The Role of Perioperative Interleukin-6 Serum Levels on Liver Dysfunction and Infectious Complications After Hepatectomy—A Systematic Review
Simple Summary
Abstract
Key Points
- Serum interleukin-6 (IL-6) is used as a clinical marker for infection and inflammation. It also increases significantly after liver resection as a reflection of hepatic regeneration stimulus. Therefore, IL-6 may be used perioperatively as an indicator of imminent infection or liver dysfunction.
- This review assessed 12 studies (n = 589 patients) on perioperative serum IL-6 levels and their association with pre-defined post-hepatectomy liver failure (PHLF) or infection.
- Especially on the first postoperative day, IL-6 is significantly associated with subsequent complications, but cut-offs are not well-defined. At present, a single-marker, single-timepoint assessment does not seem sufficient to discriminate between infection and impaired regeneration.
- Heterogeneous cohorts and clinical endpoints, as well as insufficient consideration of confounding factors, warrant adequately powered, well-designed future studies.
1. Introduction
2. Methods
2.1. Search Strategy and Data Generation
2.2. Data Extraction and Quality Assessment
3. Results
3.1. Study Selection and Characteristics
3.2. Methodological Quality
3.3. Perioperative Factors Associated with IL-6 Serum Levels
3.3.1. Impact of Surgical Techniques
3.3.2. Impact of Preexisting Liver Disease
3.4. Primary Endpoint: IL-6 Dynamics, PHLF, and Infection
3.5. Secondary Outcomes: IL-6 Dynamics and Overall Postoperative Morbidity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
(NF-)KB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
95%-CI | 95% confidence interval |
ALPPS | Associated Liver Partition with Portal Vein Ligation for Staged Hepatectomy |
AUC | Area-under-the-curve |
CCC | Cholangiocellular carcinoma |
CR-PHLF | Clinically relevant post-hepatectomy liver failure |
CRLM | Colorectal liver metastases |
CRP | C-reactive protein |
CUSA | Cavitron ultrasonic surgical aspirator |
DVE | Double vein embolization |
ERAS® | Enhanced recovery after surgery |
FLR | Future liver remnant |
GLP | Glucagon-like peptide |
HCC | Hepatocellular carcinoma |
IL-6 | Interleukin-6 |
ISGLS | International Study Group of Liver Surgery |
MeSH | Medical Subject Headings |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
OR | Odds ratio |
PHLF | Post-hepatectomy liver failure |
POD | Postoperative day |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RCT | Randomized-controlled trials |
SIRS | Systemic inflammatory response syndrome |
STAT-3 | Signal transducer and activator of transcription 3 |
References
- Kishimoto, T. IL-6: From its discovery to clinical applications. Int. Immunol. 2010, 22, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Arras, D.; Rose-John, S. IL-6 pathway in the liver: From physiopathology to therapy. J. Hepatol. 2016, 64, 1403–1415. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, M.; Samols, D.; Kushner, I. STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. J. Biol. Chem. 1996, 271, 9503–9509. [Google Scholar] [CrossRef]
- Cressman, D.E.; Greenbaum, L.E.; DeAngelis, R.A.; Ciliberto, G.; Furth, E.E.; Poli, V.; Taub, R. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996, 274, 1379–1383. [Google Scholar] [CrossRef]
- Sparrelid, E.; Olthof, P.B.; Dasari, B.V.M.; Erdmann, J.I.; Santol, J.; Starlinger, P.; Gilg, S. Current evidence on posthepatectomy liver failure: Comprehensive review. BJS Open 2022, 6, zrac142. [Google Scholar] [CrossRef]
- Rahbari, N.N.; Garden, O.J.; Padbury, R.; Brooke-Smith, M.; Crawford, M.; Adam, R.; Koch, M.; Makuuchi, M.; Dematteo, R.P.; Christophi, C.; et al. Posthepatectomy liver failure: A definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 2011, 149, 713–724. [Google Scholar] [CrossRef]
- Primavesi, F.; Maglione, M.; Cipriani, F.; Denecke, T.; Oberkofler, C.E.; Starlinger, P.; Dasari, B.V.M.; Heil, J.; Sgarbura, O.; Soreide, K.; et al. E-AHPBA-ESSO-ESSR Innsbruck consensus guidelines for preoperative liver function assessment before hepatectomy. Br. J. Surg. 2023, 110, 1331–1347. [Google Scholar] [CrossRef]
- Sparrelid, E.; Gilg, S.; van Gulik, T.M. Systematic review of MARS treatment in post-hepatectomy liver failure. HPB 2020, 22, 950–960. [Google Scholar] [CrossRef]
- Balzan, S.; Belghiti, J.; Farges, O.; Ogata, S.; Sauvanet, A.; Delefosse, D.; Durand, F. The “50-50 criteria” on postoperative day 5: An accurate predictor of liver failure and death after hepatectomy. Ann. Surg. 2005, 242, 824–828, discussion 828–829. [Google Scholar] [CrossRef] [PubMed]
- Mullen, J.T.; Ribero, D.; Reddy, S.K.; Donadon, M.; Zorzi, D.; Gautam, S.; Abdalla, E.K.; Curley, S.A.; Capussotti, L.; Clary, B.M.; et al. Hepatic insufficiency and mortality in 1,059 noncirrhotic patients undergoing major hepatectomy. J. Am. Coll. Surg. 2007, 204, 854–862, discussion 862–864. [Google Scholar] [CrossRef] [PubMed]
- Gyoeri, G.P.; Pereyra, D.; Braunwarth, E.; Ammann, M.; Jonas, P.; Offensperger, F.; Klinglmueller, F.; Baumgartner, R.; Holzer, S.; Gnant, M.; et al. The 3-60 criteria challenge established predictors of postoperative mortality and enable timely therapeutic intervention after liver resection. Hepatobiliary Surg. Nutr. 2019, 8, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Fausto, N.; Campbell, J.S.; Riehle, K.J. Liver regeneration. Hepatology 2006, 43, S45–S53. [Google Scholar] [CrossRef] [PubMed]
- Niederwieser, T.; Braunwarth, E.; Dasari, B.V.M.; Pufal, K.; Szatmary, P.; Hackl, H.; Haselmann, C.; Connolly, C.E.; Cardini, B.; Ofner, D.; et al. Early postoperative arterial lactate concentrations to stratify risk of post-hepatectomy liver failure. Br. J. Surg. 2021, 108, 1360–1370. [Google Scholar] [CrossRef]
- Wei, A.C.; Tung-Ping Poon, R.; Fan, S.T.; Wong, J. Risk factors for perioperative morbidity and mortality after extended hepatectomy for hepatocellular carcinoma. Br. J. Surg. 2003, 90, 33–41. [Google Scholar] [CrossRef]
- van Keulen, A.M.; Buettner, S.; Besselink, M.G.; Busch, O.R.; van Gulik, T.M.; JNM, I.J.; de Jonge, J.; Polak, W.G.; Swijnenburg, R.J.; Erdmann, J.I.; et al. Primary and secondary liver failure after major liver resection for perihilar cholangiocarcinoma. Surgery 2021, 170, 1024–1030. [Google Scholar] [CrossRef]
- Braunwarth, E.; Primavesi, F.; Gobel, G.; Cardini, B.; Oberhuber, R.; Margreiter, C.; Maglione, M.; Schneeberger, S.; Ofner, D.; Stattner, S. Is bile leakage after hepatic resection associated with impaired long-term survival? Eur. J. Surg. Oncol. 2019, 45, 1077–1083. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Das, B.C.; Isaji, S.; Kawarada, Y. Analysis of 100 consecutive hepatectomies: Risk factors in patients with liver cirrhosis or obstructive jaundice. World J. Surg. 2001, 25, 266–272, discussion 272–273. [Google Scholar] [CrossRef]
- Lan, A.K.; Luk, H.N.; Goto, S.; Chen, S.M.; Eng, H.L.; Chen, Y.S.; de Villa, V.H.; Wang, C.C.; Cheng, Y.F.; Chen, C.L.; et al. Stress response to hepatectomy in patients with a healthy or a diseased liver. World J. Surg. 2003, 27, 761–764. [Google Scholar] [CrossRef]
- Kimura, F.; Shimizu, H.; Yoshidome, H.; Ohtsuka, M.; Kato, A.; Yoshitomi, H.; Nozawa, S.; Furukawa, K.; Mitsuhashi, N.; Sawada, S.; et al. Circulating cytokines, chemokines, and stress hormones are increased in patients with organ dysfunction following liver resection. J. Surg. Res. 2006, 133, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Strey, C.W.; Marquez-Pinilla, R.M.; Markiewski, M.M.; Siegmund, B.; Oppermann, E.; Lambris, J.D.; Bechstein, W.O. Early post-operative measurement of cytokine plasma levels combined with pre-operative bilirubin levels identify high-risk patients after liver resection. Int. J. Mol. Med. 2011, 27, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.; Klaus, D.A.; Tudor, B.; Fleischmann, E.; Wekerle, T.; Roth, G.; Bodingbauer, M.; Kaczirek, K. Transection Speed and Impact on Perioperative Inflammatory Response—A Randomized Controlled Trial Comparing Stapler Hepatectomy and CUSA Resection. PLoS ONE 2015, 10, e0140314. [Google Scholar] [CrossRef]
- Li, W.; Zhou, X.; Huang, Z.; Zhang, H.; Zhang, L.; Shang, C.; Chen, Y. Laparoscopic surgery minimizes the release of circulating tumor cells compared to open surgery for hepatocellular carcinoma. Surg. Endosc. 2015, 29, 3146–3153. [Google Scholar] [CrossRef]
- Sarin, S.; Kaman, L.; Dahiya, D.; Behera, A.; Medhi, B.; Chawla, Y. Effects of preoperative statin on liver reperfusion injury in major hepatic resection: A pilot study. Updates Surg. 2016, 68, 191–197. [Google Scholar] [CrossRef]
- Schwarz, C.; Fitschek, F.; Bar-Or, D.; Klaus, D.A.; Tudor, B.; Fleischmann, E.; Roth, G.; Tamandl, D.; Wekerle, T.; Gnant, M.; et al. Inflammatory response and oxidative stress during liver resection. PLoS ONE 2017, 12, e0185685. [Google Scholar] [CrossRef]
- Cata, J.P.; Velasquez, J.F.; Ramirez, M.F.; Vauthey, J.N.; Gottumukkala, V.; Conrad, C.; Kim, B.J.; Aloia, T. Inflammation and pro-resolution inflammation after hepatobiliary surgery. World J. Surg. Oncol. 2017, 15, 152. [Google Scholar] [CrossRef]
- Kasai, M.; Van Damme, N.; Berardi, G.; Geboes, K.; Laurent, S.; Troisi, R.I. The inflammatory response to stress and angiogenesis in liver resection for colorectal liver metastases: A randomized controlled trial comparing open versus laparoscopic approach. Acta Chir. Belg. 2018, 118, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Arisaka, S.; Matsuyama, R.; Goto, K.; Suwa, Y.; Mori, R.; Morioka, D.; Taguri, M.; Endo, I. Predictive Ability of Preoperative PT-INR and Postoperative MCP1 for Post-hepatectomy Liver Failure. In Vivo 2020, 34, 1255–1263. [Google Scholar] [CrossRef]
- Ammann, M.; Santol, J.; Pereyra, D.; Kalchbrenner, T.; Wuerger, T.; Laengle, J.; Smoot, R.L.; Hulla, W.; Laengle, F.; Starlinger, P. Glucagon-like peptide-1 and glucagon-like peptide-2 regulation during human liver regeneration. Sci. Rep. 2023, 13, 15980. [Google Scholar] [CrossRef]
- Buettner, S.; Gani, F.; Amini, N.; Spolverato, G.; Kim, Y.; Kilic, A.; Wagner, D.; Pawlik, T.M. The relative effect of hospital and surgeon volume on failure to rescue among patients undergoing liver resection for cancer. Surgery 2016, 159, 1004–1012. [Google Scholar] [CrossRef]
- Elfrink, A.K.E.; Olthof, P.B.; Swijnenburg, R.J.; den Dulk, M.; de Boer, M.T.; Mieog, J.S.D.; Hagendoorn, J.; Kazemier, G.; van den Boezem, P.B.; Rijken, A.M.; et al. Factors associated with failure to rescue after liver resection and impact on hospital variation: A nationwide population-based study. HPB 2021, 23, 1837–1848. [Google Scholar] [CrossRef]
- Angelico, R.; Siragusa, L.; Serenari, M.; Scalera, I.; Kauffman, E.; Lai, Q.; Vitale, A.; on behalf of the Italian Chapter of IHPBA. Rescue liver transplantation after post-hepatectomy acute liver failure: A systematic review and pooled analysis. Transplant. Rev. 2023, 37, 100773. [Google Scholar] [CrossRef] [PubMed]
- Primavesi, F.; Senoner, T.; Schindler, S.; Nikolajevic, A.; Di Fazio, P.; Csukovich, G.; Eller, S.; Neumayer, B.; Anliker, M.; Braunwarth, E.; et al. The Interplay between Perioperative Oxidative Stress and Hepatic Dysfunction after Human Liver Resection: A Prospective Observational Pilot Study. Antioxidants 2024, 13, 590. [Google Scholar] [CrossRef] [PubMed]
- Reusswig, F.; Fazel Modares, N.; Brechtenkamp, M.; Wienands, L.; Kruger, I.; Behnke, K.; Lee-Sundlov, M.M.; Herebian, D.; Scheller, J.; Hoffmeister, K.M.; et al. Efficiently Restored Thrombopoietin Production by Ashwell-Morell Receptor and IL-6R Induced Janus Kinase 2/Signal Transducer and Activator of Transcription Signaling Early After Partial Hepatectomy. Hepatology 2021, 74, 411–427. [Google Scholar] [CrossRef]
- Lai, H.S.; Lin, W.H.; Lai, S.L.; Lin, H.Y.; Hsu, W.M.; Chou, C.H.; Lee, P.H. Interleukin-6 mediates angiotensinogen gene expression during liver regeneration. PLoS ONE 2013, 8, e67868. [Google Scholar] [CrossRef]
- Jotten, L.; Steinkraus, K.C.; Traub, B.; Graf, S.; Mihaljevic, A.L.; Kornmann, M.; Michalski, C.W.; Huttner, F.J. Impact of perioperative steroid administration in patients undergoing elective liver resection: Meta-analysis. BJS Open 2022, 6, zrac139. [Google Scholar] [CrossRef]
- Collienne, M.; Neven, A.; Caballero, C.; Kataoka, K.; Carrion-Alvarez, L.; Nilsson, H.; Désolneux, G.; Rivoire, M.; Ruers, T.; Gruenberger, T.; et al. EORTC 1409 GITCG/ESSO 01—A prospective colorectal liver metastasis database for borderline or initially unresectable diseases (CLIMB): Lessons learnt from real life. From paradigm to unmet need. Eur. J. Surg. Oncol. 2023, 49, 107081. [Google Scholar] [CrossRef] [PubMed]
- Murtha-Lemekhova, A.; Fuchs, J.; Ghamarnejad, O.; Nikdad, M.; Probst, P.; Hoffmann, K. Influence of cytokines, circulating markers and growth factors on liver regeneration and post-hepatectomy liver failure: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 13739. [Google Scholar] [CrossRef]
- Ayad, A.; Hallawa, A.; Peine, A.; Martin, L.; Fazlic, L.B.; Dartmann, G.; Marx, G.; Schmeink, A. Predicting Abnormalities in Laboratory Values of Patients in the Intensive Care Unit Using Different Deep Learning Models: Comparative Study. JMIR Med. Inform. 2022, 10, e37658. [Google Scholar] [CrossRef]
- Yan, X.; Huang, S.; Li, F.; Jiang, L.; Jiang, Y.; Liu, J. Short-term outcomes of perioperative glucocorticoid administration in patients undergoing liver surgery: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2023, 13, e068969. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C.; Lu, T.; Li, X.; Jiang, Z.; Tian, H.; Hao, X.; Yang, K.; Guo, T. The efficacy and safety of glucocorticoid for perioperative patients with hepatectomy: A systematic review and meta-analysis. Expert. Rev. Gastroenterol. Hepatol. 2023, 17, 59–71. [Google Scholar] [CrossRef]
- Joliat, G.R.; Kobayashi, K.; Hasegawa, K.; Thomson, J.E.; Padbury, R.; Scott, M.; Brustia, R.; Scatton, O.; Tran Cao, H.S.; Vauthey, J.N.; et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations 2022. World J. Surg. 2023, 47, 11–34. [Google Scholar] [CrossRef]
- Ng, K.T.; Pang, L.; Wang, J.Q.; She, W.H.; Tsang, S.H.; Lo, C.M.; Man, K.; Cheung, T.T. Indications of pro-inflammatory cytokines in laparoscopic and open liver resection for early-stage hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int. 2024, 23, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Pecqueux, M.; Bruckner, F.; Bogner, A.; Oehme, F.; Hau, H.M.; von Bechtolsheim, F.; Held, H.C.; Baenke, F.; Distler, M.; Riediger, C.; et al. Interleukin-8 is superior to CRP for the prediction of severe complications in a prospective cohort of patients undergoing major liver resection. Langenbecks Arch. Surg. 2023, 408, 377. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, J.S.; Bazancir, L.A.; Johansson, P.I.; Sorensen, H.; Achiam, M.P.; Olsen, A.A. Major open abdominal surgery is associated with increased levels of endothelial damage and interleukin-6. Microvasc. Res. 2023, 148, 104543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, X.Y.; Li, Z.Y.; Li, M.; Liu, Z.D. Moxibustion regulates T-regulatory/T-helper 17 cell balance by modulating the microRNA-221/suppressor of cytokine signaling 3 axis in a mouse model of rheumatoid arthritis. J. Integr. Med. 2022, 20, 453–462. [Google Scholar] [CrossRef]
Study | Type | Country | n | Surgical Approach | Histopathological Diagnosis | Time of IL 6 Measurement | Main Outcomes Measured | PHLF Assessed? (Specific Criteria) | Infectious Complications Assessed? | Follow Up Duration |
---|---|---|---|---|---|---|---|---|---|---|
Das et al. (2001) [20] | Prospective cohort | Japan | 100 | Open | HCC, CCC, GBC, CRLM, NCRLM, benign | POD 0: EOP + 12 h | Morbidity, mortality | Yes (individual) * | Yes | In-hospital stay |
Lan et al. (2003) [21] | Prospective cohort | Taiwan | 14 | Open | LDLT, HCC | PreOP; POD 0: SOP, EOP; POD 1,2 | Morbidity, mortality, intraoperative complications | No | No | In-hospital stay |
Kimura et al. (2006) [22] | Prospective cohort | Japan | 128 | Open | HCC, CCC, CRLM, NCRLM | Pre-OP; POD 0: EOP; POD 1,3,7,14 | Morbidity, mortality, organ dysfunction, infections, cytokine levels | Yes (individual) # | Yes | In-hospital stay |
Strey et al. (2011) [23] | Prospective cohort | Germany | 26 | Open | HCC, CCC, CRLM, benign | Pre-OP; POD 0: EOP + 10 min-6 h (6×); POD 1,3,5,7 | Morbidity, length of stay, liver function | Yes (individual) § | Yes | In-hospital stay |
Schwarz et al. (2015) [24] | RCT | Austria | 40 | Open | HCC, CRLM, Echinococcus | Pre-OP; POD 0: SOP; EOP; POD 1,3 | Morbidity, mortality, length of stay, length of ICU, operative time | Yes (no specific criteria) ** | Yes | 30 days |
Li et al. (2015) [25] | RCT | China | 26 | Open and laparoscopic | HCC | POD 0: SOP, EOP; POD 1 | Peak IL-6, IL-8 and TNF-α; CCSC counts | No | No | In-hospital stay |
Sarin et al. (2016) [26] | RCT | India | 20 | Open | HCC, GBC, CCC, benign | Pre-OP; POD 0: EOP + 4 h, POD 1,3 | Ischemia reperfusion injury via cytokine levels in patients with or without statins | No | Yes | In-hospital stay |
Schwarz et al. (2017) [27] | Prospective cohort | Austria | 40 | Open | HCC, LM, Echinococcus | Pre-OP; POD 0: SOP, EOP; POD 1,3 | Oxidative stress and inflammation, morbidity and mortality | Yes (no specific criteria) ** | Yes | 30 days |
Cata et al. (2017) [28] | RCT | USA | 41 | Open | CCC, GBC, CRLM NCRLM | Pre-OP; POD 1,3,5 | Morbidity | No | Yes | In-hospital stay |
Kasai et al. (2018) [29] | RCT | Belgium | 40 | Open and laparoscopic | CRLM | Pre-OP; POD 1 | Morbidity, length of stay, overall survival | No | Yes | In-hospital stay |
Arisaka et al. (2020) [30] | Prospective cohort | Japan | 68 | Open | CCC, HCC, LDLT, LM | Pre-OP; POD 1,3,5 | Morbidity, mortality, length of stay, liver function | Yes (ISGLS) | Yes | In-hospital stay |
Ammann et al. (2023) [31] | Prospective cohort | Austria/USA | 46 | Open | HCC, CCC, NELM, NNECR, benign | Pre-OP; POD 1,5 | GLP1 and GLP2 dynamics, PHLF, IL-6 dynamics, DPP4, lipid metabolism | Yes (ISGLS) | No | In-hospital stay |
Publication | Overall Morbidity | Overall Mortality | Configuration Studied Groups | Median IL-6 Levels Studied Groups (pg/mL) | Median IL-6 Level w/wo Complications (pg/mL) | Regression/ROC Analyses Prediction of Event |
---|---|---|---|---|---|---|
Das et al. (2001) [20] | 14% | 4% | Normal liver (NL) vs. liver cirrhosis (LC) vs. obstructive jaundice (OJ) | 12 h postop: 180 (NL) vs. 268 (CL) vs. 641 (OJ) ** | Cirrhosis (12 h postop): 555/211 * Jaundice (12 h postop): 925/456 * | n/a |
Lan et al. (2003) [21] | 14.3% | 0% | Hepatitis B-HCC vs. LDLT patients | POD0: 11.5 vs. 4.1 * EOP: 59.3 vs. 22.8 * POD1: 141.9 vs. 47.5 * POD2: 109.5 vs. 25.8 * | n/a | n/a |
Kimura et al. (2006) [22] | 49% | 2% | Non-infectious complications (NIC) vs. infectious complications (IC) vs. organ dysfunction (OD) | NIC vs. IC. Vs. OD: POD0 EOP: 15.6 vs. 11.2 vs. 38.2 * POD1: 8.6 vs. 7.4 vs. 41 ** POD3: 11.2 vs. 7.5 vs. 3.5 | n/a | Multivariable analysis: Postop. infection: POD1 OR: 2.43 ** Postop. OD: POD1 OR: 2.66 ** |
Strey et al. (2011) [23] | 53.8% | n/a | Postop PT < 56% vs. >56% Postop bilirubin < 2 vs. >2 mg/dL | POD1: 420 vs. 110 *# POD1: 400 vs. 120 *# | Any vs. no complication: POD1: 400 vs. 130 ns# | n/a |
Schwarz et al. (2015) [24] | 37.5% | 2.5% | CUSA vs. stapler hepatectomy | Intraoperative: 25.5 vs. 14.5 ns | n/a | n/a |
Li et al. (2015) [25] | n/a | n/a | Laparoscopic vs. open HCC resection | EOP: 73.6 vs. 116.2 * POD1: 121.8 vs. 192.4 * | n/a | n/a |
Sarin et al. (2016) [26] | n/a | n/a | Atorvastatin group vs. Placebo | EOP + 4 h: 124.4 vs. 214.3 ** POD1: 83.8 vs. 144.4 ** POD3: 28.82 vs. 54.02 ** | n/a | n/a |
Schwarz et al. (2017) [27] | 37.5% | 2.5% | No/minor vs. severe complications | n/a | POD3: 24.6 vs. 53.7 ** | n/a |
Cata et al. (2017) [28] | 34.1% | 0% | 41 consecutive resections for CCC and CRLM. No control group | POD0: 28 vs. POD1: 216 ** POD3: 128 ** POD5: 70 ** | POD1: 254 vs. 206 ns POD2: 98 vs. 128 ns POD3: 76 vs. 59 ns | n/a |
Kasai et al. (2018) [29] | 25% | 0% | Open vs. laparoscopic hepatectomy | POD1 98.9 vs. 39.1 ns | n/a | n/a |
Arisaka et al. (2020) [30] | 28% | 4% | ISGLS PHLF B/C (13.2%) vs. no CR-PHLF | POD0: 20 vs. 10 ns# POD1: 210 vs. 50 *# POD3: 150 vs. 40 *# POD5: 80 vs. 30 *# | n/a | CR-PHLF: Cut-off POD1: 106.5 AUC: 0.791 (95% CI 0.562–1.000) |
Ammann et al. (2023) [31] | 26% | 6.5% | No PHLF vs. PHLF, minor vs. major resection, | No PHLF vs. PHLF PRE: 5.0 vs. 10.8 ns POD1: 170 vs. 320 ns# POD5: 45 vs. 270 ***# | n/a | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kofler, A.; Trattner, M.; Mairinger, V.; Urban, I.; Søreide, K.; Stättner, S.; Primavesi, F. The Role of Perioperative Interleukin-6 Serum Levels on Liver Dysfunction and Infectious Complications After Hepatectomy—A Systematic Review. Cancers 2025, 17, 3120. https://doi.org/10.3390/cancers17193120
Kofler A, Trattner M, Mairinger V, Urban I, Søreide K, Stättner S, Primavesi F. The Role of Perioperative Interleukin-6 Serum Levels on Liver Dysfunction and Infectious Complications After Hepatectomy—A Systematic Review. Cancers. 2025; 17(19):3120. https://doi.org/10.3390/cancers17193120
Chicago/Turabian StyleKofler, Alexander, Marlene Trattner, Vivien Mairinger, Iveta Urban, Kjetil Søreide, Stefan Stättner, and Florian Primavesi. 2025. "The Role of Perioperative Interleukin-6 Serum Levels on Liver Dysfunction and Infectious Complications After Hepatectomy—A Systematic Review" Cancers 17, no. 19: 3120. https://doi.org/10.3390/cancers17193120
APA StyleKofler, A., Trattner, M., Mairinger, V., Urban, I., Søreide, K., Stättner, S., & Primavesi, F. (2025). The Role of Perioperative Interleukin-6 Serum Levels on Liver Dysfunction and Infectious Complications After Hepatectomy—A Systematic Review. Cancers, 17(19), 3120. https://doi.org/10.3390/cancers17193120