-Y.; Sleijfer, S.; Schöffski, P.; Kawai, A.; Brodowicz, T.; Demetri, G.D.; Maki, R.G. International expert opinion on patient-tailored management of soft tissue sarcomas. Eur. J. Cancer 2014, 50, 679–689. [Google Scholar] [CrossRef]
- Carneiro, A.; Bendahl, P.; Engellau, J.; Domanski, H.A.; Fletcher, C.D.; Rissler, P.; Rydholm, A.; Nilbert, M. A prognostic model for soft tissue sarcoma of the extremities and trunk wall based on size, vascular invasion, necrosis, and growth pattern. Cancer 2010, 117, 1279–1287. [Google Scholar] [CrossRef]
- Engellau, J.; Bendahl, P.; Persson, A.; Domanski, H.; Akerman, M.; Gustafson, P.; Alvegard, T.; Nilbert, M.; Rydholm, A. Improved prognostication in soft tissue sarcoma: Independent information from vascular invasion, necrosis, growth pattern, and immunostaining using whole-tumor sections and tissue microarrays. Hum. Pathol. 2005, 36, 994–1002. [Google Scholar] [CrossRef]
- O’DOnnell, P.W.; Griffin, A.M.; Eward, W.C.; Sternheim, A.; Catton, C.N.; Chung, P.W.; O’SUllivan, B.; Ferguson, P.C.; Wunder, J.S. The effect of the setting of a positive surgical margin in soft tissue sarcoma. Cancer 2014, 120, 2866–2875. [Google Scholar] [CrossRef]
- Gronchi, A.; Casali, P.; Mariani, L.; Miceli, R.; Fiore, M.; Vullo, S.L.; Bertulli, R.; Collini, P.; Lozza, L.; Olmi, P.; et al. Status of Surgical Margins and Prognosis in Adult Soft Tissue Sarcomas of the Extremities: A Series of Patients Treated at a Single Institution. J. Clin. Oncol. 2005, 23, 96–104. [Google Scholar] [CrossRef]
- Wardelmann, E.; Haas, R.L.; Bovee, J.V.; Terrier, P.; Lazar, A.; Messiou, C.; LePechoux, C.; Hartmann, W.; Collin, F.; Fisher, C.; et al. Evaluation of response after neoadjuvant treatment in soft tissue sarcomas; the European Organization for Research and Treatment of Cancer–Soft Tissue and Bone Sarcoma Group (EORTC–STBSG) recommendations for pathological examination and reporting. Eur. J. Cancer 2016, 53, 84–95. [Google Scholar] [CrossRef]
- Schaefer, I.M.; Hornick, J.L.; Barysauskas, C.M.; Raut, C.P.; Patel, S.A.; Royce, T.J.; Fletcher, C.D.; Baldini, E.H. Histologic Ap-pearance After Preoperative Radiation Therapy for Soft Tissue Sarcoma: Assessment of the European Organi-zation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group Response Score. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 375–383. [Google Scholar] [CrossRef]
- Sawamura, C.; Matsumoto, S.; Shimoji, T.; Ae, K.; Okawa, A. Lymphadenectomy and Histologic Subtype Affect Overall Survival of Soft Tissue Sarcoma Patients with Nodal Metastases. Clin. Orthop. Relat. Res. 2013, 471, 926–931. [Google Scholar] [CrossRef]
- Schaefer, I.-M.; Cote, G.M.; Hornick, J.L. Contemporary Sarcoma Diagnosis, Genetics, and Genomics. J. Clin. Oncol. 2018, 36, 101–110. [Google Scholar] [CrossRef]
- Kallen, M.E.; Hornick, J.L. The 2020 WHO Classification: What’s New in Soft Tissue Tumor Pathology? Am. J. Surg. Pathol. 2021, 45, e1–e23. [Google Scholar] [CrossRef]
- Choi, J.H.; Ro, J.Y. The 2020 WHO Classification of Tumors of Soft Tissue: Selected Changes and New Entities. Adv. Anat. Pathol. 2020, 28, 44–58. [Google Scholar] [CrossRef]
- Wexler, L.H.; Ladanyi, M. Diagnosing Alveolar Rhabdomyosarcoma: Morphology Must Be Coupled with Fusion Confirmation. J. Clin. Oncol. 2010, 28, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.; Missiaglia, E.; Pritchard-Jones, K.; Oberlin, O.; Shipley, J.M.; Delattre, O.; De Reyniès, A.; Pierron, G.; Thuille, B.; Palenzuela, G.; et al. Fusion Gene-Negative Alveolar Rhabdomyosarcoma is Clinically and Molecularly Indistinguishable from Embryonal Rhabdomyosarcoma. J. Clin. Oncol. 2010, 28, 2151–2158. [Google Scholar] [CrossRef]
- Chibon, F.; Lagarde, P.; Salas, S.; Pérot, G.; Brouste, V.; Tirode, F.; Lucchesi, C.; de Reynies, A.; Kauffmann, A.; Bui, B.; et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat. Med. 2010, 16, 781–787. [Google Scholar] [CrossRef]
- Lagarde, P.; Przybyl, J.; Brulard, C.; Pérot, G.; Pierron, G.; Delattre, O.; Sciot, R.; Wozniak, A.; Schöffski, P.; Terrier, P.; et al. Chromosome Instability Accounts for Reverse Metastatic Outcomes of Pediatric and Adult Synovial Sarcomas. J. Clin. Oncol. 2013, 31, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.; Antonescu, C.; Bjerkehagen, B.; Bovée, J.; Boye, K.; Chacón, M.; Tos, A.D.; Desai, J.; Fletcher, J.; Gelderblom, H.; et al. Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: Expert recommendations from the World Sarcoma Network. Ann. Oncol. 2020, 31, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Dickson, B.C.; Swanson, D. Targeted RNA sequencing: A routine ancillary technique in the diagnosis of bone and soft tissue neoplasms. Genes, Chromosom. Cancer 2018, 58, 75–87. [Google Scholar] [CrossRef]
- Marino-Enriquez, A. Advances in the Molecular Analysis of Soft Tissue Tumors and Clinical Im-plications. Surg. Pathol. Clin. 2015, 8, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Italiano, A. Is There Value in Molecular Profiling of Soft-Tissue Sarcoma? Curr. Treat. Options Oncol. 2018, 19, 78. [Google Scholar] [CrossRef]
- Schaefer, I.-M.; Hong, K.; Kalbasi, A. How Technology Is Improving the Multidisciplinary Care of Sarcoma. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 445–462. [Google Scholar] [CrossRef]
- Visgauss, J.D.; Wilson, D.A.; Perrin, D.L.; Colglazier, R.; French, R.; Mattei, J.-C.; Griffin, A.M.; Wunder, J.S.; Ferguson, P.C. Staging and Surveillance of Myxoid Liposarcoma: Follow-up Assessment and the Metastatic Pattern of 169 Patients Suggests Inadequacy of Current Practice Standards. Ann. Surg. Oncol. 2021, 28, 7903–7911. [Google Scholar] [CrossRef] [PubMed]
- Gouin, F.; Renault, A.; Bertrand-Vasseur, A.; Bouilleau, L.; Crenn, V.; Rosset, P.; Tallegas, M.; Samargandi, R.; Le Nail, L.-R. Early detection of multiple bone and extra-skeletal metastases by body magnetic resonance imaging (BMRI) after treatment of Myxoid/Round-Cell Liposarcoma (MRCLS). Eur. J. Surg. Oncol. (EJSO) 2019, 45, 2431–2436. [Google Scholar] [CrossRef] [PubMed]
- Lazarides, A.L.; Kerr, D.L.; Nussbaum, D.P.; Kreulen, R.T.; Somarelli, J.A.; Blazer, D.G., III; Brigman, B.E.; Eward, W.C. Soft Tissue Sarcoma of the Extremities: What Is the Value of Treating at High-volume Centers? Clin. Orthop. Relat. Res. 2019, 477, 718–727. [Google Scholar] [CrossRef]
- Stoeckle, E.; Coindre, J.M.; Kind, M.; Kantor, G.; Bui, B.N. Evaluating surgery quality in soft tissue sar-coma. Recent Results Cancer Res. 2009, 179, 229–242. [Google Scholar]
- Fujiwara, T.; Stevenson, J.; Parry, M.; Tsuda, Y.; Kaneuchi, Y.; Jeys, L. The adequacy of resection margin for non-infiltrative soft-tissue sarcomas. Eur. J. Surg. Oncol. (EJSO) 2021, 47, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.A.G.; Sildenikova, D.P.; Payro, J.M.S.; Porté, J.A.P.; Suñe, C.H.; Ojeda, A.L.; Vidal, J.M.; Dewever, M.; Lopez, C.C.; Segu, J.O.B.; et al. Indications of Microsurgery in Soft Tissue Sarcomas. J. Reconstr. Microsurg. 2012, 28, 619–626. [Google Scholar] [CrossRef]
- Stevenson, M.G.; Musters, A.H.; Geertzen, J.H.; van Leeuwen, B.L.; Hoekstra, H.J.; Been, L.B. Amputations for extremity soft tissue sarcoma in an era of limb salvage treatment: Local control and survival. J. Surg. Oncol. 2017, 117, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Malek, F.; Somerson, J.S.; Mitchel, S.; Williams, R.P. Does Limb-salvage Surgery Offer Patients Better Quality of Life and Functional Capacity than Amputation? Clin. Orthop. Relat. Res. 2012, 470, 2000–2006. [Google Scholar] [CrossRef]
- Dadras, M.; Koepp, P.; Wallner, C.; Wagner, J.M.; Sogorski, A.; Lehnhardt, M.; Harati, K.; Behr, B. Predictors of oncologic outcome in patients with and without flap reconstruction after extremity and truncal soft tissue sarcomas. J. Plast. Reconstr. Aesthetic Surg. 2020, 73, 1239–1252. [Google Scholar] [CrossRef]
- Viñals, J.M.V.; Sidelnikova, D.P.; Payro, J.M.S.; Porte, J.A.P.; Ojeda, A.B.L.; Suñe, M.C.H.; del Muro, J.G.; Borbalas, A.L.; Blavia, F.P.; Garriga, F.J.S.; et al. The role of plastic surgery in sarcoma treatment. Clin. Transl. Oncol. 2011, 13, 102–108. [Google Scholar] [CrossRef]
- Hughes, T.; Thomas, J. Sarcoma metastases due to iatrogenic implantation. Eur. J. Surg. Oncol. (EJSO) 2000, 26, 50–52. [Google Scholar] [CrossRef]
- Pisters, P.W.; Harrison, L.B.; Leung, D.H.; Woodruff, J.M.; Casper, E.S.; Brennan, M.F. Long-term results of a prospective randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J. Clin. Oncol. 1996, 14, 859–868. [Google Scholar] [CrossRef]
- Yang, J.C.; Chang, A.E.; Baker, A.R.; Sindelar, W.F.; Danforth, D.N.; Topalian, S.L.; DeLaney, T.; Glatstein, E.; Steinberg, S.M.; Merino, M.J.; et al. Randomized pro-spective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the ex-tremity. J. Clin. Oncol. 1998, 16, 197–203. [Google Scholar] [CrossRef]
- Beane, J.D.; Yang, J.C.; White, D.; Steinberg, S.M.; Rosenberg, S.A.; Rudloff, U. Efficacy of adjuvant radi-ation therapy in the treatment of soft tissue sarcoma of the extremity: 20-year follow-up of a randomized pro-spective trial. Ann. Surg. Oncol. 2014, 21, 2484–2489. [Google Scholar] [CrossRef] [PubMed]
- Albertsmeier, M.; Rauch, A.; Roeder, F.; Hasenhütl, S.; Pratschke, S.; Kirschneck, M.; Gronchi, A.; Jebsen, N.L.; Cassier, P.A.; Sargos, P.; et al. External Beam Radiation Therapy for Resectable Soft Tissue Sarcoma: A Systematic Review and Meta-Analysis. Ann. Surg. Oncol. 2017, 25, 754–767. [Google Scholar] [CrossRef]
- O’Sullivan, B.; Davis, A.M.; Turcotte, R.; Bell, R.; Catton, C.; Chabot, P.; Wunder, J.; Kandel, R.; Goddard, K.; Sadura, A.; et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: A randomised trial. Lancet 2002, 359, 2235–2241. [Google Scholar] [CrossRef]
- Gingrich, A.A.; Bateni, S.B.; Monjazeb, A.M.; Darrow, M.A.; Thorpe, S.W.; Kirane, A.R.; Bold, R.J.; Canter, R.J. Neoadjuvant Radiotherapy is Associated with R0 Resection and Improved Survival for Patients with Extremity Soft Tissue Sarcoma Undergoing Surgery: A National Cancer Database Analysis. Ann. Surg. Oncol. 2017, 24, 3252–3263. [Google Scholar] [CrossRef]
- Al Yami, A.; Griffin, A.M.; Ferguson, P.C.; Catton, C.N.; Chung, P.W.; Bell, R.S.; Wunder, J.S.; O’SUllivan, B. Positive Surgical Margins in Soft Tissue Sarcoma Treated with Preoperative Radiation: Is a Postoperative Boost Necessary? Int. J. Radiat. Oncol. 2010, 77, 1191–1197. [Google Scholar] [CrossRef]
- Gortzak, E.; Azzarelli, A.; Buesa, J.; Bramwell, V.; van Coevorden, F.; van Geel, A.; Ezzat, A.; Santoro, A.; Oosterhuis, J.; van Glabbeke, M.; et al. A randomised phase II study on neo-adjuvant chemotherapy for ‘high-risk’ adult soft-tissue sarcoma. Eur. J. Cancer 2001, 37, 1096–1103. [Google Scholar] [CrossRef]
- Gronchi, A.; Frustaci, S.; Mercuri, M.; Martin, J.; Lopez-Pousa, A.; Verderio, P.; Mariani, L.; Valagussa, P.; Miceli, R.; Stacchiotti, S.; et al. Short, full-dose ad-juvant chemotherapy in high-risk adult soft tissue sarcomas: A randomized clinical trial from the Italian Sar-coma Group and the Spanish Sarcoma Group. J. Clin. Oncol. 2012, 30, 850–856. [Google Scholar] [CrossRef]
- Gronchi, A.; Palmerini, E.; Quagliuolo, V.; Martin Broto, J.; Lopez Pousa, A.; Grignani, G.; Brunello, A.; Blay, J.Y.; Tendero, O.; Diaz Beveridge, R.; et al. Neoad-juvant Chemotherapy in High-Risk Soft Tissue Sarcomas: Final Results of a Randomized Trial from Italian (ISG), Spanish (GEIS), French (FSG), and Polish (PSG) Sarcoma Groups. J. Clin. Oncol. 2020, 38, 2178–2186. [Google Scholar] [CrossRef]
- Kraybill, W.G.; Harris, J.; Spiro, I.J.; Ettinger, D.S.; DeLaney, T.F.; Blum, R.H.; Lucas, D.R.; Harmon, D.C.; Letson, G.D.; Eisenberg, B. Phase II Study of Neoadjuvant Chemotherapy and Radiation Therapy in the Management of High-Risk, High-Grade, Soft Tissue Sarcomas of the Extremities and Body Wall: Radiation Therapy Oncology Group Trial 9514. J. Clin. Oncol. 2006, 24, 619–625. [Google Scholar] [CrossRef]
- Palassini, E.; Ferrari, S.; Verderio, P.; De Paoli, A.; Broto, J.M.; Quagliuolo, V.; Comandone, A.; Sangalli, C.; Palmerini, E.; Lopez-Pousa, A.; et al. Feasibility of Preoperative Chemotherapy with or Without Radiation Therapy in Localized Soft Tissue Sarcomas of Limbs and Superficial Trunk in the Italian Sarcoma Group/Grupo Español de Investigación en Sarcomas Randomized Clinical Trial: Three Versus Five Cycles of Full-Dose Epirubicin Plus Ifosfamide. J. Clin. Oncol. 2015, 33, 3628–3634. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, N.; Colterjohn, N.; Farrokhyar, F.; Tozer, R.; Figueredo, A.; Ghert, M. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer 2008, 113, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Sarcoma Meta-Analysis Collaboration. Adjuvant chemotherapy for localised resectable soft-tissue sarcoma of adults: Meta-analysis of in-dividual data. Lancet 1997, 350, 1647–1654. [Google Scholar] [CrossRef]
- Woll, P.J.; Reichardt, P.; Le Cesne, A.; Bonvalot, S.; Azzarelli, A.; Hoekstra, H.J.; Leahy, M.; Van Coevorden, F.; Verweij, J.; Hogendoorn, P.C.; et al. Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931): A multicentre randomised controlled trial. Lancet Oncol. 2012, 13, 1045–1054. [Google Scholar] [CrossRef]
- Eilber, F.C.; Brennan, M.F.; Riedel, E.; Alektiar, K.M.; Antonescu, C.R.; Singer, S. Prognostic Factors for Survival in Patients with Locally Recurrent Extremity Soft Tissue Sarcomas. Ann. Surg. Oncol. 2005, 12, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Stojadinovic, A.; Jaques, D.P.; Leung, D.H.; Healey, J.H.; Brennan, M.F. Amputation for recurrent soft tissue sarcoma of the extremity: Indications and outcome. Ann. Surg. Oncol. 2001, 8, 509–518. [Google Scholar] [CrossRef]
- Dammerer, D.; VANBeeck, A.; Schneeweiss, V.; Schwabegger, A. Follow-up Strategies for Primary Extremity Soft-tissue Sarcoma in Adults: A Systematic Review of the Published Literature. In Vivo 2020, 34, 3057–3068. [Google Scholar] [CrossRef]
- van Praag, V.M.; Rueten-Budde, A.J.; Jeys, L.M.; Laitinen, M.K.; Pollock, R.; Aston, W.; van der Hage, J.A.; Dijkstra, P.D.S.; Ferguson, P.C.; Griffin, A.M.; et al. A prediction model for treatment decisions in high-grade extremity soft-tissue sarcomas: Personalised sarcoma care (PERSARC). Eur. J. Cancer 2017, 83, 313–323. [Google Scholar] [CrossRef]
- Puri, A.; Gulia, A.; Hawaldar, R.; Ranganathan, P.; Badwe, R.A. Does Intensity of Surveillance Affect Survival After Surgery for Sarcomas? Results of a Randomized Noninferiority Trial. Clin. Orthop. Relat. Res. 2014, 472, 1568–1575. [Google Scholar] [CrossRef]
- Smolle, M.A.; van de Sande, M.; Callegaro, D.; Wunder, J.; Hayes, A.; Leitner, L.; Bergovec, M.; Tunn, P.-U.; van Praag, V.; Fiocco, M.; et al. Individualizing Follow-Up Strategies in High-Grade Soft Tissue Sarcoma with Flexible Parametric Competing Risk Regression Models. Cancers 2019, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Porter, G.A.; Cantor, S.B.; Ahmad, S.A.; Lenert, J.T.; Ballo, M.T.; Hunt, K.K.; Feig, B.W.; Patel, S.R.; Benjamin, R.S.; Pollock, R.E.; et al. Cost-effectiveness of staging computed tomography of the chest in patients with T2 soft tissue sarcomas. Cancer 2001, 94, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Royce, T.J.; Punglia, R.S.; Chen, A.B.; Patel, S.A.; Thornton, K.A.; Raut, C.P.; Baldini, E.H. Cost–Effectiveness of Surveillance for Distant Recurrence in Extremity Soft Tissue Sarcoma. Ann. Surg. Oncol. 2017, 24, 3264–3270. [Google Scholar] [CrossRef]
- Potter, D.A.; Glenn, J.; Kinsella, T.; Glatstein, E.; Lack, E.E.; Restrepo, C.; White, D.E.; Seipp, C.A.; Wesley, R.; Rosenberg, S.A. Patterns of recurrence in patients with high-grade soft-tissue sarcomas. J. Clin. Oncol. 1985, 3, 353–366. [Google Scholar] [CrossRef]
- Billingsley, K.G.; Burt, M.E.; Jara, E.; Ginsberg, R.J.; Woodruff, J.M.; Leung, D.H.; Brennan, M.F. Pulmonary metas-tases from soft tissue sarcoma: Analysis of patterns of diseases and postmetastasis survival. Ann. Surg. 1999, 229, 602–610; discussion 610–612. [Google Scholar] [CrossRef] [PubMed]
- Blackmon, S.H.; Shah, N.; Roth, J.A.; Correa, A.M.; Vaporciyan, A.A.; Rice, D.C.; Hofstetter, W.; Walsh, G.L.; Benjamin, R.; Pollock, R.; et al. Resection of pulmo-nary and extrapulmonary sarcomatous metastases is associated with long-term survival. Ann. Thorac. Surg. 2009, 88, 877–884;discussion 884–885. [Google Scholar] [CrossRef]
- Smith, R.; Pak, Y.; Kraybill, W.; Kane, J., 3rd. Factors associated with actual long-term survival following soft tissue sarcoma pulmonary metastasectomy. Eur. J. Surg. Oncol. (EJSO) 2009, 35, 356–361. [Google Scholar] [CrossRef]
- Canter, R.J.; Qin, L.X.; Downey, R.J.; Brennan, M.F.; Singer, S.; Maki, R.G. Perioperative chemotherapy in patients undergoing pulmonary resection for metastatic soft-tissue sarcoma of the extremity: A retrospective analysis. Cancer 2007, 110, 2050–2060. [Google Scholar] [CrossRef]
- Baumann, B.C.; Bernstein, K.D.A.; DeLaney, T.F.; Simone, C.B.; Kolker, J.D.; Choy, E.; Levin, W.P.; Weber, K.L.; Muniappan, A.; Berman, A.T.; et al. Multi-institutional analysis of stereotactic body radiotherapy for sarcoma pulmonary metastases: High rates of local control with favorable toxicity. J. Surg. Oncol. 2020, 122, 877–883. [Google Scholar] [CrossRef]
- Grilley-Olson, J.E.; Webber, N.P.; Demos, D.S.; Christensen, J.D.; Kirsch, D.G. Multidisciplinary Management of Oligometastatic Soft Tissue Sarcoma. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 939–948. [Google Scholar] [CrossRef]
- Folkert, M.R.; Bilsky, M.H.; Tom, A.K.; Oh, J.H.; Alektiar, K.M.; Laufer, I.; Tap, W.D.; Yamada, Y. Outcomes and Toxicity for Hypofractionated and Single-Fraction Image-Guided Stereotactic Radiosurgery for Sarcomas Metastasizing to the Spine. Int. J. Radiat. Oncol. 2014, 88, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Koelblinger, C.; Strauss, S.; Gillams, A. Outcome after Radiofrequency Ablation of Sarcoma Lung Metastases. Cardiovasc. Interv. Radiol. 2013, 37, 147–153. [Google Scholar] [CrossRef]
- Nakamura, T.; Matsumine, A.; Yamakado, K.; Matsubara, T.; Takaki, H.; Nakatsuka, A.; Takeda, K.; Abo, D.; Shimizu, T.; Uchida, A. Lung radiofre-quency ablation in patients with pulmonary metastases from musculoskeletal sarcomas [corrected]. Cancer 2009, 115, 3774–3781. [Google Scholar] [CrossRef]
- Sato, T.; Iguchi, T.; Hiraki, T.; Gobara, H.; Fujiwara, H.; Sakurai, J.; Matsui, Y.; Mitsuhashi, T.; Soh, J.; Toyooka, S.; et al. Radiofrequency ablation of pulmonary metastases from sarcoma: Single-center retrospective evaluation of 46 patients. Jpn. J. Radiol. 2016, 35, 61–67. [Google Scholar] [CrossRef]
- Bourgouin, P.P.; Wrobel, M.M.; Mercaldo, N.D.; Murphy, M.C.; Leppelmann, K.S.; Levesque, V.M.; Muniappan, A.; Silverman, S.G.; Shepard, J.O.; Shyn, P.B.; et al. Comparison of Percutaneous Image-Guided Microwave Ablation and Cryoablation for Sarcoma Lung Metastases: A 10-Year Experience. Am. J. Roentgenol. 2022, 218, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Yamakado, K.; Matsumine, A.; Nakamura, T.; Nakatsuka, A.; Takaki, H.; Matsubara, T.; Asanuma, K.; Sudo, A.; Sugimura, Y.; Sakuma, H. Radiofrequency ablation for the treatment of recurrent bone and soft-tissue sarcomas in non-surgical candidates. Int. J. Clin. Oncol. 2013, 19, 955–962. [Google Scholar] [CrossRef]
- Hirbe, A.C.; Jennings, J.; Saad, N.; Giardina, J.D.; Tao, Y.; Luo, J.; Berry, S.; Toeniskoetter, J.; Van Tine, B.A. A Phase II Study of Tumor Ablation in Patients with Metastatic Sarcoma Stable on Chemotherapy. Oncologist 2018, 23, 760–761, e73–e76. [Google Scholar] [CrossRef] [PubMed]
- Tap, W.D.; Wagner, A.J.; Schöffski, P.; Martin-Broto, J.; Krarup-Hansen, A.; Ganjoo, K.N.; Yen, C.C.; Razak, A.R.A.; Spira, A.; Kawai, A.; et al. Effect of Doxo-rubicin Plus Olaratumab vs Doxorubicin Plus Placebo on Survival in Patients with Advanced Soft Tissue Sar-comas: The ANNOUNCE Randomized Clinical Trial. JAMA 2020, 323, 1266–1276. [Google Scholar] [CrossRef]
- Judson, I.; Verweij, J.; Gelderblom, H.; Hartmann, J.T.; Schöffski, P.; Blay, J.-Y.; Kerst, J.M.; Sufliarsky, J.; Whelan, J.; Hohenberger, P.; et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: A randomised controlled phase 3 trial. Lancet Oncol. 2014, 15, 415–423. [Google Scholar] [CrossRef]
- Pautier, P.; Italiano, A.; Piperno-Neumann, S.; Chevreau, C.; Penel, N.; Firmin, N.; Boudou-Rouquette, P.; Bertucci, F.; Balleyguier, C.; Lebrun-Ly, V.; et al. Doxorubicin alone versus doxorubicin with trabectedin followed by trabectedin alone as first-line therapy for metastatic or unresectable leiomyosarcoma (LMS-04): A randomised, multicentre, open-label phase 3 trial. Lancet Oncol. 2022, 23, 1044–1054. [Google Scholar] [CrossRef]
- Rosen, G.; Forscher, C.; Lowenbraun, S.; Eilber, F.; Eckardt, J.; Holmes, C.; Fu, Y.S. Synovial sarcoma. Uniform response of metastases to high dose ifosfamide. Cancer 1994, 73, 2506–2511. [Google Scholar] [CrossRef]
- Penel, N.; Bui, B.N.; Bay, J.-O.; Cupissol, D.; Ray-Coquard, I.; Piperno-Neumann, S.; Kerbrat, P.; Fournier, C.; Taieb, S.; Jimenez, M.; et al. Phase II Trial of Weekly Paclitaxel for Unresectable Angiosarcoma: The ANGIOTAX Study. J. Clin. Oncol. 2008, 26, 5269–5274. [Google Scholar] [CrossRef]
- Penel, N.; Italiano, A.; Ray-Coquard, I.; Chaigneau, L.; Delcambre, C.; Robin, Y.M.; Bui, B.; Bertucci, F.; Isambert, N.; Cupissol, D.; et al. Metastatic angiosarcomas: Doxorubicin-based regimens, weekly paclitaxel and metastasectomy significantly improve the outcome. Ann. Oncol. 2011, 23, 517–523. [Google Scholar] [CrossRef]
- Judson, I.; Radford, J.A.; Harris, M.; Blay, J.Y.; van Hoesel, Q.G.C.M.; Le Cesne, A.; Van Oosterom, A.T.; Clemons, M.J.; Kamby, C.; Hermans, C.; et al. Randomised phase II trial of pegylated liposomal doxorubicin (DOXIL/CAELYX) versus doxorubicin in the treatment of advanced or met-astatic soft tissue sarcoma: A study by the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer 2001, 37, 870–877. [Google Scholar] [CrossRef]
- Poveda, A.; López-Pousa, A.; Martín, J.; Del Muro, J.G.; Bernabé, R.; Casado, A.; Balañá, C.; Sanmartín, O.; Menéndez, M.D.; Escudero, P.; et al. Phase II Clinical Trial with Pegylated Liposomal Doxorubicin (CAELYX®/Doxil®) and Quality of Life Evaluation (EORTC QLQ-C30) in Adult Patients with Advanced Soft Tissue Sarcomas: A study of the Spanish Group for Research in Sarcomas (GEIS). Sarcoma 2005, 9, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Mir, O.; Domont, J.; Cioffi, A.; Bonvalot, S.; Boulet, B.; Le Pechoux, C.; Terrier, P.; Spielmann, M.; Le Cesne, A. Feasibility of metronomic oral cyclophosphamide plus prednisolone in elderly patients with inoperable or metastatic soft tissue sarcoma. Eur. J. Cancer 2011, 47, 515–519. [Google Scholar] [CrossRef]
- Demetri, G.D.; von Mehren, M.; Jones, R.L.; Hensley, M.L.; Schuetze, S.M.; Staddon, A.; Milhem, M.; Elias, A.; Ganjoo, K.; Tawbi, H.; et al. Efficacy and Safety of Trabectedin or Dacarbazine for Metastatic Liposarcoma or Leiomyosarcoma After Failure of Conventional Chemotherapy: Results of a Phase III Randomized Multicenter Clinical Trial. J. Clin. Oncol. 2016, 34, 786–793. [Google Scholar] [CrossRef]
- van der Graaf, W.T.; Blay, J.-Y.; Chawla, S.P.; Kim, D.-W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012, 379, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Schöffski, P.; Chawla, S.; Maki, R.G.; Italiano, A.; Gelderblom, H.; Choy, E.; Grignani, G.; Camargo, V.; Bauer, S.; Rha, S.Y.; et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: A randomised, open-label, multicentre, phase 3 trial. Lancet 2016, 387, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- García-Del-Muro, X.; López-Pousa, A.L.; Maurel, J.; Martín, J.; Martínez-Trufero, J.; Casado, A.; Gómez-España, A.; Fra, J.; Cruz, J.; Poveda, A.; et al. Randomized Phase II Study Comparing Gemcitabine Plus Dacarbazine Versus Dacarbazine Alone in Patients with Previously Treated Soft Tissue Sarcoma: A Spanish Group for Research on Sarcomas Study. J. Clin. Oncol. 2011, 29, 2528–2533. [Google Scholar] [CrossRef]
- Maki, R.G.; Wathen, J.K.; Patel, S.R.; Priebat, D.A.; Okuno, S.H.; Samuels, B.; Fanucchi, M.; Harmon, D.C.; Schuetze, S.M.; Reinke, D.; et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: Results of sarcoma alliance for research through collaboration study 002 [corrected]. J. Clin. Oncol. 2007, 25, 2755–2763. [Google Scholar] [CrossRef]
- Le Cesne, A.; Antoine, E.; Spielmann, M.; Le Chevalier, T.; Brain, E.; Toussaint, C.; Janin, N.; Kayitalire, L.; Fontaine, F.; Genin, J. High-dose ifosfamide: Circumvention of resistance to standard-dose ifosfamide in advanced soft tissue sarcomas. J. Clin. Oncol. 1995, 13, 1600–1608. [Google Scholar] [CrossRef]
- Blay, J.-Y.; Chevret, S.; Penel, N.; Bertucci, F.; Bompas, E.; Saada-Bouzid, E.; Eymard, J.-C.; Lotz, J.-P.; Coquan, E.; Schott, R.; et al. 1619O High clinical benefit rates of single agent pembrolizumab in selected rare sarcoma histotypes: First results of the AcSé Pembrolizumab study. Ann. Oncol. 2020, 31, S972. [Google Scholar] [CrossRef]
- Hindi, N.; Razak, A.; Rosenbaum, E.; Jonczak, E.; Hamacher, R.; Rutkowski, P.; Bhadri, V.A.; Skryd, A.; Brahmi, M.; Alshibany, A.; et al. Efficacy of immune checkpoint inhibitors in alveolar soft par sarcoma: Results from a retrospective world-wide registry. ESMO open 2023, 8, 102045. [Google Scholar] [CrossRef] [PubMed]
- Petitprez, F.; de Reyniès, A.; Keung, E.Z.; Chen, T.W.-W.; Sun, C.-M.; Calderaro, J.; Jeng, Y.-M.; Hsiao, L.-P.; Lacroix, L.; Bougoüin, A.; et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020, 577, 556–560. [Google Scholar] [CrossRef]
- Ramachandran, I.; Lowther, D.E.; Dryer-Minnerly, R.; Wang, R.; Fayngerts, S.; Nunez, D.; Betts, G.; Bath, N.; Tipping, A.J.; Melchiori, L.; et al. Systemic and local immunity following adoptive transfer of NY-ESO-1 SPEAR T cells in synovial sarcoma. J. Immunother. Cancer 2019, 7, 276. [Google Scholar] [CrossRef]
- Van Tine, B.; Butler, M.; Araujo, D.; Johnson, M.; Clarke, J.; Liebner, D.; Odunsi, K.; Olszanski, A.; Basu, S.; Brophy, F.; et al. ADP-A2M4 (MAGE-A4) in patients with synovial sarcoma. Ann. Oncol. 2019, 30, v684–v685. [Google Scholar] [CrossRef]
- Swallow, C.J.; Strauss, D.C.; Bonvalot, S.; Rutkowski, P.; Desai, A.; Gladdy, R.A.; Gonzalez, R.; Gyorki, D.E.; Fairweather, M.; van Houdt, W.J.; et al. Management of Primary Retroperitoneal Sarcoma (RPS) in the Adult: An Updated Consensus Approach from the Transatlantic Australasian RPS Working Group. Ann. Surg. Oncol. 2021, 28, 7873–7888. [Google Scholar] [CrossRef] [PubMed]
- Bonvalot, S.; Gronchi, A.; Le Péchoux, C.; Swallow, C.J.; Strauss, D.; Meeus, P.; van Coevorden, F.; Stoldt, S.; Stoeckle, E.; Rutkowski, P.; et al. Preoperative radiotherapy plus surgery versus surgery alone for patients with primary retroperitoneal sarcoma (EORTC-62092: STRASS): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1366–1377. [Google Scholar] [CrossRef]
- Trans-Atlantic RPS Working Group. Management of Recurrent Retroperitoneal Sarcoma (RPS) in the Adult: A Consensus Approach from the Trans-Atlantic RPS Working Group. Ann. Surg. Oncol. 2016, 23, 3531–3540. [Google Scholar] [CrossRef]
- Fiore, M.; Rimareix, F.; Mariani, L.; Domont, J.; Collini, P.; Le Péchoux, C.; Casali, P.G.; Le Cesne, A.; Gronchi, A.; Bonvalot, S. Desmoid-Type Fibromatosis: A Front-Line Conservative Approach to Select Patients for Surgical Treatment. Ann. Surg. Oncol. 2009, 16, 2587–2593. [Google Scholar] [CrossRef]
- Salas, S.; Dufresne, A.; Bui, B.; Blay, J.-Y.; Terrier, P.; Ranchere-Vince, D.; Bonvalot, S.; Stoeckle, E.; Guillou, L.; Le Cesne, A.; et al. Prognostic Factors Influencing Progression-Free Survival Determined from a Series of Sporadic Desmoid Tumors: A Wait-and-See Policy According to Tumor Presentation. J. Clin. Oncol. 2011, 29, 3553–3558. [Google Scholar] [CrossRef]
- Gounder, M.; Ratan, R.; Alcindor, T.; Schöffski, P.; van der Graaf, W.T.; Wilky, B.A.; Riedel, R.F.; Lim, A.; Smith, L.M.; Moody, S.; et al. Nirogacestat, a γ-Secretase Inhibitor for Desmoid Tumors. N. Engl. J. Med. 2023, 388, 898–912. [Google Scholar] [CrossRef] [PubMed]
- Gounder, M.M.; Mahoney, M.R.; Van Tine, B.A.; Ravi, V.; Attia, S.; Deshpande, H.A.; Gupta, A.A.; Milhem, M.; Conry, R.M.; Movva, S.; et al. Sorafenib for Advanced and Refractory Desmoid Tumors. N. Engl. J. Med. 2018, 379, 2417–2428. [Google Scholar] [CrossRef]
- Toulmonde, M.; Pulido, M.; Ray-Coquard, I.; André, T.; Isambert, N.; Chevreau, C.; Penel, N.; Bompas, E.; Saâda, E.; Bertucci, F.; et al. Pazopanib or metho-trexate-vinblastine combination chemotherapy in adult patients with progressive desmoid tumours (DESMO-PAZ): A non-comparative, randomised, open-label, multicentre, phase 2 study. Lancet Oncol. 2019, 20, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Skapek, S.X.; Ferguson, W.S.; Granowetter, L.; Devidas, M.; Perez-Atayde, A.R.; Dehner, L.P.; Hoffer, F.A.; Speights, R.; Gebhardt, M.C.; Dahl, G.V.; et al. Vinblastine and Methotrexate for Desmoid Fibromatosis in Children: Results of a Pediatric Oncology Group Phase II Trial. J. Clin. Oncol. 2007, 25, 501–506. [Google Scholar] [CrossRef]
- Constantinidou, A.; Jones, R.L.; Scurr, M.; Al-Muderis, O.; Judson, I. Pegylated liposomal doxorubicin, an effective, well-tolerated treatment for refractory aggressive fibromatosis. Eur. J. Cancer 2009, 45, 2930–2934. [Google Scholar] [CrossRef]
- Tropé, C.G.; Abeler, V.M.; Kristensen, G.B. Diagnosis and treatment of sarcoma of the uterus. A review. Acta Oncol. 2012, 51, 694–705. [Google Scholar] [CrossRef]
- Hensley, M.L.; Enserro, D.; Hatcher, H.; Ottevanger, P.B.; Krarup-Hansen, A.; Blay, J.-Y.; Fisher, C.; Moxley, K.M.; Lele, S.B.; Lea, J.S.; et al. Adjuvant Gemcitabine Plus Docetaxel Followed by Doxorubicin Versus Observation for High-Grade Uterine Leiomyosarcoma: A Phase III NRG Oncology/Gynecologic Oncology Group Study. J. Clin. Oncol. 2018, 36, 3324–3330. [Google Scholar] [CrossRef]
- Seddon, B.; Strauss, S.J.; Whelan, J.; Leahy, M.; Woll, P.J.; Cowie, F.; Rothermundt, C.; Wood, Z.; Benson, C.; Ali, N.; et al. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDDiS): A randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1397–1410. [Google Scholar] [CrossRef]
- Reed, N.S.; Mangioni, C.; Malmström, H.; Scarfone, G.; Poveda, A.; Pecorelli, S.; Tateo, S.; Franchi, M.; Jobsen, J.J.; Coens, C.; et al. Phase III randomised study to evaluate the role of adjuvant pelvic radiotherapy in the treatment of uterine sarcomas stages I and II: An European Organisation for Research and Treatment of Cancer Gynaecological Cancer Group Study (protocol 55874). Eur. J. Cancer 2008, 44, 808–818. [Google Scholar] [CrossRef]
- Rauh-Hain, J.A.; del Carmen, M.G. Endometrial stromal sarcoma: A systematic review. Obstet. Gynecol. 2013, 122, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Trufero, J.; Jurado, J.C.; Hernández-León, C.; Correa, R.; Asencio, J.M.; Bernabeu, D.; Alvarez, R.; Hindi, N.; Mata, C.; Marquina, G.; et al. Uncommon and peculiar soft tissue sarcomas: Multidisciplinary review and practical recommendations. Spanish Group for Sarcoma research (GEIS–GROUP). Part II. Cancer Treat. Rev. 2021, 99, 102260. [Google Scholar] [CrossRef] [PubMed]
Histotype | Recommended Molecular Diagnostic Tests | Therapeutic Recommendations | |
---|---|---|---|
Angiosarcomas | -1st line CT: anthracyclines or taxanes. -2nd: gemcitabine or pazopanib. | II/B III/B | |
Alveolar soft part sarcomas | ASPSCR1-TFE3 gene fusion | -1st line: anti-angiogenics or/and immunotherapy | II/B |
Dermatofibrosarcoma protuberans | COL1A1-PDGFB1 gene fusion | -1st line: imatinib. -2nd line: pazopanib. | II/A II/B |
Clear cell sarcomas | EWSR1-ATF1 gene fusion | -1st line: anti-angiogenics | II/B |
Solitary fibrous tumours | NAB2/STAT6 gene fusion | -1st line: TKIs, pazopanib, or axitinib. -2nd line: conventional CT. -3rd line: Temozolamide–bevacizumab. | II/A III/B IV/B |
Inflammatory myofibroblastic tumours | ALK; ROS1 and NTRK gene rearrangements | -1st line, ALK positive: crizotinib. -1st line, ALK negative, and 2nd line, ALK positive: anthracycline/Vinca alcaloids +methotrexate | II/A IV/B |
Epithelioid haemangioendotheliomas | WWTR1-CAMTA1 gene fusion [6] | -1st line: anti-angiogenic | IV/B |
Kaposi sarcomas | HHV8 related | AIDS-related KS Treatment: -No visceral involvement: antiretroviral therapy alone. -Immune reconstitution inflammatory syndrome: CT. CT advanced disease (general): -1st line: pegylated doxorubicin. -2nd line: paclitaxel. | II/A IV/A I/B II/A |
Epithelioid sarcomas | SMARCB1 (INI1) deficient | -1st line CT: tazemetostat (if available). -2nd: anthracycline-based CT. | III/A IV/A |
Tenosynovial giant cell tumours | COL6A3-CSF1 gene fusion | -Diffuse type: -CSF1R inhibitors (if available). -imatinib. | II/A IV/A |
Extraskeletal myxoid chondrosarcomas | NR4A3 rearragements | -1st line: pazopanib (II, A) -2nd line: anthracycline-based CT | II/A |
PEComas | TSC1/TSC2 gene alterations [6] | -1st line: mTOR inhibitors. -2nd line: anthracycline-based CT. | II/A IV/B |
NTRK-rearranged sarcomas | NTRK rearrangements | -1st line: NTRK inhibitors | III/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaz-Salgado, M.A.; Valverde-Morales, C.; Alvarez, R.; Asencio, J.M.; Collado, E.; de Alava, E.; Diaz Beveridge, R.; Gómez-Mateo, M.C.; Gracia Alegria, I.; Marquina, G.; et al. Diagnosis and Therapy of Soft Tissue Sarcomas: Spanish Group for Research in Sarcomas (GEIS) Guidelines. Cancers 2025, 17, 3158. https://doi.org/10.3390/cancers17193158
Vaz-Salgado MA, Valverde-Morales C, Alvarez R, Asencio JM, Collado E, de Alava E, Diaz Beveridge R, Gómez-Mateo MC, Gracia Alegria I, Marquina G, et al. Diagnosis and Therapy of Soft Tissue Sarcomas: Spanish Group for Research in Sarcomas (GEIS) Guidelines. Cancers. 2025; 17(19):3158. https://doi.org/10.3390/cancers17193158
Chicago/Turabian StyleVaz-Salgado, Maria Angeles, Claudia Valverde-Morales, Rosa Alvarez, Jose Manuel Asencio, Erica Collado, Enrique de Alava, Roberto Diaz Beveridge, M. Carmen Gómez-Mateo, Isidro Gracia Alegria, Gloria Marquina, and et al. 2025. "Diagnosis and Therapy of Soft Tissue Sarcomas: Spanish Group for Research in Sarcomas (GEIS) Guidelines" Cancers 17, no. 19: 3158. https://doi.org/10.3390/cancers17193158
APA StyleVaz-Salgado, M. A., Valverde-Morales, C., Alvarez, R., Asencio, J. M., Collado, E., de Alava, E., Diaz Beveridge, R., Gómez-Mateo, M. C., Gracia Alegria, I., Marquina, G., Martin Broto, J., Martínez-Trufero, J., Narváez García, J. A., Redondo, A., Sebio, A., Verges, R., Viñals, J. M., & García del Muro, X. (2025). Diagnosis and Therapy of Soft Tissue Sarcomas: Spanish Group for Research in Sarcomas (GEIS) Guidelines. Cancers, 17(19), 3158. https://doi.org/10.3390/cancers17193158