Colorectal Cancer Risk Following Cholecystectomy: An Updated Systematic Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria, Information Sources, and Search Strategy
2.2. Data Collection and Synthesis
3. Results
3.1. Study Selection, Study Characteristics and Risk of Bias in Studies
3.2. Results of Synthesis
3.3. Reporting Biases and Certainty of Evidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CE | Cholecystectomy |
CRC | Colorectal cancer |
NOS | Newcastle–Ottawa Scale |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
CI | Confidence interval |
SE | Standard error |
RR | Relative risk |
HR | Hazard ratio |
IRR | Incidence rate ratio |
BMI | Body mass index |
SES | Socioeconomic status |
HT | Hypertension |
DM | Diabetes mellitus |
CAD | Coronary artery disease |
COPD | Chronic obstructive pulmonary disease |
CKD | Chronic kidney disease |
IBD | Inflammatory bowel disease |
DCA | Deoxycholic acid |
LCA | Lithocholic acid |
References
- Jones, M.W.; Weir, C.B.; Ghassemzadeh, S. Gallstones (Cholelithiasis). In StatPearls; Publishing. Copyright © 2025; StatPearls Publishing LLC: Treasure Island, FL, USA, 2025. [Google Scholar]
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef]
- Kim, Y.A.; Kim, H.J.; Kang, M.J.; Han, S.S.; Park, H.M.; Park, S.J. Increased diagnosis of hepato-biliary-pancreatic cancer after cholecystectomy: A population-based study. Sci. Rep. 2025, 15, 411. [Google Scholar] [CrossRef]
- Yao, Y.; Li, X.; Xu, B.; Luo, L.; Guo, Q.; Wang, X.; Sun, L.; Zhang, Z.; Li, P. Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level. Cell Commun. Signal 2022, 20, 71. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, Z.; Cheng, Q.; Sun, W.; Jiang, M.; Sun, Y. Cholecystectomy promotes the development of colorectal cancer by the alternation of bile acid metabolism and the gut microbiota. Front Med. 2022, 9, 1000563. [Google Scholar] [CrossRef]
- Thomas, L.A.; Veysey, M.J.; French, G.; Hylemon, P.B.; Murphy, G.M.; Dowling, R.H. Bile acid metabolism by fresh human colonic contents: A comparison of caecal versus faecal samples. Gut 2001, 49, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, W.; Yan, Y.; Jiang, Y.; Gao, X.; Ruan, S. No association between cholecystectomy and risk of colorectal cancer: A meta-analysis of cohort studies. Int. J. Colorectal Dis. 2023, 38, 179. [Google Scholar] [CrossRef] [PubMed]
- Polychronidis, G.; Siddiqi, H.; Ali Ahmed, F.; Papatheodorou, S.; Giovannucci, E.L.; Song, M. Association of gallstone disease with risk of colorectal cancer: A systematic review and meta-analysis of observational studies. Int. J. Epidemiol. 2023, 52, 1424–1434. [Google Scholar] [CrossRef]
- Mu, L.; Li, W.; Ren, W.; Hu, D.; Song, Y. The association between cholecystectomy and the risk of colorectal cancer: An updated systematic review and meta-analysis of cohort studies. Transl. Cancer Res. 2023, 12, 1452–1465. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Kim, M.; Han, K.D.; Ko, S.H.; Woo, Y.; Han, J.H. Effect of smoking on the risk of gastrointestinal cancer after cholecystectomy: A national population-based cohort study. World J. Gastrointest. Surg. 2024, 16, 2796–2807. [Google Scholar] [CrossRef]
- Tsai, P.L.; Lin, Y.W.; Chen, J.S.; Wu, S.I.; Chiang, M.F.; Chen, M.J. Cholelithiasis, cholecystitis, cholecystectomy and the associated risk of colorectal cancer. Formos. J. Surg. 2023, 56, 109–115. [Google Scholar] [CrossRef]
- Choi, Y.J.; Jin, E.H.; Lim, J.H.; Shin, C.M.; Kim, N.; Han, K.; Lee, D.H. Increased Risk of Cancer after Cholecystectomy: A Nationwide Cohort Study in Korea including 123,295 Patients. Gut Liver 2022, 16, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.K.; Yoon, J.; Lee, K.G.; Kim, H.J.; Park, B.; Choi, D. De Novo Cancer Incidence after Cholecystectomy in Korean Population. J. Clin. Med. 2021, 10, 1445. [Google Scholar] [CrossRef]
- Kim, S.B.; Kim, K.O.; Kim, T.N. Prevalence and Risk Factors of Gastric and Colorectal Cancer after Cholecystectomy. J. Korean Med. Sci. 2020, 35, e354. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lin, C.; Kao, C. The Effect of Cholecystectomy on the Risk of Colorectal Cancer in Patients with Gallbladder Stones. Cancers 2020, 12, 550. [Google Scholar] [CrossRef]
- Lee, J.; Choe, S.; Park, J.W.; Jeong, S.Y.; Shin, A. The Risk of Colorectal Cancer After Cholecystectomy or Appendectomy: A Population-based Cohort Study in Korea. J. Prev. Med. Public. Health 2018, 51, 281–288. [Google Scholar] [CrossRef]
- Shabanzadeh, D.M.; Sørensen, L.T.; Jørgensen, T. Association Between Screen-Detected Gallstone Disease and Cancer in a Cohort Study. Gastroenterology 2017, 152, 1965–1974.e1961. [Google Scholar] [CrossRef]
- Chen, Y.K.; Yeh, J.H.; Lin, C.L.; Peng, C.L.; Sung, F.C.; Hwang, I.M.; Kao, C.H. Cancer risk in patients with cholelithiasis and after cholecystectomy: A nationwide cohort study. J. Gastroenterol. 2014, 49, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Goldacre, M.J.; Wotton, C.J.; Abisgold, J.; Yeates, D.G.; Collins, J. Association between cholecystectomy and intestinal cancer: A national record linkage study. Ann. Surg. 2012, 256, 1068–1072. [Google Scholar] [CrossRef]
- Goldacre, M.J.; Abisgold, J.D.; Seagroatt, V.; Yeates, D. Cancer after cholecystectomy: Record-linkage cohort study. Br. J. Cancer 2005, 92, 1307–1309. [Google Scholar] [CrossRef]
- Shao, T.; Yang, Y.X. Cholecystectomy and the risk of colorectal cancer. Am. J. Gastroenterol. 2005, 100, 1813–1820. [Google Scholar] [CrossRef]
- Lagergren, J.; Ye, W.; Ekbom, A. Intestinal cancer after cholecystectomy: Is bile involved in carcinogenesis? Gastroenterology 2001, 121, 542–547. [Google Scholar] [CrossRef]
- Johansen, C.; Chow, W.H.; Jørgensen, T.; Mellemkjaer, L.; Engholm, G.; Olsen, J.H. Risk of colorectal cancer and other cancers in patients with gall stones. Gut 1996, 39, 439–443. [Google Scholar] [CrossRef]
- Ekbom, A.; Yuen, J.; Adami, H.O.; McLaughlin, J.K.; Chow, W.H.; Persson, I.; Fraumeni, J.F., Jr. Cholecystectomy and colorectal cancer. Gastroenterology 1993, 105, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Goldbohm, R.A.; van den Brandt, P.A.; van ’t Veer, P.; Dorant, E.; Sturmans, F.; Hermus, R.J. Cholecystectomy and colorectal cancer: Evidence from a cohort study on diet and cancer. Int. J. Cancer 1993, 53, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, G.P.; Theodors, A.; Tulinius, H.; Sigvaldason, H. Cholecystectomy and colorectal carcinoma: A total-population historical prospective study. Am. J. Gastroenterol. 1991, 86, 1486–1490. [Google Scholar] [PubMed]
- Adami, H.O.; Krusemo, U.B.; Meirik, O. Unaltered risk of colorectal cancer within 14-17 years of cholecystectomy: Updating of a population-based cohort study. Br. J. Surg. 1987, 74, 675–678. [Google Scholar] [CrossRef]
- Adami, H.O.; Meirik, O.; Gustavsson, S. Colorectal cancer after cholecystectomy: Absence of risk increase within 11-14 years absence. Gastroenterology 1983, 85, 859–865. [Google Scholar] [CrossRef]
- Linos, D.; Beard, C.M.; O’Fallon, W.M.; Dockerty, M.B.; Beart, R.W., Jr.; Kurland, L.T. Cholecystectomy and carcinoma of the colon. Lancet 1981, 2, 379–381. [Google Scholar] [CrossRef]
- Jean-Louis, S.; Akare, S.; Ali, M.A.; Mash, E.A., Jr.; Meuillet, E.; Martinez, J.D. Deoxycholic acid induces intracellular signaling through membrane perturbations. J. Biol. Chem. 2006, 281, 14948–14960. [Google Scholar] [CrossRef]
- Sarashina-Kida, H.; Negishi, H.; Nishio, J.; Suda, W.; Nakajima, Y.; Yasui-Kato, M.; Iwaisako, K.; Kang, S.; Endo, N.; Yanai, H.; et al. Gallbladder-derived surfactant protein D regulates gut commensal bacteria for maintaining intestinal homeostasis. Proc. Natl. Acad. Sci. USA 2017, 114, 10178–10183. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, L.; Zhang, Q.; Chen, W.; Xie, H. The impact of long-term (≥5 years) cholecystectomy on gut microbiota changes and its influence on colorectal cancer risk: Based on 16S rDNA sequencing analysis. Eur. J. Gastroenterol. Hepatol. 2024, 36, 1288–1297. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Loree, J.M.; Pereira, A.A.L.; Lam, M.; Willauer, A.N.; Raghav, K.; Dasari, A.; Morris, V.K.; Advani, S.; Menter, D.G.; Eng, C.; et al. Classifying Colorectal Cancer by Tumor Location Rather than Sidedness Highlights a Continuum in Mutation Profiles and Consensus Molecular Subtypes. Clin. Cancer Res. 2018, 24, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Colditz, G.A.; Stampfer, M.J. A meta-analysis of cholecystectomy and risk of colorectal cancer. Gastroenterology 1993, 105, 130–141. [Google Scholar] [CrossRef]
- Ciepiela, I.; Szczepaniak, M.; Ciepiela, P.; Hińcza-Nowak, K.; Kopczyński, J.; Macek, P.; Kubicka, K.; Chrapek, M.; Tyka, M.; Góźdź, S.; et al. Tumor location matters, next generation sequencing mutation profiling of left-sided, rectal, and right-sided colorectal tumors in 552 patients. Sci. Rep. 2024, 14, 4619. [Google Scholar] [CrossRef]
- Pak, M.; Lindseth, G. Risk Factors for Cholelithiasis. Gastroenterol. Nurs. 2016, 39, 297–309. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, C.L.; Kao, C.H. Association between Inflammatory Bowel Disease and Cholelithiasis: A Nationwide Population-Based Cohort Study. Int. J. Environ. Res. Public. Health 2018, 15, 513. [Google Scholar] [CrossRef]
- Akter, S.; Islam, Z.; Mizoue, T.; Sawada, N.; Ihira, H.; Tsugane, S.; Koyanagi, Y.N.; Ito, H.; Wang, C.; Tamakoshi, A.; et al. Smoking and colorectal cancer: A pooled analysis of 10 population-based cohort studies in Japan. Int. J. Cancer 2021, 148, 654–664. [Google Scholar] [CrossRef]
- Xu, F.; Chen, R.; Zhang, C.; Wang, H.; Ding, Z.; Yu, L.; Tian, F.; Chen, W.; Zhou, Y.; Zhai, Q. Cholecystectomy Significantly Alters Gut Microbiota Homeostasis and Metabolic Profiles: A Cross-Sectional Study. Nutrients 2023, 15, 4399. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Pei, Y.; Wang, J.; Liang, Q.; Chen, W. Association of dietary quality indicators with gallstones in the US: NHANES 2017-2020. BMC Public. Health 2025, 25, 976. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; Barnich, N.; Nguyen, H.T.T. Microbiota, Inflammation and Colorectal Cancer. Int. J. Mol. Sci. 2017, 18, 1310. [Google Scholar] [CrossRef]
- Baig, M.M.A.; Irfan, S.A.; Sumbal, A.; Sumbal, R.; Kumar, S.; Ahmad, J.; Gandrakota, N.; Qadar, L.T.; Chaudhry, M.S.; Feroz, A.; et al. Prevalence of Gallstones in Ulcerative Colitis and Crohn’s Disease: A Systematic Review and Meta-Analysis. Cureus 2022, 14, e26121. [Google Scholar] [CrossRef] [PubMed]
Author (Year, Ref., Country) | Design | Population (CE vs. Control) | Follow-Up (yrs) | Lag Time | CRC Cases (CE vs. Control) | Effect Estimate (95% CI) | CRC Risk | Interpretation | NOS |
---|---|---|---|---|---|---|---|---|---|
Kim Y (2025, [3], Korea) | Retrospective cohort | 715,872 CE vs. 1,431,728 controls | 5–13 | 1 yr | 4374 vs. 9299 | HR 0.82 (0.80–0.86) | ↓ | Reduced long-term risk | 9 |
Kim M (2024 [12], Korea) | Retrospective cohort | 174,874 CE vs. 174,874 controls | ≤9 | 1 yr | 1152 vs. 1018 | HR 1.15 (1.06–1.25) | ↑ | Increased risk, esp. with smoking | 9 |
Tsai (2023 [13], Taiwan) | Retrospective cohort | 2404 CE vs. 112,948 controls | 2–18.8 | 1 yr | 221 vs. 3436 | RR 1.42 (1.24–1.62) | ↑ | Elevated long-term risk | 9 |
Choi (2022, [14], Korea) | Retrospective cohort | 123,295 CE vs. 123,295 controls | 4.6 (mean) | 1 yr | 1078 vs. 1003 | RR 1.03 (0.88–1.21) | – | No association | 8 |
Jung (2021, [15], Korea) | Retrospective cohort | 408,769 CE patients | 4.7 (mean) | 1 yr | 1773 | RR 1.55 (1.48–1.63) | ↑ | Consistent increase | 6 |
Kim (2020, [16], Korea) | Retrospective cohort | 3588 CE patients | 15 mo (0–146) | 1 yr | 21 | RR 2.08 (1.28–3.17) | ↑ | Short-term increased risk | 6 |
Chen (2020, [17], Taiwan) | Retrospective cohort | 83,963 CE vs. 83,963 controls | Until CRC/death | 6 mo | 638 vs. 1170 | RR 0.66 (0.60–0.73) | ↓ | Decreased risk | 9 |
Lee (2018, [18], Korea) | Retrospective cohort | 11,362 CE vs. 696,301 controls | 13.7 (mean) | 1 yr | 34 vs. 4276 | RR 0.79 (0.56–1.10) | – | No association | 8 |
Shabanzadeh (2017, [19], Denmark) | Retrospective cohort | 187 CE vs. 5327 controls | 24.7 (mean) | None | 11 vs. 183 | RR 1.35 (0.73–2.51) | – | No association | 8 |
Chen (2014, [20], Taiwan) | Retrospective cohort | 5850 CE vs. 62,180 controls | Unclear | None | 67 vs. 76 | HR 1.56 (1.12–2.17) | ↑ | Elevated risk | 7 |
Goldacre (2012, [21], UK) | Retrospective cohort | 327,460 CE vs. 3,000,000 controls | Until CRC/death | 2 yr | 2245 vs. 3622 | RR 1.24 (1.02–1.51) | ↑ | Modest increase | 8 |
Goldacre (2005, [22], UK) | Retrospective cohort | 39,254 CE vs. 334,813 controls | Until cancer/death | 2 yr | 505 vs. 3731 | RR 1.02 (0.93–1.11) | – | No association | 6 |
Shao (2005, 2005 [23], USA) | Retrospective cohort | 55,960 CE vs. 574,668 controls | Until CRC/death | 1 yr | 297 vs. 2218 | RR 1.32 (1.16–1.48) | ↑ | Elevated risk | 7 |
Lagergren (2001, [24], Sweden) | Retrospective cohort | 278,460 CE patients | 12.1 (mean) | 1 yr | 3425 | RR 1.01 (0.92–1.11) | – | No association | 7 |
Johansen (1996, [25], Denmark) | Retrospective cohort | 42,098 gallstone pts (72.4% CE) | 1–16 | 1 yr | 344 vs. 147 | RR 1.09 (1.00–1.18) | ↑ | Slight increase | 7 |
Ekbom (1993, [26], Sweden) | Retrospective cohort | 62,615 CE patients | Until 1987 | 1 yr | 633 | RR 0.99 (0.92–1.07) | – | No association | 6 |
Goldbohm (1993, [27], NL) | Prospective cohort | 3500 (men/women with gallstones/CE) | 3.3 (mean) | None | 53 vs. 408 | RR 1.60 (1.16–2.19) | ↑ | Elevated risk | 8 |
Nielsen (1991, [28], Iceland) | Prospective cohort | 3425 CE patients | 8–33 | None | 57 | RR 1.08 (0.82–1.40) | – | No association | 7 |
Adami (1987, [29], Sweden) | Prospective cohort | 16,439 CE patients | 14–17 | None | 150 | RR 0.91 (0.77–1.07) | – | No association | 7 |
Adami (1983, [30], Sweden) | Prospective cohort | 16,773 CE patients | 11–14 | None | 130 | RR 0.85 (0.68–1.07) | – | No association | 6 |
Linos (1981, [31], Greece) | Retrospective cohort | 1681 CE patients | 13 (mean) | 6 mo | 42 | RR 1.30 (0.95–1.78) | – | No association | 7 |
Study (Year) | Age and Sex | Smoking | Alcohol | BMI | Diet | DM | IBD | Other Comorbidities * |
---|---|---|---|---|---|---|---|---|
Kim Y et al. 2025 [3] | ||||||||
Kim M et al. 2024 [12] | ||||||||
Tsai et al. 2023 [13] | ||||||||
Choi et al. 2022 [14] | ||||||||
Jung et al. 2021 [15] | ||||||||
Kim et al. 2020 [16] | ||||||||
Chen et al. 2020 [17] | ||||||||
Lee et al. 2018 [18] | ||||||||
Shabanzadeh 2017 [19] | ||||||||
Chen et al. 2014 [20] | ||||||||
Goldacre 2012 [21] | ||||||||
Goldacre 2005 [22] | ||||||||
Shao 2005 [23] | ||||||||
Lagergren 2001 [24] | ||||||||
Johansen 1996 [25] | ||||||||
Ekbom 1993 [26] | ||||||||
Goldbohm 1993 [27] | ||||||||
Nielsen 1991 [28] | ||||||||
Adami 1987 [29] | ||||||||
Adami 1983 [30] | ||||||||
Linos 1981 [31] |
Confounder | No. of Studies Adjusted (Out of 21) |
---|---|
Age and Sex | 21 |
Smoking | 4 |
Alcohol use | 4 |
BMI | 3 |
Dietary habits | 2 |
Diabetes mellitus | 5 |
IBD | 2 |
Other comorbidities * | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelis, P.-H.; Grotto, S.; Ibis, K.A.; Nahar, N.; Belhaj, A.; Benhadda, M.; Vanlander, A.; Messaoudi, N. Colorectal Cancer Risk Following Cholecystectomy: An Updated Systematic Review. Cancers 2025, 17, 3114. https://doi.org/10.3390/cancers17193114
Nelis P-H, Grotto S, Ibis KA, Nahar N, Belhaj A, Benhadda M, Vanlander A, Messaoudi N. Colorectal Cancer Risk Following Cholecystectomy: An Updated Systematic Review. Cancers. 2025; 17(19):3114. https://doi.org/10.3390/cancers17193114
Chicago/Turabian StyleNelis, Pierre-Henri, Stefano Grotto, Kenza Azra Ibis, Nashaira Nahar, Azzadinne Belhaj, Myriam Benhadda, Aude Vanlander, and Nouredin Messaoudi. 2025. "Colorectal Cancer Risk Following Cholecystectomy: An Updated Systematic Review" Cancers 17, no. 19: 3114. https://doi.org/10.3390/cancers17193114
APA StyleNelis, P.-H., Grotto, S., Ibis, K. A., Nahar, N., Belhaj, A., Benhadda, M., Vanlander, A., & Messaoudi, N. (2025). Colorectal Cancer Risk Following Cholecystectomy: An Updated Systematic Review. Cancers, 17(19), 3114. https://doi.org/10.3390/cancers17193114