Multicenter Prospective Comparative Study of Patient Radiation Doses in Localization Techniques for Small Lung Lesions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Patient Population and Center Assignment
2.3. Inclusion and Exclusion Criteria
2.4. Radiation Dose Measurement Methodology
2.5. Cone-Beam CT
2.6. VAL-MAP
2.7. Hook-Wire Technique
2.8. Statistical Analysis and Power Calculation
3. Results
3.1. Patient Characteristics
3.2. Statistical Assumptions and Analysis Approach
3.3. Primary Endpoint: Total Radiation Dose
3.4. Secondary Analysis: Anatomical Dose Distribution
4. Discussion
4.1. Comparison with Previous Literature
4.2. Clinical Implications and Practice Impact
4.3. Factors Influencing Radiation Dose Variation
- Operator Experience: Procedural duration and radiation exposure correlate with operator familiarity. Experienced operators typically require fewer repeat scans and more efficient fluoroscopy utilization.
- Patient Factors: Body habitus affects radiation attenuation and required exposure parameters. Larger patients generally require higher radiation doses for adequate image quality.
- Lesion Characteristics: Deeper or smaller lesions may require additional imaging for precise localization.
- Technical Parameters: Equipment age, calibration status, and institutional protocols significantly influence radiation output. Standardization of imaging parameters and regular equipment maintenance are essential for dose optimization. To reduce the number of CBCT imaging, it is necessary to eliminate failed imaging caused by unilateral ventilation due to insufficient communication between the anesthesiologists and radiologic technologists.
4.4. Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LDCT | Low-dose computed tomography |
CT | Computed tomography |
VAL-MAP | Virtual-assisted lung mapping |
CBCT | Cone-beam computed tomography |
OR | Operating room |
FSM | Fossa supraclavicularis major |
IC | Intercostal |
ANOVA | Analysis of variance |
HSD | Honestly Significant Difference |
BMI | Body mass index |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Non-Small Cell Lung Cancer. Version 1. 2025. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450 (accessed on 1 January 2025).
- Wang, Y.; Chen, E. Advances in the localization of pulmonary nodules: A comprehensive review. J. Cardiothorac. Surg. 2024, 19, 396. [Google Scholar] [CrossRef]
- Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef]
- Saji, H.; Okada, M.; Tsuboi, M.; Nakajima, R.; Suzuki, K.; Aokage, K.; Aoki, T.; Okami, J.; Yoshino, I.; Ito, H.; et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): A multicentre, open-label, phase 3, randomized, controlled, non-inferiority trial. Lancet 2022, 399, 1607–1617. [Google Scholar] [CrossRef]
- Aokage, K.; Suzuki, K.; Saji, H.; Wakabayashi, M.; Kataoka, T.; Sekino, Y.; Fukuda, H.; Endo, M.; Hattori, A.; Mimae, T.; et al. Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity(JCOG1211): A multicentre, single-arm, confirmatory, phase 3 trial. Lancet Respir. Med. 2023, 11, 540–549. [Google Scholar] [CrossRef]
- Altorki, N.; Wang, X.; Kozono, D.; Watt, C.; Landrenau, R.; Wigle, D.; Port, J.; Jones, D.R.; Conti, M.; Ashrafi, A.S.; et al. Lobar or sublobar resection for peripheral stage IA non-small-cell lung cancer. N. Eng. J. Med. 2023, 388, 489–498. [Google Scholar] [CrossRef]
- Suzuki, K.; Watanabe, S.I.; Wakabayashi, M.; Saji, H.; Aokage, K.; Moriya, Y.; Yoshino, I.; Tsuboi, M.; Nakamura, S.; Nakamura, K.; et al. A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer. J. Thorac. Cardiovasc. Surg. 2022, 163, 289–301. [Google Scholar] [CrossRef]
- Mack, M.J.; Gordon, M.J.; Postma, T.W.; Berger, M.S.; Aronoff, R.J.; Acuff, T.E.; Ryan, W.H. Percutaneous localization of pulmonary nodules for thoracoscopic lung resection. Ann. Thorac. Surg. 1992, 53, 1123–1124. [Google Scholar] [CrossRef]
- Plunkett, M.B.; Peterson, M.S.; Landreneau, R.J.; Ferson, P.F.; Posner, M.C. Peripheral pulmonary nodules: Preoperative percutaneous needle localization with CT guidance. Radiology 1992, 185, 274–276. [Google Scholar] [CrossRef]
- Sakiyama, S.; Kondo, K.; Matsuoka, H.; Yoshida, M.; Miyoshi, T.; Yoshida, S.; Monden, Y. Fatal air embolism during computed tomography-guided pulmonary marking with a hook-type marker. J. Thorac. Cardiovasc. Surg. 2003, 126, 1207–1209. [Google Scholar] [CrossRef]
- Horan, T.A.; Pinheiro, P.M.; Araújo, L.M.; Santiago, F.F.; Rodrigues, M.R. Massive gas embolism during pulmonary nodule hook wire localization. Ann. Thorac. Surg. 2002, 73, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, T.; Hiraki, T.; Matsui, Y.; Fujiwara, H.; Masaoka, Y.; Uka, M.; Gobara, H.; Toyooka, S.; Kanazawa, S. Short hookwire placement under imaging guidance before thoracic surgery: A review. Diagn. Interv. Imaging 2018, 99, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kaneko, M.; Kondo, H.; Nakayama, H.; Asamura, H.; Tsuchiya, R.; Naruke, T.; Kakizoe, T. CT-guided bronchoscopic barium marking for resection of a fluoroscopically invisible peripheral pulmonary lesion. Jpn. J. Clin. Oncol. 1997, 27, 204–205. [Google Scholar] [CrossRef] [PubMed]
- Okumura, T.; Kondo, H.; Suzuki, K.; Asamura, H.; Kobayashi, T.; Kaneko, M.; Tsuchiya, R. Fluoroscopy-assisted thoracoscopic surgery after computed tomography-guided bronchoscopic barium marking. Ann. Thorac. Surg. 2001, 71, 439–442. [Google Scholar] [CrossRef]
- Sakamoto, T.; Takada, Y.; Endoh, M.; Matsuoka, H.; Tsubota, N. Bronchoscopic dye injection for localization of small pulmonary nodules in thoracoscopic surgery. Ann. Thorac. Surg. 2001, 72, 296–297. [Google Scholar] [CrossRef]
- Sato, M.; Omasa, M.; Chen, F.; Sato, T.; Sonobe, M.; Bando, T.; Date, H. Use of virtual assisted lung mapping (VAL-MAP), a bronchoscopic multispot dye-marking technique using virtual images, for precise navigation of thoracoscopic sublobar lung resection. J. Thorac. Cardiovasc. Surg. 2014, 147, 1813–1819. [Google Scholar] [CrossRef]
- Sato, M.; Kuwata, T.; Yamanashi, K.; Kitamura, A.; Misawa, K.; Imashimizu, K.; Kobayashi, M.; Ikeda, M.; Koike, T.; Kosaka, S.; et al. Safety and reproducibility of virtual-assisted lung mapping: A multicentre study in Japan. Eur. J. Cardiovasc. Surg. 2017, 51, 861–868. [Google Scholar] [CrossRef]
- Saito, Y.; Watanabe, T.; Kanamoto, Y.; Asami, M.; Yokote, F.; Dejima, H.; Morooka, H.; Ibi, T.; Yamauchi, Y.; Takahashi, N.; et al. A pilot study of intraoperative localization of peripheral small pulmonary tumors by cone-beam computed tomography: Sandwich marking technique. J. Thorac. Dis. 2022, 14, 2845–2854. [Google Scholar] [CrossRef]
- Kohmaru, S.; Saito, Y.; Takata, T.; Morita, S.; Takeyama, R.; Kanamoto, Y.; Nishida, T.; Dejima, H.; Yamauchi, Y.; Kobayashi, I.; et al. Intraoperative patient radiation dose from cone-beam computed tomography in thoracic surgery. J. Cardiothorac. Surg. 2024, 19, 645. [Google Scholar] [CrossRef]
- Nagano, M.; Sato, M. Ten-year outcome and development of virtual-assisted lung mapping in thoracic surgery. Cancers 2023, 15, 1971. [Google Scholar] [CrossRef]
- Shah, R.M.; Spirn, P.W.; Salazar, A.M.; Steiner, R.M.; Cohn, H.E.; Solit, R.W.; Wechsler, R.J.; Erdman, S. Localization of peripheral pulmonary nodules for thoracoscopic excision: Value of CT-guided wire placement. AJR Am. J. Roentgenol. 1993, 161, 279–283. [Google Scholar] [CrossRef]
- Wei, W.; Wang, S.G.; Zhang, J.Y.; Togn, X.Y.; Li, B.B.; Fang, X.; Pu, R.W.; Zhou, Y.J.; Liu, Y.J. Implementation of individualized low-dose computed tomography-guided hook wire localization of pulmonary nodules: Feasibility and safety in the clinical setting. Diagnostics 2023, 13, 3235. [Google Scholar] [CrossRef]
- Li, M.; Qu, W.; Zhang, D.; Zhong, B.; Li, Z.; Jiang, Z.; Ni, G.; Ni, C. Evaluation of radiation exposure and influential factors in cone-beam computed tomography (CBCT) of the head and abdomen during interventional procedures. Tomography 2024, 10, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Kalchiem-Dekel, O.; Bergemann, R.; Ma, X.; Christos, P.J.; Miodownik, D.; Gao, Y.; Mahmood, U.; Adusumilli, P.S.; Bott, M.J.; Dycoco, J.; et al. Determinants of radiation exposure during mobile cone-beam CT-guided robotic-assisted bronchoscopy. Respirology 2024, 29, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.J.; Hadjipanteli, A.; Østergaard, D.E.; Bogaert, E.; Brown, K.F.; DeJong, R.; Earley, J.; Edouard, M.; Khan, M.; Lindsay, J.; et al. Cone beam CT dose optimization: A review and expert consensus by the 2022 ESTRO Physics Workshop IGRT working group. Radiother. Oncol. 2025, 209, 110958. [Google Scholar] [CrossRef]
- Mason, K.; Iball, G.; Hinchcliffe, D.; Snaith, B. A systematic review comparing the effective radiation dose of musculoskeletal cone beam computed tomography to other diagnostic imaging modalities. Eur. J. Radiol. 2024, 177, 111558. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Gu, C. Expert consensus workshop report: Guidelines for preoperative assisted localization of small pulmonary nodules. J. Cancer Res. Ther. 2020, 16, 967–973. [Google Scholar] [CrossRef]
- Sato, M.; Kobayashi, M.; Sakamoto, J.; Fukai, R.; Takizawa, H.; Shinohara, S.; Kojima, F.; Sakurada, A.; Nakajima, J. The role of virtual-assisted lung mapping 2.0 combining microcoils and dye marks in deep lung resection. J. Thorac. Cardiovasc. Surg. 2022, 164, 243–251. [Google Scholar] [CrossRef]
- Yutaka, Y.; Sato, T.; Tanaka, S.; Miyahara, S.; Yoshizawa, A.; Morita, S.; Date, H. Feasibility study of a novel wireless localization technique using radiofrequency identification markers for small and deeply located lung lesions. JTCVS Tech. 2022, 12, 185–195. [Google Scholar] [CrossRef]
Criteria | Details |
---|---|
Inclusion Criteria | |
Age | ≥18 years |
Lesion characteristics | Small lung nodules (≤30 mm diameter) requiring intraoperative localization |
Imaging | Lesions not easily identifiable on visual inspection or instrument palpation |
Dosimetry | Complete radiation dose measurements available |
Surgical candidacy | Suitable for minimally invasive thoracic surgery |
Exclusion Criteria | |
Lesion visibility | Target lesions easily identifiable without additional localization |
Pregnancy | Current pregnancy or possibility thereof |
Technical factors | Dosimeter placement failure or malfunction |
Medical contraindications | Severe comorbidities precluding safe anesthesia |
CBCT | VAL-MAP | Hook-Wire | p Value | ||
---|---|---|---|---|---|
Number | 61 | 10 | 10 | ||
Age | (years) | 62.6 ± 13.36 | 70.9 ± 6.82 | 66.3 ± 11.10 | 0.137 |
Sex | Male | 40 | 5 | 2 | 0.027 |
Female | 22 | 5 | 8 | ||
Tumor total size | (mm) | 10.4 ± 1.9 | 10.8 ± 2.3 | 11.6 ± 1.6 | 0.139 |
Lesions | Single | 49 | 10 | 7 | 0.417 |
Double | 7 | 0 | 3 | ||
Triple | 3 | 0 | 0 | ||
Multiple | 2 | 0 | 0 | ||
Location | Upper lobe | 28 | 6 | 5 | 0.703 |
Middle lobe | 3 | 1 | 0 | ||
Lower lobe | 30 | 3 | 5 | ||
Procedure | Wedge | 46 | 10 | 6 | 0.678 |
Bi-wedge | 6 | 0 | 2 | ||
Segmentectomy | 5 | 0 | 1 | ||
Lobectomy | 3 | 0 | 1 | ||
Lobetomy + wedge | 1 | 0 | 0 | ||
Diagnosis | Lung cancer | 29 | 5 | 8 | 0.114 |
Metastatic tumor | 20 | 3 | 0 | ||
Benign tumor | 3 | 1 | 1 | ||
Infection | 3 | 0 | 0 | ||
Fibrosis | 1 | 0 | 1 | ||
Other | 5 | 1 | 0 | ||
Lesion resection rate | (%) (n/N) | 100 (81/81) | 100 (10/10) | 100 (13/13) | 1.0 |
Site | CBCT1 (n = 10) | CBCT2 (n = 34) | CBCT3 (n = 15) | VAL-MAP (n = 10) | Hook-Wire (n = 10) | p Value * |
---|---|---|---|---|---|---|
FSM | 1.50 ± 2.14 | 1.24 ± 1.06 | 1.23 ± 1.08 | 8.65 ± 6.50 | 7.76 ± 7.19 | <0.001 |
2nd IC | 2.20 ± 2.66 | 3.25 ± 2.75 | 2.85 ± 2.03 | 10.2 ± 7.45 | 19.0 ± 17.2 | <0.001 |
5th IC | 4.04 ± 2.45 | 6.67 ± 2.99 | 9.92 ± 6.02 | 10.6 ± 10.3 | 20.1 ± 18.5 | <0.001 |
8th IC | 2.61 ± 2.60 | 4.65 ± 4.85 | 7.65 ± 7.77 | 6.32 ± 5.99 | 25.1 ± 41.4 | 0.020 |
11th IC | 0.67 ± 1.01 | 1.50 ± 3.39 | 1.45 ± 1.23 | 3.63 ± 2.03 | 14.5 ± 23.7 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishida, T.; Saito, Y.; Takata, T.; Morita, S.; Takeyama, R.; Kohmaru, S.; Watanabe, T.; Yamaguchi, N.; Takahashi, H.; Kanamoto, Y.; et al. Multicenter Prospective Comparative Study of Patient Radiation Doses in Localization Techniques for Small Lung Lesions. Cancers 2025, 17, 3119. https://doi.org/10.3390/cancers17193119
Nishida T, Saito Y, Takata T, Morita S, Takeyama R, Kohmaru S, Watanabe T, Yamaguchi N, Takahashi H, Kanamoto Y, et al. Multicenter Prospective Comparative Study of Patient Radiation Doses in Localization Techniques for Small Lung Lesions. Cancers. 2025; 17(19):3119. https://doi.org/10.3390/cancers17193119
Chicago/Turabian StyleNishida, Tomoki, Yuichi Saito, Takeshi Takata, Shizuka Morita, Ryo Takeyama, Shinya Kohmaru, Tomohiro Watanabe, Nobuo Yamaguchi, Hikaru Takahashi, Yasuyuki Kanamoto, and et al. 2025. "Multicenter Prospective Comparative Study of Patient Radiation Doses in Localization Techniques for Small Lung Lesions" Cancers 17, no. 19: 3119. https://doi.org/10.3390/cancers17193119
APA StyleNishida, T., Saito, Y., Takata, T., Morita, S., Takeyama, R., Kohmaru, S., Watanabe, T., Yamaguchi, N., Takahashi, H., Kanamoto, Y., Morooka, H., Ibi, T., Yamauchi, Y., Fukai, R., Takahashi, N., Kanauchi, T., Kobayashi, I., Kawamura, M., & Sakao, Y. (2025). Multicenter Prospective Comparative Study of Patient Radiation Doses in Localization Techniques for Small Lung Lesions. Cancers, 17(19), 3119. https://doi.org/10.3390/cancers17193119