EZH2 Dysregulation and Its Oncogenic Role in Human Cancers
Simple Summary
Abstract
1. Introduction
2. EZH2 Structure
3. Molecular Alterations of EZH2 in Cancer
4. EZH2 Protein Interactions in Cancer
5. EZH2 Dysregulation in Human Cancers
5.1. EZH2 and Bladder Cancer
5.2. EZH2 and Breast Cancer
5.3. EZH2 and Cervical Cancer
5.4. EZH2 and Colorectal Cancer
5.5. EZH2 and Esophageal Cancer
5.6. EZH2 and Gastric Cancer
5.7. EZH2 and Glioblastoma
5.8. EZH2 and Head and Neck Cancer
5.9. EZH2 and Kidney Cancer
5.10. EZH2 and Liver Cancer
5.11. EZH2 and Lung Cancer
5.12. EZH2 and Nasopharyngeal/Oral Cancer
5.13. EZH2 and Ovarian Cancer
5.14. EZH2 and Pancreatic Cancer
5.15. EZH2 and Prostate Cancer
5.16. EZH2 Expression and Sarcoma
5.17. EZH2 and Skin Cancer
5.18. EZH2 and Thyroid Cancer
5.19. EZH2 Expression in Hematological Malignancies
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Deb, G.; Singh, A.K.; Gupta, S. EZH2: Not EZHY (easy) to deal. Mol. Cancer Res. 2014, 12, 639–653. [Google Scholar] [CrossRef]
- Duan, R.; Du, W.; Guo, W. EZH2: A novel target for cancer treatment. J. Hematol. Oncol. 2020, 13, 104. [Google Scholar] [CrossRef]
- Nichol, J.N.; Dupéré-Richer, D.; Ezponda, T.; Licht, J.D.; Miller, W.H., Jr. H3K27 Methylation: A Focal Point of Epigenetic Deregulation in Cancer. Adv. Cancer Res. 2016, 131, 59–95. [Google Scholar] [CrossRef]
- Chammas, P.; Mocavini, I.; Di Croce, L. Engaging chromatin: PRC2 structure meets function. Br. J. Cancer 2020, 122, 315–328. [Google Scholar] [CrossRef]
- Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomark. Res. 2018, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Shankar, E.; Gupta, S. EZH2-mediated development of therapeutic resistance in cancer. Cancer Lett. 2024, 586, 216706. [Google Scholar] [CrossRef] [PubMed]
- Tamburri, S.; Rustichelli, S.; Amato, S.; Pasini, D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol. Cell 2024, 84, 3381–3405. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Liu, Y.; Hsu, Y.-J.; Fujiwara, Y.; Kim, J.; Mao, X.; Yuan, G.-C.; Orkin, S.H. EZH1 Mediates Methylation on Histone H3 Lysine 27 and Complements EZH2 in Maintaining Stem Cell Identity and Executing Pluripotency. Mol. Cell 2008, 32, 491–502. [Google Scholar] [CrossRef]
- Han, Z.; Xing, X.; Hu, M.; Zhang, Y.; Liu, P.; Chai, J. Structural Basis of EZH2 Recognition by EED. Structure 2007, 15, 1306–1315. [Google Scholar] [CrossRef]
- Laugesen, A.; Højfeldt, J.W.; Helin, K. Molecular Mechanisms Directing PRC2 Recruitment and H3K27 Methylation. Mol. Cell 2019, 74, 8–18. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 2004, 14, 155–164. [Google Scholar] [CrossRef]
- Kim, E.; Kim, M.; Woo, D.H.; Shin, Y.; Shin, J.; Chang, N.; Oh, Y.T.; Kim, H.; Rheey, J.; Nakano, I.; et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 2013, 23, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Li, Y.; Meng, Q.; Li, Q.; Li, F.; Lu, B.; Shen, J.; Fazli, L.; Zhao, D.; Li, C.; et al. A PRC2-independent function for EZH2 in regulating rRNA 2′-O methylation and IRES-dependent translation. Nat. Cell Biol. 2021, 23, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Tan, D.; Zhu, M.; Qu, Y.; Ma, X.; Song, B.-L.; Qi, W. EZH2 W113C is a gain-of-function mutation in B-cell lymphoma enabling both PRC2 methyltransferase activation and tazemetostat resistance. J. Biol. Chem. 2023, 299, 103073. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Shubbar, M.; Yang, X.; Zhang, Q.; Chen, S.; Wu, Q.; Chen, Z.; Rizo, J.; Liu, X. A partially disordered region connects gene repression and activation functions of EZH2. Proc. Natl. Acad. Sci. USA 2020, 117, 16992–17002. [Google Scholar] [CrossRef]
- Wu, H.; Zeng, H.; Dong, A.; Li, F.; He, H.; Senisterra, G.; Seitova, A.; Duan, S.; Brown, P.J.; Vedadi, M.; et al. Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. PLoS ONE 2013, 8, e83737. [Google Scholar] [CrossRef]
- Tan, J.-z.; Yan, Y.; Wang, X.-x.; Jiang, Y.; Xu, H.E. EZH2: Biology, disease, and structure-based drug discovery. Acta Pharmacol. Sin. 2014, 35, 161–174. [Google Scholar] [CrossRef]
- McCabe, M.T.; Graves, A.P.; Ganji, G.; Diaz, E.; Halsey, W.S.; Jiang, Y.; Smitheman, K.N.; Ott, H.M.; Pappalardi, M.B.; Allen, K.E.; et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc. Natl. Acad. Sci. USA 2012, 109, 2989–2994. [Google Scholar] [CrossRef]
- Majer, C.R.; Jin, L.; Scott, M.P.; Knutson, S.K.; Kuntz, K.W.; Keilhack, H.; Smith, J.J.; Moyer, M.P.; Richon, V.M.; Copeland, R.A.; et al. A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett. 2012, 586, 3448–3451. [Google Scholar] [CrossRef]
- Sneeringer, C.J.; Scott, M.P.; Kuntz, K.W.; Knutson, S.K.; Pollock, R.M.; Richon, V.M.; Copeland, R.A. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl. Acad. Sci. USA 2010, 107, 20980–20985. [Google Scholar] [CrossRef]
- Cha, T.L.; Zhou, B.P.; Xia, W.; Wu, Y.; Yang, C.C.; Chen, C.T.; Ping, B.; Otte, A.P.; Hung, M.C. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 2005, 310, 306–310. [Google Scholar] [CrossRef]
- Kaur, P.; Verma, S.; Kushwaha, P.P.; Gupta, S. EZH2 and NF-κB: A context-dependent crosstalk and transcriptional regulation in cancer. Cancer Lett. 2023, 560, 216143. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.C.; LaBaff, A.; Wei, Y.; Nie, L.; Xia, W.; Huo, L.; Yamaguchi, H.; Hsu, Y.H.; Hsu, J.L.; Liu, D.; et al. Phosphorylation of EZH2 at T416 by CDK2 contributes to the malignancy of triple negative breast cancers. Am. J. Transl. Res. 2015, 7, 1009–1020. [Google Scholar] [PubMed]
- Hernández-Muñoz, I.; Taghavi, P.; Kuijl, C.; Neefjes, J.; van Lohuizen, M. Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol. Cell Biol. 2005, 25, 11047–11058. [Google Scholar] [CrossRef] [PubMed]
- Viré, E.; Brenner, C.; Deplus, R.; Blanchon, L.; Fraga, M.; Didelot, C.; Morey, L.; Van Eynde, A.; Bernard, D.; Vanderwinden, J.-M.; et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006, 439, 871–874. [Google Scholar] [CrossRef]
- Ohm, J.E.; McGarvey, K.M.; Yu, X.; Cheng, L.; Schuebel, K.E.; Cope, L.; Mohammad, H.P.; Chen, W.; Daniel, V.C.; Yu, W.; et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 2007, 39, 237–242. [Google Scholar] [CrossRef]
- Schlesinger, Y.; Straussman, R.; Keshet, I.; Farkash, S.; Hecht, M.; Zimmerman, J.; Eden, E.; Yakhini, Z.; Ben-Shushan, E.; Reubinoff, B.E.; et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 2007, 39, 232–236. [Google Scholar] [CrossRef]
- Kuzmichev, A.; Nishioka, K.; Erdjument-Bromage, H.; Tempst, P.; Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002, 16, 2893–2905. [Google Scholar] [CrossRef]
- van der Vlag, J.; Otte, A.P. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat. Genet. 1999, 23, 474–478. [Google Scholar] [CrossRef]
- Lee, E.R.; Murdoch, F.E.; Fritsch, M.K. High histone acetylation and decreased polycomb repressive complex 2 member levelsregulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells 2007, 25, 2191–2199. [Google Scholar] [CrossRef]
- Tie, F.; Banerjee, R.; Stratton, C.A.; Prasad-Sinha, J.; Stepanik, V.; Zlobin, A.; Diaz, M.O.; Scacheri, P.C.; Harte, P.J. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 2009, 136, 3131–3141. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; Yi, S.-J.; Kim, K. Gene regulation by histone-modifying enzymes under hypoxic conditions: A focus on histone methylation and acetylation. Exp. Mol. Med. 2022, 54, 878–889. [Google Scholar] [CrossRef]
- Cookis, T.; Lydecker, A.; Sauer, P.; Kasinath, V.; Nogales, E. Structural basis for the inhibition of PRC2 by active transcription histone posttranslational modifications. Nat. Struct. Mol. Biol. 2025, 32, 393–404. [Google Scholar] [CrossRef]
- Kim, K.H.; Roberts, C.W. Targeting EZH2 in cancer. Nat. Med. 2016, 22, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Porazzi, P.; Nason, S.; Yang, Z.; Carturan, A.; Ghilardi, G.; Guruprasad, P.; Patel, R.P.; Tan, M.; Padmanabhan, A.A.; Lemoine, J.; et al. EZH1/EZH2 inhibition enhances adoptive T cell immunotherapy against multiple cancer models. Cancer Cell 2025, 43, 537–551.e7. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, M.; Wang, D.; Hou, P.; Chen, X.; Chu, S.; Chai, D.; Zheng, J.; Bai, J. Post-translational modifications of EZH2 in cancer. Cell Biosci. 2020, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Kempkes, R.W.M.; Prinjha, R.K.; de Winther, M.P.J.; Neele, A.E. Novel insights into the dynamic function of PRC2 in innate immunity. Trends Immunol. 2024, 45, 1015–1030. [Google Scholar] [CrossRef]
- Zimmerman, S.M.; Lin, P.N.; Souroullas, G.P. Non-canonical functions of EZH2 in cancer. Front. Oncol. 2023, 13, 1233953. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, R.; Wang, Y.; Gonzalez, M.E.; Zhang, H.; Liu, Y.; Kleer, C.G.; Xue, L. Regulation of EZH2 protein stability: New mechanisms, roles in tumorigenesis, and roads to the clinic. EBioMedicine 2024, 100, 104972. [Google Scholar] [CrossRef]
- Beca, F.; Kensler, K.; Glass, B.; Schnitt, S.J.; Tamimi, R.M.; Beck, A.H. EZH2 protein expression in normal breast epithelium and risk of breast cancer: Results from the Nurses’ Health Studies. Breast Cancer Res. 2017, 19, 21. [Google Scholar] [CrossRef]
- Jones, B.A.; Varambally, S.; Arend, R.C. Histone Methyltransferase EZH2: A Therapeutic Target for Ovarian Cancer. Mol. Cancer Ther. 2018, 17, 591–602. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q. The roles of EZH2 in cancer and its inhibitors. Med. Oncol. 2023, 40, 167. [Google Scholar] [CrossRef] [PubMed]
- Goleij, P.; Heidari, M.M.; Tabari, M.A.K.; Hadipour, M.; Rezaee, A.; Javan, A.; Sanaye, P.M.; Larsen, D.S.; Daglia, M.; Khan, H. Polycomb repressive complex 2 (PRC2) pathway’s role in cancer cell plasticity and drug resistance. Funct. Integr. Genom. 2025, 25, 53. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, P.; Ye, J.; Xie, G.; Yang, J.; Liu, W. Serum EZH2 is a novel biomarker for bladder cancer diagnosis and prognosis. Front. Oncol. 2024, 14, 1303918. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Yu, J.; Dhanasekaran, S.M.; Kim, J.H.; Mani, R.S.; Tomlins, S.A.; Mehra, R.; Laxman, B.; Cao, X.; Yu, J.; et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008, 27, 7274–7284. [Google Scholar] [CrossRef]
- Wang, H.; Mei, Y.; Luo, C.; Huang, Q.; Wang, Z.; Lu, G.-M.; Qin, L.; Sun, Z.; Huang, C.-W.; Yang, Z.-W.; et al. Single-Cell Analyses Reveal Mechanisms of Cancer Stem Cell Maintenance and Epithelial–Mesenchymal Transition in Recurrent Bladder Cancer. Clin. Cancer Res. 2022, 27, 6265–6278. [Google Scholar] [CrossRef]
- Chen, Z.; Du, Y.; Liu, X.; Chen, H.; Weng, X.; Guo, J.; Wang, M.; Wang, X.; Wang, L. EZH2 inhibition suppresses bladder cancer cell growth and metastasis via the JAK2/STAT3 signaling pathway. Oncol. Lett. 2019, 18, 907–915. [Google Scholar] [CrossRef]
- Mirzaei, S.; Gholami, M.H.; Hushmandi, K.; Hashemi, F.; Zabolian, A.; Canadas, I.; Zarrabi, A.; Nabavi, N.; Aref, A.R.; Crea, F.; et al. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J. Hematol. Oncol. 2022, 15, 18. [Google Scholar] [CrossRef]
- Min, J.; Ma, J.; Wang, Q.; Yu, D. Long non-coding RNA SNHG1 promotes bladder cancer progression by upregulating EZH2 and repressing KLF2 transcription. Clinics 2022, 77, 100081. [Google Scholar] [CrossRef]
- Xiang, W.; Lyu, L.; Huang, T.; Zheng, F.; Yuan, J.; Zhang, C.; Jiang, G. The long non-coding RNA SNHG1 promotes bladder cancer progression by interacting with miR-143-3p and EZH2. J. Cell. Mol. Med. 2020, 24, 11858–11873. [Google Scholar] [CrossRef]
- Weikert, S.; Christoph, F.; Köllermann, J.; Müller, M.; Schrader, M.; Miller, K.; Krause, H. Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int. J. Mol. Med. 2005, 16, 349–353. [Google Scholar] [CrossRef]
- Mohamedali, R.; Mitra, S.; Mandal, S.; Nayak, P.; Adhya, A.K.; Purkait, S. Expression of EZH2 and H3K27me3 predicts tumor biology of urothelial carcinoma. Indian J. Pathol. Microbiol. 2023, 66, 488–494. [Google Scholar]
- Sameh, R.; Mostafa, N.; Ramadan, M.; AbdelRaouf, S.; Abdelwahab, K. Prognostic significance of EZH2 and ARID1A expression in urothelial carcinoma: An immunohistochemical study. J. Histotechnol. 2022, 45, 21–28. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, X.; Wang, Q.; Kong, Z. EZH2 targeting to improve the sensitivity of acquired radio-resistance bladder cancer cells. Transl. Oncol. 2022, 16, 101316. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, N.; Zhang, J.; Ji, H.; Liu, Y.; Yang, J.; Chen, Z. Increased expression of EZH2 indicates aggressive potential of urothelial carcinoma of the bladder in a Chinese population. Sci. Rep. 2018, 8, 17792. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, Z.; Guo, L.; Fu, C. Effect of wound fluid on chemotherapy sensitivity of T24 bladder cancer cells with different enhancer of zeste homolog 2 status. Oncotarget 2017, 8, 63258–63264. [Google Scholar] [CrossRef] [PubMed]
- Warrick, J.I.; Raman, J.D.; Kaag, M.; Bruggeman, T.; Cates, J.; Clark, P.; DeGraff, D.J. Enhancer of zeste homolog 2 (EZH2) expression in bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2016, 34, e251–e258. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.S.; Liao, C.H.; Tsai, C.W.; Hu, P.S.; Wu, H.C.; Hsu, S.W.; Hsiao, C.L.; Hsu, C.H.; Hung, Y.W.; Bau, D.T. Association of Enhancer of Zeste 2 (EZH2) Genotypes with Bladder Cancer Risk in Taiwan. Anticancer. Res. 2016, 36, 4509–4514. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.L.; Su, K.J.; Hsieh, M.J.; Wang, S.S.; Wang, P.H.; Weng, W.C.; Yang, S.F. Impact of EZH2 polymorphisms on urothelial cell carcinoma susceptibility and clinicopathologic features. PLoS ONE 2014, 9, e93635. [Google Scholar] [CrossRef]
- Hayashi, A.; Morikawa, T.; Kawai, T.; Kume, H.; Ishikawa, S.; Homma, Y.; Fukayama, M. Clinicopathological and prognostic significance of EZH2 expression in upper urinary tract carcinoma. Virchows Arch. 2014, 464, 463–471. [Google Scholar] [CrossRef]
- Wang, H.; Albadine, R.; Magheli, A.; Guzzo, T.J.; Ball, M.W.; Hinz, S.; Schoenberg, M.P.; Netto, G.J.; Gonzalgo, M.L. Increased EZH2 protein expression is associated with invasive urothelial carcinoma of the bladder. Urol. Oncol. Semin. Orig. Investig. 2012, 30, 428–433. [Google Scholar] [CrossRef]
- Hinz, S.; Kempkensteffen, C.; Christoph, F.; Krause, H.; Schrader, M.; Schostak, M.; Miller, K.; Weikert, S. Expression parameters of the polycomb group proteins BMI1, SUZ12, RING1 and CBX7 in urothelial carcinoma of the bladder and their prognostic relevance. Tumour Biol. 2008, 29, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Hinz, S.; Kempkensteffen, C.; Christoph, F.; Hoffmann, M.; Krause, H.; Schrader, M.; Schostak, M.; Miller, K.; Weikert, S. Expression of the polycomb group protein EZH2 and its relation to outcome in patients with urothelial carcinoma of the bladder. J. Cancer Res. Clin. Oncol. 2008, 134, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Raman, J.D.; Mongan, N.P.; Tickoo, S.K.; Boorjian, S.A.; Scherr, D.S.; Gudas, L.J. Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin. Cancer Res. 2005, 11 Pt 1, 8570–8576. [Google Scholar] [CrossRef] [PubMed]
- Arisan, S.; Buyuktuncer, E.D.; Palavan-Unsal, N.; Caşkurlu, T.; Cakir, O.O.; Ergenekon, E. Increased expression of EZH2, a polycomb group protein, in bladder carcinoma. Urol. Int. 2005, 75, 252–257. [Google Scholar] [CrossRef]
- Adibfar, S.; Elveny, M.; Kashikova, H.S.; Mikhailova, M.V.; Farhangnia, P.; Vakili-Samiani, S.; Tarokhian, H.; Jadidi-Niaragh, F. The molecular mechanisms and therapeutic potential of EZH2 in breast cancer. Life Sci. 2021, 286, 120047. [Google Scholar] [CrossRef]
- Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol. 2014, 5, 412–424. [Google Scholar] [CrossRef]
- Jang, S.H.; Lee, J.E.; Oh, M.H.; Lee, J.H.; Cho, H.D.; Kim, K.J.; Kim, S.Y.; Han, S.W.; Kim, H.J.; Bae, S.B.; et al. High EZH2 Protein Expression Is Associated with Poor Overall Survival in Patients with Luminal A Breast Cancer. J. Breast Cancer 2016, 19, 53–60. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, H.; Luo, Y.; Tong, S.; Liu, Y. EZH2: The roles in targeted therapy and mechanisms of resistance in breast cancer. Biomed. Pharmacother. 2024, 175, 116624. [Google Scholar] [CrossRef]
- Shi, B.; Liang, J.; Yang, X.; Wang, Y.; Zhao, Y.; Wu, H.; Sun, L.; Zhang, Y.; Chen, Y.; Li, R.; et al. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol. Cell. Biol. 2007, 27, 5105–5119. [Google Scholar] [CrossRef]
- Lee, S.T.; Li, Z.; Wu, Z.; Aau, M.; Guan, P.; Karuturi, R.K.M.; Liou, Y.C.; Yu, Q. Context-Specific Regulation of NF-κB Target Gene Expression by EZH2 in Breast Cancers. Mol. Cell 2011, 43, 798–810. [Google Scholar] [CrossRef]
- Anwar, T.; Gonzalez, M.E.; Kleer, C.G. Noncanonical Functions of the Polycomb Group Protein EZH2 in Breast Cancer. Am. J. Pathol. 2021, 191, 774–783. [Google Scholar] [CrossRef]
- Yu, F.; Li, L.; Zhang, M.; Sun, S. Phosphorylation of EZH2 differs HER2-positive breast cancer invasiveness in a site-specific manner. BMC Cancer 2023, 23, 948. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, C.-W. Epigenetic modulations in triple-negative breast cancer: Therapeutic implications for tumor microenvironment. Pharmacol. Res. 2024, 204, 107205. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Lee, S.T.; Qiao, Y.; Li, Z.; Lee, P.L.; Lee, Y.J.; Jiang, X.; Tan, J.; Aau, M.; Lim, C.Z.H.; et al. Polycomb protein EZH2 regulates cancer cell fate decision in response to DNA damage. Cell Death Differ. 2011, 18, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, C.; Li, S.; Yin, F.; Luo, H.; Zhang, Y.; Luo, Z.; Chen, Y.; Wan, S.; Kong, L.; et al. Dual target PARP1/EZH2 inhibitors inducing excessive autophagy and producing synthetic lethality for triple-negative breast cancer therapy. Eur. J. Med. Chem. 2024, 265, 116054. [Google Scholar] [CrossRef]
- Mao, Q.; Wu, P.; Li, H.; Fu, X.; Gao, X.; Yang, L. CRISPR/Cas9-mediated EZH2 knockout suppresses the proliferation and migration of triple-negative breast cancer cells. Oncol. Lett. 2023, 26, 343. [Google Scholar] [CrossRef]
- Gan, Y.; Lo, Y.; Makower, D.; Kleer, C.; Lu, J.; Fineberg, S. EZH2 Protein Expression in Estrogen Receptor Positive Invasive Breast Cancer Treated with Neoadjuvant Endocrine Therapy: An Exploratory Study of Association with Tumor Response. Appl. Immunohistochem. Mol. Morphol. 2022, 30, 614–622. [Google Scholar] [CrossRef]
- Wang, Y.F.; Yu, L.; Hu, Z.L.; Fang, Y.F.; Shen, Y.Y.; Song, M.F.; Chen, Y. Regulation of CCL2 by EZH2 affects tumor-associated macrophages polarization and infiltration in breast cancer. Cell Death Dis. 2022, 13, 748. [Google Scholar] [CrossRef]
- Liu, L.C.; Chien, Y.C.; Wu, G.W.; Hua, C.H.; Tsai, I.C.; Hung, C.C.; Wu, T.K.; Pan, Y.R.; Yang, S.F.; Yu, Y.L. Analysis of EZH2 Genetic Variants on Triple-Negative Breast Cancer Susceptibility and Pathology. Int. J. Med. Sci. 2022, 19, 1023–1028. [Google Scholar] [CrossRef]
- McMullen, E.R.; Skala, S.L.; Gonzalez, M.E.; Djomehri, S.; Chandrashekar, D.S.; Varambally, S.; Kleer, C.G. Subcellular localization of EZH2 phosphorylated at T367 stratifies metaplastic breast carcinoma subtypes. Breast Cancer 2021, 28, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhao, S.; Shi, Z.; Cao, L.; Liu, J.; Pan, T.; Zhou, D.; Zhang, J. Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling. J. Exp. Clin. Cancer Res. 2021, 40, 120. [Google Scholar] [CrossRef]
- Zhou, X.; Jiao, D.; Dou, M.; Zhang, W.; Lv, L.; Chen, J.; Li, L.; Wang, L.; Han, X. Curcumin inhibits the growth of triple-negative breast cancer cells by silencing EZH2 and restoring DLC1 expression. J. Cell. Mol. Med. 2020, 24, 10648–10662. [Google Scholar] [CrossRef]
- Dou, D.; Ge, X.; Wang, X.; Xu, X.; Zhang, Z.; Seng, J.; Cao, Z.; Gu, Y.; Han, M. EZH2 Contributes To Cisplatin Resistance In Breast Cancer by Epigenetically Suppressing miR-381 Expression. OncoTargets Ther. 2019, 12, 9627–9637. [Google Scholar] [CrossRef]
- Anwar, T.; Arellano-Garcia, C.; Ropa, J.; Chen, Y.-C.; Kim, H.S.; Yoon, E.; Grigsby, S.; Basrur, V.; Nesvizhskii, A.I.; Muntean, A.; et al. p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat. Commun. 2018, 9, 2801. [Google Scholar] [CrossRef]
- Boostani, F.; Dolatkhah, R.; Fakhrjou, A.; Farassati, F.; Sanaat, Z. Association of clinicopathologic characteristics and outcomes with EZH2 expression in patients with breast cancer in East Azerbaijan, Iran. OncoTargets Ther. 2018, 11, 449–457. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Cenciarini, M.E.; Proietti, C.J.; Amasino, M.; Hong, T.; Yang, M.; Liao, Y.; Chiang, H.C.; Kaklamani, V.G.; et al. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ERα-GREB1 Transcriptional Axis. Cancer Res. 2018, 78, 671–684. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, T.; Bao, X.; He, M.; Li, L.; Yang, X. Increased EZH2 expression is associated with proliferation and progression of cervical cancer and indicates a poor prognosis. Int. J. Gynecol. Pathol. 2014, 33, 218–224. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, S.; Chang, J.; Quan, S.; Yang, T.; Zhao, M.; Wang, L.; Yang, X. Activation of the CCL22/CCR4 causing EMT process remodeling under EZH2-mediated epigenetic regulation in cervical carcinoma. J. Cancer 2024, 15, 6299–6314. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Li, Y.; Wang, L.; Yuan, N.; Ma, M.; Chen, Y. LncRNA SNHG8 accelerates proliferation and inhibits apoptosis in HPV-induced cervical cancer through recruiting EZH2 to epigenetically silence RECK expression. J. Cell. Biochem. 2020, 121, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Salmerón-Bárcenas, E.G.; Zacapala-Gómez, A.E.; Ortiz-Ortiz, J.; Torres-Rojas, F.I.; Ávila-López, P.A. Integrated bioinformatics analysis reveals that EZH2-rich domains promote transcriptional repression in cervical cancer. EXCLI J. 2022, 21, 852–868. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, S.; Pei, M.; Zhao, M.; Wang, L.; Jiang, Y.; Yang, T.; Zhao, J.; Song, L.; Yang, X. Crosstalk between histone modification and DNA methylation orchestrates the epigenetic regulation of the costimulatory factors, Tim-3 and galectin-9, in cervical cancer. Oncol. Rep. 2019, 42, 2655–2669. [Google Scholar] [CrossRef]
- Azizmohammadi, S.; Azizmohammadi, S.; Safari, A.; Kaghazian, M.; Sadrkhanlo, M.; Behnod, V.; Seifoleslami, M. High-Level Expression of RIPK4 and EZH2 Contributes to Lymph Node Metastasis and Predicts Favorable Prognosis in Patients With Cervical Cancer. Oncol. Res. 2017, 25, 495–501. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, P.S.; Yang, W.T. EZH2-mediated repression of GSK-3β and TP53 promotes Wnt/β-catenin signaling-dependent cell expansion in cervical carcinoma. Oncotarget 2016, 7, 36115–36129. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, P.; Li, W.; He, F.; Wei, J.; Zhang, T.; Zhong, J.; Chen, H.; Cao, J. Expression of EZH2 is associated with poor outcome in colorectal cancer. Oncol. Lett. 2018, 15, 2953–2961. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wu, J.; Qiu, X. LINC01116 facilitates colorectal cancer cell proliferation and angiogenesis through targeting EZH2-regulated TPM1. J. Transl. Med. 2021, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, I.; Nosho, K.; Kanno, S.; Igarashi, H.; Kurihara, H.; Ishigami, K.; Ishiguro, K.; Mitsuhashi, K.; Maruyama, R.; Koide, H.; et al. EZH2 expression is a prognostic biomarker in patients with colorectal cancer treated with anti-EGFR therapeutics. Oncotarget 2017, 8, 17810–17818. [Google Scholar] [CrossRef] [PubMed]
- Ghobashi, A.H.; Vuong, T.T.; Kimani, J.W.; Ladaika, C.A.; Hollenhorst, P.C.; O’Hagan, H.M. Activation of AKT induces EZH2-mediated β-catenin trimethylation in colorectal cancer. iScience 2023, 26, 107630. [Google Scholar] [CrossRef]
- Liu, Y.L.; Gao, X.; Jiang, Y.; Zhang, G.; Sun, Z.C.; Cui, B.B.; Yang, Y.M. Expression and clinicopathological significance of EED, SUZ12 and EZH2 mRNA in colorectal cancer. J. Cancer Res. Clin. Oncol. 2015, 141, 661–669. [Google Scholar] [CrossRef]
- Meng, X.; Huang, Z.; Wang, R.; Jiao, Y.; Li, H.; Xu, X.; Feng, R.; Zhu, K.; Jiang, S.; Yan, H.; et al. The prognostic role of EZH2 expression in rectal cancer patients treated with neoadjuvant chemoradiotherapy. Radiat. Oncol. 2014, 9, 188. [Google Scholar] [CrossRef]
- Cheraghi, S.; Asadzadeh, H.; Javadi, G. Dysregulated Expression of Long Non-Coding RNA MINCR and EZH2 in Colorectal Cancer. Iran. Biomed. J. 2022, 26, 64–69. [Google Scholar] [PubMed]
- Abou Gabal, H.; Ahmed, N.; Meckawy, G.; Yassin, R.; Hakim, S. Evaluation of EZH2 and ERRα in colorectal carcinoma: An immunohistochemical study. Pol. J. Pathol. 2021, 72, 200–210. [Google Scholar] [CrossRef]
- Sanches, J.G.P.; Song, B.; Zhang, Q.; Cui, X.; Yabasin, I.B.; Ntim, M.; Li, X.; He, J.; Zhang, Y.; Mao, J.; et al. The Role of KDM2B and EZH2 in Regulating the Stemness in Colorectal Cancer Through the PI3K/AKT Pathway. Front. Oncol. 2021, 11, 637298. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, H.; Maruyama, R.; Ishiguro, K.; Kanno, S.; Yamamoto, I.; Ishigami, K.; Mitsuhashi, K.; Igarashi, H.; Ito, M.; Tanuma, T.; et al. The relationship between EZH2 expression and microRNA-31 in colorectal cancer and the role in evolution of the serrated pathway. Oncotarget 2016, 7, 12704–12717. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Luo, X.; Xiang, L.S.; Li, H.T.; Zha, L.; Li, N.; He, J.M.; Xie, G.F.; Xie, X.; Liang, H.J. EZH2 promotes colorectal cancer stem-like cell expansion by activating p21cip1-Wnt/β-catenin signaling. Oncotarget 2016, 7, 41540–41558. [Google Scholar] [CrossRef]
- Fornaro, L.; Faviana, P.; De Gregorio, V.; Vivaldi, C.; Paolicchi, E.; Masi, G.; Loupakis, F.; Sensi, E.; Lupi, C.; Fontanini, G.; et al. Molecular and pathological characterization of the EZH2 rs3757441 single nucleotide polymorphism in colorectal cancer. BMC Cancer 2015, 15, 874. [Google Scholar] [CrossRef]
- Benard, A.; Goossens-Beumer, I.J.; van Hoesel, A.Q.; Horati, H.; Putter, H.; Zeestraten, E.C.; van de Velde, C.J.; Kuppen, P.J. Prognostic value of polycomb proteins EZH2, BMI1 and SUZ12 and histone modification H3K27me3 in colorectal cancer. PLoS ONE 2014, 9, e108265. [Google Scholar] [CrossRef]
- Wang, C.G.; Ye, Y.J.; Yuan, J.; Liu, F.F.; Zhang, H.; Wang, S. EZH2 and STAT6 expression profiles are correlated with colorectal cancer stage and prognosis. World J. Gastroenterol. 2010, 16, 2421–2427. [Google Scholar] [CrossRef]
- Fluge, Ø.; Gravdal, K.; Carlsen, E.; Vonen, B.; Kjellevold, K.; Refsum, S.; Lilleng, R.; Eide, T.J.; Halvorsen, T.B.; Tveit, K.M.; et al. Expression of EZH2 and Ki-67 in colorectal cancer and associations with treatment response and prognosis. Br. J. Cancer 2009, 101, 1282–1289. [Google Scholar] [CrossRef]
- Mimori, K.; Ogawa, K.; Okamoto, M.; Sudo, T.; Inoue, H.; Mori, M. Clinical significance of enhancer of zeste homolog 2 expression in colorectal cancer cases. Eur. J. Surg. Oncol. (EJSO) 2005, 31, 376–380. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, F.; Zhao, M.; Li, B.; Xing, D.; Wang, J.; Yang, Y. Prognostic significance of EZH2 expression in patients with oesophageal cancer: A meta-analysis. J. Cell. Mol. Med. 2016, 20, 836–841. [Google Scholar] [CrossRef]
- Liu, F.; Gu, L.; Cao, Y.; Fan, X.; Zhang, F.; Sang, M. Aberrant overexpression of EZH2 and H3K27me3 serves as poor prognostic biomarker for esophageal squamous cell carcinoma patients. Biomarkers 2016, 21, 80–90. [Google Scholar] [CrossRef]
- Rehman, A.U.; Iqbal, M.A.; Sattar, R.S.A.; Saikia, S.; Kashif, M.; Ali, W.M.; Medhi, S.; Saluja, S.S.; Husain, S.A. Elevated expression of RUNX3 co-expressing with EZH2 in esophageal cancer patients from India. Cancer Cell Int. 2020, 20, 445. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Z.; Hu, T.; Feng, Z.; Zeng, Q.; Shu, X.; Wu, A.; Huang, P.; Cao, Y.; Tu, Y.; et al. Multiomics characteristics and immunotherapeutic potential of EZH2 in pan-cancer. Biosci. Rep. 2023, 43, BSR20222230. [Google Scholar] [CrossRef]
- Kleer, C.G.; Cao, Q.; Varambally, S.; Shen, R.; Ota, I.; Tomlins, S.A.; Ghosh, D.; Sewalt, R.G.; Otte, A.P.; Hayes, D.F.; et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA 2003, 100, 11606–11611. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Deng, J.; Chen, C.; Hu, W.; Yuan, Y.C.; Xia, Z.K. LncRNA H19 promotes epithelial mesenchymal transition and metastasis of esophageal cancer via STAT3/EZH2 axis. Int. J. Biochem. Cell Biol. 2019, 113, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Nourmohammadi, F.; Forghanifard, M.M.; Abbaszadegan, M.R.; Zarrinpour, V. EZH2 regulates oncomiR-200c and EMT markers in esophageal squamous cell carcinomas. Sci. Rep. 2022, 12, 18290. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, Y.; Li, Z.; Qin, X.; Zhou, X.; Zhang, H.; Li, S. LINC00114 stimulates growth and glycolysis of esophageal cancer cells by recruiting EZH2 to enhance H3K27me3 of DLC1. Clin. Epigenetics 2022, 14, 51. [Google Scholar] [CrossRef]
- Qiu, B.Q.; Lin, X.H.; Ye, X.D.; Huang, W.; Pei, X.; Xiong, D.; Long, X.; Zhu, S.Q.; Lu, F.; Lin, K.; et al. Long non-coding RNA PSMA3-AS1 promotes malignant phenotypes of esophageal cancer by modulating the miR-101/EZH2 axis as a ceRNA. Aging 2020, 12, 1843–1856. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, W.; Wu, Q.; Huang, X.; Pan, Z.; Chen, W.; Gu, S.; Huang, Z.; Wang, Y.; Tang, X.; et al. LINC00152 upregulates ZEB1 expression and enhances epithelial-mesenchymal transition and oxaliplatin resistance in esophageal cancer by interacting with EZH2. Cancer Cell Int. 2020, 20, 569. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Li, S.; Chen, X.; Jiang, G.; Shen, Z.; Qiao, Y.; Wang, L.; Zheng, P.; Zhang, Y. Long noncoding RNA MALAT1 promotes malignant development of esophageal squamous cell carcinoma by targeting β-catenin via Ezh2. Oncotarget 2016, 7, 25668–25682. [Google Scholar] [CrossRef]
- Gan, L.; Xu, M.; Hua, R.; Tan, C.; Zhang, J.; Gong, Y.; Wu, Z.; Weng, W.; Sheng, W.; Guo, W. The polycomb group protein EZH2 induces epithelial-mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter. J. Hematol. Oncol. 2018, 11, 9. [Google Scholar] [CrossRef]
- Bai, J.; Chen, J.; Ma, M.; Cai, M.; Xu, F.; Wang, G.; Tao, K.; Shuai, X. Inhibiting Enhancer of Zeste Homolog 2 Promotes Cellular Senescence in Gastric Cancer Cells SGC-7901 by Activation of p21 and p16. DNA Cell Biol. 2014, 33, 337–344. [Google Scholar] [CrossRef]
- Song, B.-f.; Xu, L.-z.; Jiang, K.; Cheng, F. MiR-124-3p inhibits tumor progression in prostate cancer by targeting EZH2. Funct. Integr. Genom. 2023, 23, 80. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, L.; Liang, Q.; Qin, H.; Chen, Y.; Wang, T.; Wei, Q.; Luo, Y.; Li, G.; Huang, H. MiR-124-3p inhibits proliferation, migration, and epithelial-mesenchymal transformation in gastric cancer by targeting ITGB1. Am. J. Transl. Res. 2025, 17, 2500–2512. [Google Scholar] [CrossRef]
- Long, H.; Xiang, T.; Luo, J.; Li, F.; Lin, R.; Liu, S.; Jiang, S.; Hu, C.; Chen, G.; Wong, E.; et al. The tumor microenvironment disarms CD8(+) T lymphocyte function via a miR-26a-EZH2 axis. Oncoimmunology 2016, 5, e1245267. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Han, L.; He, N.; Li, R.; He, S. Upregulated Circular RNA KIF4A Promotes Cell Migration and Invasion by Regulating MicroRNA-144-3p/EZH2 Axis in Gastric Cancer. J. Oncol. 2022, 2022, 3985621. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, H.; Li, L.; Yang, F.; Wu, C.; Tao, K. CircGSK3B promotes RORA expression and suppresses gastric cancer progression through the prevention of EZH2 trans-inhibition. J. Exp. Clin. Cancer Res. 2021, 40, 330. [Google Scholar] [CrossRef]
- Ghoreshi, Z.A.; Rezaei Zadeh Rukerd, M.; Askarpour, H.; Kheirkhah Vakilabad, A.A.; Nakhaie, M.; Abbaszadeh Afshar, M.J.; Behboudi, E.; Charostad, J.; Arefinia, N. The Role of Epstein-Barr Virus (EBV) Infected Gastric Cancer in Increasing microRNA124 (miR-124) Promoter Methylation and Enhancer of Zeste Homolog 2 (EZH2) Gene Expression. Medicine 2024, 103, e36534. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.C.; Zhang, Y.; Huang, H. MicroRNA-625-3p inhibits gastric cancer metastasis through modulating EZH2. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1177–1185. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, A.; Xu, F.; Chen, C.; Jiang, L.; Jin, R. Lentivirus-mediated overexpression of miR-124 suppresses growth and invasion by targeting JAG1 and EZH2 in gastric cancer. Oncol. Lett. 2018, 15, 7450–7458. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, R.; He, Z.; Qiu, Q.; Lu, X.; Yin, J.; Liu, H.; Jia, X.; He, Z. TET-Mediated Sequestration of miR-26 Drives EZH2 Expression and Gastric Carcinogenesis. Cancer Res. 2017, 77, 6069–6082. [Google Scholar] [CrossRef]
- Sun, M.; Nie, F.; Wang, Y.; Zhang, Z.; Hou, J.; He, D.; Xie, M.; Xu, L.; De, W.; Wang, Z.; et al. LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT1. Cancer Res. 2016, 76, 6299–6310. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Min, L.; Qiu, X.; Wu, X.; Liu, C.; Ma, J.; Zhang, D.; Zhu, L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front. Cell Dev. Biol. 2021, 9, 645647. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Sun, M.; Zhu, Y.-n.; Xia, R.; Liu, Y.-w.; Ding, J.; Ma, H.-w.; He, X.-z.; Zhang, Z.-h.; Liu, Z.-j.; et al. Long noncoding RNA HOXA-AS2 promotes gastric cancer proliferation by epigenetically silencing P21/PLK3/DDIT3 expression. Oncotarget 2015, 6, 33587–33601. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Zhang, E.B.; Yin, D.D.; You, L.H.; Xu, T.P.; Chen, W.M.; Xia, R.; Wan, L.; Sun, M.; Wang, Z.X.; et al. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol. Cancer 2015, 14, 82. [Google Scholar] [CrossRef]
- He, L.J.; Cai, M.Y.; Xu, G.L.; Li, J.J.; Weng, Z.J.; Xu, D.Z.; Luo, G.Y.; Zhu, S.L.; Xie, D. Prognostic significance of overexpression of EZH2 and H3k27me3 proteins in gastric cancer. Asian Pac. J. Cancer Prev. 2012, 13, 3173–3178. [Google Scholar] [CrossRef]
- Choi, J.H.; Song, Y.S.; Yoon, J.S.; Song, K.W.; Lee, Y.Y. Enhancer of zeste homolog 2 expression is associated with tumor cell proliferation and metastasis in gastric cancer. APMIS 2010, 118, 196–202. [Google Scholar] [CrossRef]
- Matsukawa, Y.; Semba, S.; Kato, H.; Ito, A.; Yanagihara, K.; Yokozaki, H. Expression of the enhancer of zeste homolog 2 is correlated with poor prognosis in human gastric cancer. Cancer Sci. 2006, 97, 484–491. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro-Oncol. 2019, 21, v1–v100. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Han, L.; Shi, Z.; Zhang, J.; Pu, P.; Kang, C. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Lett. 2015, 356, 929–936. [Google Scholar] [CrossRef]
- Paskeh, M.D.A.; Mehrabi, A.; Gholami, M.H.; Zabolian, A.; Ranjbar, E.; Saleki, H.; Ranjbar, A.; Hashemi, M.; Ertas, Y.N.; Hushmandi, K.; et al. EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed. Pharmacother. 2022, 146, 112532. [Google Scholar] [CrossRef]
- Ning, X.; Shi, Z.; Liu, X.; Zhang, A.; Han, L.; Jiang, K.; Kang, C.; Zhang, Q. DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 2015, 359, 198–205. [Google Scholar] [CrossRef]
- Yu, T.; Zhou, F.; Tian, W.; Xu, R.; Wang, B.; Zeng, A.; Zhou, Z.; Li, M.; Wang, Y.; Zhang, J. EZH2 interacts with HP1BP3 to epigenetically activate WNT7B that promotes temozolomide resistance in glioblastoma. Oncogene 2023, 42, 461–470. [Google Scholar] [CrossRef]
- Karlowee, V.; Amatya, V.J.; Takayasu, T.; Takano, M.; Yonezawa, U.; Takeshima, Y.; Sugiyama, K.; Kurisu, K.; Yamasaki, F. Immunostaining of Increased Expression of Enhancer of Zeste Homolog 2 (EZH2) in Diffuse Midline Glioma H3K27M-Mutant Patients with Poor Survival. Pathobiology 2019, 86, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Pang, B.; Gu, G.; Gao, T.; Zhang, R.; Pang, Q.; Liu, Q. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis. Int. J. Biol. Sci. 2017, 13, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Zheng, X.R.; Tian, J.X.; Gao, T.H.; Gu, G.Y.; Zhang, R.; Fu, Y.B.; Pang, Q.; Li, X.G.; Liu, Q. EZH2 promotes metabolic reprogramming in glioblastomas through epigenetic repression of EAF2-HIF1α signaling. Oncotarget 2016, 7, 45134–45143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Han, L.; Bao, Z.S.; Wang, Y.Y.; Chen, L.Y.; Yan, W.; Yu, S.Z.; Pu, P.Y.; Liu, N.; You, Y.P.; et al. HOTAIR, a cell cycle-associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma. Neuro Oncol. 2013, 15, 1595–1603. [Google Scholar] [CrossRef]
- Zakrzewska, M.; Fendler, W.; Zakrzewski, K.; Sikorska, B.; Grajkowska, W.; Dembowska-Bagińska, B.; Filipek, I.; Stefańczyk, Ł.; Liberski, P.P. Altered MicroRNA Expression Is Associated with Tumor Grade, Molecular Background and Outcome in Childhood Infratentorial Ependymoma. PLoS ONE 2016, 11, e0158464. [Google Scholar] [CrossRef]
- Mochizuki, D.; Misawa, Y.; Kawasaki, H.; Imai, A.; Endo, S.; Mima, M.; Yamada, S.; Nakagawa, T.; Kanazawa, T.; Misawa, K. Aberrant Epigenetic Regulation in Head and Neck Cancer Due to Distinct EZH2 Overexpression and DNA Hypermethylation. Int. J. Mol. Sci. 2018, 19, 3707. [Google Scholar] [CrossRef]
- Nienstedt, J.C.; Schroeder, C.; Clauditz, T.; Simon, R.; Sauter, G.; Muenscher, A.; Blessmann, M.; Hanken, H.; Pflug, C. EZH2 overexpression in head and neck cancer is related to lymph node metastasis. J. Oral Pathol. Med. 2018, 47, 240–245. [Google Scholar] [CrossRef]
- Révész, M.; Oberna, F.; Slezák, A.; Tóth, E.; Ferenczi, Ö.; Kenessey, I.; Takácsi-Nagy, Z. EZH2 Expression in Head-and-Neck Squamous Cell Cancer in Young Patients. Int. J. Mol. Sci. 2024, 25, 5250. [Google Scholar] [CrossRef]
- Chang, J.W.; Gwak, S.Y.; Shim, G.A.; Liu, L.; Lim, Y.C.; Kim, J.M.; Jung, M.G.; Koo, B.S. EZH2 is associated with poor prognosis in head-and-neck squamous cell carcinoma via regulating the epithelial-to-mesenchymal transition and chemosensitivity. Oral Oncol. 2016, 52, 66–74. [Google Scholar] [CrossRef]
- Eichenauer, T.; Simmendinger, L.; Fraune, C.; Mandelkow, T.; Blessin, N.C.; Kluth, M.; Hube-Magg, C.; Möller, K.; Clauditz, T.; Weidemann, S.; et al. High level of EZH2 expression is linked to high density of CD8-positive T-lymphocytes and an aggressive phenotype in renal cell carcinoma. World J. Urol. 2021, 39, 481–490. [Google Scholar] [CrossRef]
- Yuan, J.B.; Yang, L.Y.; Tang, Z.Y.; Zu, X.B.; Qi, L. Down-regulation of EZH2 by RNA interference inhibits proliferation and invasion of ACHN cells via the Wnt/β-catenin pathway. Asian Pac. J. Cancer Prev. 2012, 13, 6197–6201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, M.; Shi, H.; Hu, J.; Wang, Y.; Sun, Z.; Xu, S. Reduced E-cadherin facilitates renal cell carcinoma progression by WNT/β-catenin signaling activation. Oncotarget 2017, 8, 19566–19576. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Q.; Zhang, L.; Gao, B.S.; Wan, Y.G.; Zhang, X.H.; Chen, B.; Wang, Y.T.; Sun, N.; Fu, Y.W. EZH2 promotes tumor progression by increasing VEGF expression in clear cell renal cell carcinoma. Clin. Transl. Oncol. 2015, 17, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Qin, W.; Zheng, J.; Wei, M.; Zhou, X.; Wang, H.; Wen, W. [Expressions of EZH2 and RUNX3 in renal cell carcinoma and their clinical significance]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2013, 29, 82–84, 88. (In Chinese) [Google Scholar] [PubMed]
- Sakurai, T.; Bilim, V.N.; Ugolkov, A.V.; Yuuki, K.; Tsukigi, M.; Motoyama, T.; Tomita, Y. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells. Biochem. Biophys. Res. Commun. 2012, 422, 607–614. [Google Scholar] [CrossRef]
- Lyu, C.; Wang, L.; Stadlbauer, B.; Noessner, E.; Buchner, A.; Pohla, H. Identification of EZH2 as Cancer Stem Cell Marker in Clear Cell Renal Cell Carcinoma and the Anti-Tumor Effect of Epigallocatechin-3-Gallate (EGCG). Cancers 2022, 14, 4200. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, X.; Qi, C.; Zhang, C.; Qu, B.; Shen, N. EZH2 Inhibition Interferes With the Activation of Type I Interferon Signaling Pathway and Ameliorates Lupus Nephritis in NZB/NZW F1 Mice. Front. Immunol. 2021, 12, 653989. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhao, C.; Li, S.; Wang, J.; Zhou, Q.; Sun, J.; Ding, Q.; Liu, M.; Ding, G. EZH2 Expression is increased in BAP1-mutant renal clear cell carcinoma and is related to poor prognosis. J. Cancer 2018, 9, 3787–3796. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.H.; Kapur, P.; Eckel-Passow, J.E.; Christie, A.; Joseph, R.W.; Serie, D.J.; Cheville, J.C.; Thompson, R.H.; Homayoun, F.; Panwar, V.; et al. Multicenter Validation of Enhancer of Zeste Homolog 2 Expression as an Independent Prognostic Marker in Localized Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2017, 35, 3706–3713. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Z.; Zhong, L.; Wang, H.; Jiang, S.; Long, Q.; Xu, J.; Guo, J. Prognostic Value of EZH2 Expression and Activity in Renal Cell Carcinoma: A Prospective Study. PLoS ONE 2013, 8, e81484. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.; Valind, A.; Jansson, C.; O’Sullivan, M.J.; Holmquist Mengelbier, L.; Gisselsson, D. Aberrant epigenetic regulation in clear cell sarcoma of the kidney featuring distinct DNA hypermethylation and EZH2 overexpression. Oncotarget 2016, 7, 11127–11136. [Google Scholar] [CrossRef]
- Glaser, K.; Schepers, E.J.; Zwolshen, H.M.; Lake, C.M.; Timchenko, N.A.; Karns, R.A.; Cairo, S.; Geller, J.I.; Tiao, G.M.; Bondoc, A.J. EZH2 is a key component of hepatoblastoma tumor cell growth. Pediatr. Blood Cancer 2024, 71, e30774. [Google Scholar] [CrossRef]
- Zhou, J.; Che, J.; Xu, L.; Yang, W.; Li, Y.; Zhou, W.; Zou, S. Enhancer of zeste homolog 2 promotes hepatocellular cancer progression and chemoresistance by enhancing protein kinase B activation through microRNA-381-mediated SET domain bifurcated 1. Bioengineered 2022, 13, 5737–5755. [Google Scholar] [CrossRef]
- Xiao, G.; Jin, L.L.; Liu, C.Q.; Wang, Y.C.; Meng, Y.M.; Zhou, Z.G.; Chen, J.; Yu, X.J.; Zhang, Y.J.; Xu, J.; et al. EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. J. Immunother. Cancer 2019, 7, 300. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Liao, Z.; Wu, H.; Zhang, B.; Zhang, L. EZH2 in hepatocellular carcinoma: Progression, immunity, and potential targeting therapies. Exp. Hematol. Oncol. 2023, 12, 52. [Google Scholar] [CrossRef]
- Gao, S.-B.; Zheng, Q.-F.; Xu, B.; Pan, C.-B.; Li, K.-L.; Zhao, Y.; Zheng, Q.-L.; Lin, X.; Xue, L.-X.; Jin, G.-H. EZH2 Represses Target Genes through H3K27-Dependent and H3K27-Independent Mechanisms in Hepatocellular Carcinoma. Mol. Cancer Res. 2014, 12, 1388–1397. [Google Scholar] [CrossRef]
- You, Z.; Peng, D.; Cao, Y.; Zhu, Y.; Yin, J.; Zhang, G.; Peng, X. P53 suppresses the progression of hepatocellular carcinoma via miR-15a by decreasing OGT expression and EZH2 stabilization. J. Cell. Mol. Med. 2021, 25, 9168–9182. [Google Scholar] [CrossRef]
- Vella, S.; Pomella, S.; Leoncini, P.P.; Colletti, M.; Conti, B.; Marquez, V.E.; Strillacci, A.; Roma, J.; Gallego, S.; Milano, G.M.; et al. MicroRNA-101 is repressed by EZH2 and its restoration inhibits tumorigenic features in embryonal rhabdomyosarcoma. Clin. Epigenetics 2015, 7, 82. [Google Scholar] [CrossRef]
- Chi, X.Z.; Yang, J.O.; Lee, K.Y.; Ito, K.; Sakakura, C.; Li, Q.L.; Kim, H.R.; Cha, E.J.; Lee, Y.H.; Kaneda, A.; et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Mol. Cell. Biol. 2005, 25, 8097–8107. [Google Scholar] [CrossRef]
- Wu, C.S.; Chien, Y.C.; Yen, C.J.; Wu, J.Y.; Bai, L.Y.; Yu, Y.L. EZH2-mediated epigenetic silencing of tumor-suppressive let-7c/miR-99a cluster by hepatitis B virus X antigen enhances hepatocellular carcinoma progression and metastasis. Cancer Cell Int. 2023, 23, 199. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, H.; Zhan, H.; Han, T.; Dong, Y.; Tian, C.; Guo, Y.; Yan, F.; Dai, D.; Liu, P. Identification of Potential Biomarkers for Liver Cancer Through Gene Mutation and Clinical Characteristics. Front. Oncol. 2021, 11, 733478. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiao, Y.; Chen, K.; Chen, S.; Zhang, M.; Wu, Z.; Wu, Y. Enhancer of zeste homolog 2 depletion arrests the proliferation of hepatoblastoma cells. Mol. Med. Rep. 2016, 13, 2724–2728. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Liao, Y.J.; Cai, M.Y.; Liu, T.H.; Chen, S.P.; Wu, P.H.; Wu, L.; Bian, X.W.; Guan, X.Y.; Zeng, Y.X.; et al. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets. PLoS Genet. 2015, 11, e1004873. [Google Scholar] [CrossRef]
- Gao, S.B.; Sun, S.L.; Zheng, Q.L.; Zhang, L.; Zhu, Y.; Jin, G.H.; Xue, L.X. Genetic alteration and misexpression of Polycomb group genes in hepatocellular carcinoma. Am. J. Cancer Res. 2015, 5, 2969–2979. [Google Scholar]
- Xu, L.; Beckebaum, S.; Iacob, S.; Wu, G.; Kaiser, G.M.; Radtke, A.; Liu, C.; Kabar, I.; Schmidt, H.H.; Zhang, X.; et al. MicroRNA-101 inhibits human hepatocellular carcinoma progression through EZH2 downregulation and increased cytostatic drug sensitivity. J. Hepatol. 2014, 60, 590–598. [Google Scholar] [CrossRef]
- Nakagawa, S.; Okabe, H.; Sakamoto, Y.; Hayashi, H.; Hashimoto, D.; Yokoyama, N.; Sakamoto, K.; Kuroki, H.; Mima, K.; Nitta, H.; et al. Enhancer of zeste homolog 2 (EZH2) promotes progression of cholangiocarcinoma cells by regulating cell cycle and apoptosis. Ann. Surg. Oncol. 2013, 20 (Suppl. S3), S667–S675. [Google Scholar] [CrossRef]
- Cai, M.Y.; Hou, J.H.; Rao, H.L.; Luo, R.Z.; Li, M.; Pei, X.Q.; Lin, M.C.; Guan, X.Y.; Kung, H.F.; Zeng, Y.X.; et al. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol. Med. 2011, 17, 12–20. [Google Scholar] [CrossRef]
- Yonemitsu, Y.; Imazeki, F.; Chiba, T.; Fukai, K.; Nagai, Y.; Miyagi, S.; Arai, M.; Aoki, R.; Miyazaki, M.; Nakatani, Y.; et al. Distinct expression of polycomb group proteins EZH2 and BMI1 in hepatocellular carcinoma. Hum. Pathol. 2009, 40, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Toyokawa, G.; Takada, K.; Tagawa, T.; Hamamoto, R.; Yamada, Y.; Shimokawa, M.; Oda, Y.; Maehara, Y. A Positive Correlation Between the EZH2 and PD-L1 Expression in Resected Lung Adenocarcinomas. Ann. Thorac. Surg. 2019, 107, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, J.S.; Alnoor, F.; Sadiq, Q.; Solares, J.; Gradowski, J.F. SMARCA4 (BRG1) and SMARCB1 (INI1) expression in TTF-1 negative neuroendocrine carcinomas including merkel cell carcinoma. Pathol. Res. Pract. 2021, 219, 153341. [Google Scholar] [CrossRef] [PubMed]
- Behrens, C.; Solis, L.M.; Lin, H.; Yuan, P.; Tang, X.; Kadara, H.; Riquelme, E.; Galindo, H.; Moran, C.A.; Kalhor, N.; et al. EZH2 protein expression associates with the early pathogenesis, tumor progression, and prognosis of non-small cell lung carcinoma. Clin. Cancer Res. 2013, 19, 6556–6565. [Google Scholar] [CrossRef]
- Geng, J.; Li, X.; Zhou, Z.; Wu, C.-L.; Bai, X.; Dai, M. EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer. Cancer Lett. 2015, 359, 275–287. [Google Scholar] [CrossRef]
- LaFave, L.M.; Béguelin, W.; Koche, R.; Teater, M.; Spitzer, B.; Chramiec, A.; Papalexi, E.; Keller, M.D.; Hricik, T.; Konstantinoff, K.; et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 2015, 21, 1344–1349. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, C.L.; Qi, Y.F.; Dai, X.; Birling, Y.; Tan, Z.F.; Cao, F. Prognostic Value of EZH2 in Non-Small-Cell Lung Cancers: A Meta-Analysis and Bioinformatics Analysis. BioMed Res. Int. 2020, 2020, 2380124. [Google Scholar] [CrossRef]
- Matsubara, T.; Toyokawa, G.; Takada, K.; Kinoshita, F.; Kozuma, Y.; Akamine, T.; Shimokawa, M.; Haro, A.; Osoegawa, A.; Tagawa, T.; et al. The association and prognostic impact of enhancer of zeste homologue 2 expression and epithelial–mesenchymal transition in resected lung adenocarcinoma. PLoS ONE 2019, 14, e0215103. [Google Scholar] [CrossRef]
- Toyokawa, G.; Takada, K.; Tagawa, T.; Kinoshita, F.; Kozuma, Y.; Matsubara, T.; Haratake, N.; Takamori, S.; Akamine, T.; Hirai, F.; et al. Prevalence of Enhancer of Zeste Homolog 2 in Patients with Resected Small Cell Lung Cancer. Anticancer Res. 2018, 38, 3707–3711. [Google Scholar] [CrossRef]
- Shinozaki-Ushiku, A.; Ushiku, T.; Morita, S.; Anraku, M.; Nakajima, J.; Fukayama, M. Diagnostic utility of BAP1 and EZH2 expression in malignant mesothelioma. Histopathology 2017, 70, 722–733. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, H.; Lv, L.; Bao, L.; Wang, X.; Han, S. Prognostic Significance of EZH2 Expression in Non-Small Cell Lung Cancer: A Meta-analysis. Sci. Rep. 2016, 6, 19239. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Yu, X.; Gao, F.; Duan, Z.; Ma, X.; Tan, S.; Yuan, Y.; Liu, L.; Wang, J.; et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget 2016, 7, 56338–56354. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Hao, K.; Hu, H.; Sheng, Z.; Yan, J.; Wang, Q.; Yu, L. Expression of the enhancer of zeste homolog 2 in biopsy specimen predicts chemoresistance and survival in advanced non-small cell lung cancer receiving first-line platinum-based chemotherapy. Lung Cancer 2014, 86, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Li, X.; Shen, H.; Bai, X. Quantitative analysis of EZH2 expression and its correlations with lung cancer patients’ clinical pathological characteristics. Clin. Transl. Oncol. 2013, 15, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Yuan, C.; Xiao, X.; Wang, X.; Ji, X.; Yu, H.; Wu, Z.; Zhang, J. The expression and significance of the enhancer of zeste homolog 2 in lung adenocarcinoma. Oncol. Rep. 2012, 28, 147–154. [Google Scholar] [CrossRef]
- Huqun; Ishikawa, R.; Zhang, J.; Miyazawa, H.; Goto, Y.; Shimizu, Y.; Hagiwara, K.; Koyama, N. Enhancer of zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer. Cancer 2012, 118, 1599–1606. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, F.P.; Peng, Z.; Zhang, M.W.; Lin, S.X.; Liang, B.J.; Zhang, B.; Liu, X.; Wang, L.; Li, G.; et al. EZH2 promotes angiogenesis through inhibition of miR-1/Endothelin-1 axis in nasopharyngeal carcinoma. Oncotarget 2014, 5, 11319–11332. [Google Scholar] [CrossRef]
- Balinth, S.; Fisher, M.L.; Hwangbo, Y.; Wu, C.; Ballon, C.; Sun, X.; Mills, A.A. EZH2 regulates a SETDB1/ΔNp63α axis via RUNX3 to drive a cancer stem cell phenotype in squamous cell carcinoma. Oncogene 2022, 41, 4130–4144. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.; Niu, X.; Wang, X.; Jiang, R.; Xu, T.; Liu, Y.; Liang, L.; Ou, X.; Xing, X.; et al. EZH2 suppresses the nucleotide excision repair in nasopharyngeal carcinoma by silencing XPA gene. Mol. Carcinog. 2017, 56, 447–463. [Google Scholar] [CrossRef]
- Alajez, N.M.; Shi, W.; Hui, A.B.; Bruce, J.; Lenarduzzi, M.; Ito, E.; Yue, S.; O’Sullivan, B.; Liu, F.F. Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis. 2010, 1, e85. [Google Scholar] [CrossRef]
- Li, X.; Lin, Y.; Yang, X.; Wu, X.; He, X. Long noncoding RNA H19 regulates EZH2 expression by interacting with miR-630 and promotes cell invasion in nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun. 2016, 473, 913–919. [Google Scholar] [CrossRef]
- Fan, D.C.; Zhao, Y.R.; Qi, H.; Hou, J.X.; Zhang, T.H. MiRNA-506 presents multiple tumor suppressor activities by targeting EZH2 in nasopharyngeal carcinoma. Auris Nasus Larynx 2020, 47, 632–642. [Google Scholar] [CrossRef]
- Chen, J.; Tang, S.; Zheng, Q.; Li, J.; Jiang, H.; Lu, H.; Liao, G.; Li, K.; Liang, Y. The competitive mechanism of EZH1 and EZH2 in promoting oral squamous cell carcinoma. Exp. Cell Res. 2024, 436, 113957. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, D.; Dafar, A.; Niklasson, J.; Sandberg, I.; Braz-Silva, P.; Sapkota, D.; Öhman, J.; Giglio, D.; Hasséus, B. EZH2 Expression Correlates With T-Cell Infiltration in Oral Leukoplakia and Predicts Cancer Transformation. Anticancer Res. 2023, 43, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Sihavong, P.; Kitkumthorn, N.; Srimaneekarn, N.; Bumalee, D.; Lapthanasupkul, P. Differential Expression of EZH2 and H3K27me3 in Oral Verrucous Carcinoma and Oral Verrucous Hyperplasia. Head Neck Pathol. 2021, 15, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Chen, L.; Tang, J.; Zhang, C.; Wen, Y.; Wen, W. Targeting EZH2 depletes LMP1-induced activated regulatory T cells enhancing antitumor immunity in nasopharyngeal carcinoma. J. Cancer Res. Ther. 2020, 16, 309–319. [Google Scholar] [CrossRef]
- Zheng, M.; Cao, M.X.; Luo, X.J.; Li, L.; Wang, K.; Wang, S.S.; Wang, H.F.; Tang, Y.J.; Tang, Y.L.; Liang, X.H. EZH2 promotes invasion and tumour glycolysis by regulating STAT3 and FoxO1 signalling in human OSCC cells. J. Cell. Mol. Med. 2019, 23, 6942–6954. [Google Scholar] [CrossRef]
- Zhao, L.; Yu, Y.; Wu, J.; Bai, J.; Zhao, Y.; Li, C.; Sun, W.; Wang, X. Role of EZH2 in oral squamous cell carcinoma carcinogenesis. Gene 2014, 537, 197–202. [Google Scholar] [CrossRef]
- Zhai, L.; Tai, W.L.; Pan, Y.Q.; Luo, J.B.; Ma, L.; Zheng, Y.T.; Guo, M.Y.; Zhang, X. Expression of EZH2 and P53 and their correlation in ovarian cancer tissues. Int. J. Clin. Exp. Pathol. 2020, 13, 456–464. [Google Scholar]
- Sun, S.; Zhao, S.; Yang, Q.; Wang, W.; Cai, E.; Wen, Y.; Yu, L.; Wang, Z.; Cai, J. Enhancer of zeste homolog 2 promotes cisplatin resistance by reducing cellular platinum accumulation. Cancer Sci. 2018, 109, 1853–1864. [Google Scholar] [CrossRef]
- Cardenas, H.; Zhao, J.; Vieth, E.; Nephew, K.P.; Matei, D. EZH2 inhibition promotes epithelial-to-mesenchymal transition in ovarian cancer cells. Oncotarget 2016, 7, 84453–84467. [Google Scholar] [CrossRef]
- Lai, Y.; Han, X.; Xie, B.; Xu, Y.; Yang, Z.; Wang, D.; Li, W.; Xie, Y.; Song, W.; Zhang, X.; et al. EZH2 suppresses ferroptosis in hepatocellular carcinoma and reduces sorafenib sensitivity through epigenetic regulation of TFR2. Cancer Sci. 2024, 115, 2220–2234. [Google Scholar] [CrossRef]
- Li, R.; Zhou, T.; Chen, S.; Li, N.; Cai, Z.; Ling, Y.; Feng, Z. Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT): A challenge for clinicopathological diagnosis. Int. J. Clin. Exp. Pathol. 2019, 12, 2166–2172. [Google Scholar]
- Luo, Y.; Li, L.; Hu, Q.; Zhang, Z.; Liu, F.; Peng, Y.; Zou, Y.; Chen, L. Iron overload increases the sensitivity of endometriosis stromal cells to ferroptosis via a PRC2-independent function of EZH2. Int. J. Biochem. Cell Biol. 2024, 169, 106553. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hong, J.H.; Huang, Y.; Liu, S.; Yin, J.; Deng, P.; Sun, Y.; Yu, Z.; Zeng, X.; Xiao, R.; et al. EZH2 mediated metabolic rewiring promotes tumor growth independently of histone methyltransferase activity in ovarian cancer. Mol. Cancer 2023, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- Reid, B.M.; Vyas, S.; Chen, Z.; Chen, A.; Kanetsky, P.A.; Permuth, J.B.; Sellers, T.A.; Saglam, O. Morphologic and molecular correlates of EZH2 as a predictor of platinum resistance in high-grade ovarian serous carcinoma. BMC Cancer 2021, 21, 714. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, Q.; Cai, E.; Huang, B.; Ying, F.; Wen, Y.; Cai, J.; Yang, P. EZH2/H3K27Me3 and phosphorylated EZH2 predict chemotherapy response and prognosis in ovarian cancer. PeerJ 2020, 8, e9052. [Google Scholar] [CrossRef]
- Huo, X.; Sun, H.; Qian, Q.; Ma, X.; Peng, P.; Yu, M.; Zhang, Y.; Yang, J.; Cao, D.; Gui, T.; et al. CYP27B1 Downregulation: A New Molecular Mechanism Regulating EZH2 in Ovarian Cancer Tumorigenicity. Front. Cell Dev. Biol. 2020, 8, 561804. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.Y.; Karnezis, A.N.; Colborne, S.; Santos, N.D.; Lang, J.D.; Hendricks, W.P.; Orlando, K.A.; Yap, D.; Kommoss, F.; et al. The histone methyltransferase EZH2 is a therapeutic target in small cell carcinoma of the ovary, hypercalcaemic type. J. Pathol. 2017, 242, 371–383. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Wang, H.; Xie, P.; Yan, X.; Bai, Y.; Zhang, T. Hypermethylation of CDH13, DKK3 and FOXL2 promoters and the expression of EZH2 in ovary granulosa cell tumors. Mol. Med. Rep. 2016, 14, 2739–2745. [Google Scholar] [CrossRef]
- Tsang, D.P.; Cheng, A.S. Epigenetic regulation of signaling pathways in cancer: Role of the histone methyltransferase EZH2. J. Gastroenterol. Hepatol. 2011, 26, 19–27. [Google Scholar] [CrossRef] [PubMed]
- McCleary-Wheeler, A.L.; Lomberk, G.A.; Weiss, F.U.; Schneider, G.; Fabbri, M.; Poshusta, T.L.; Dusetti, N.J.; Baumgart, S.; Iovanna, J.L.; Ellenrieder, V.; et al. Insights into the epigenetic mechanisms controlling pancreatic carcinogenesis. Cancer Lett. 2013, 328, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Dai, H.; Gong, Y.; Zhang, C.; Shu, J.; Luo, Y.; Jiang, Y.; Liu, W.; Bie, P. ANLN-induced EZH2 upregulation promotes pancreatic cancer progression by mediating miR-218-5p/LASP1 signaling axis. J. Exp. Clin. Cancer Res. 2019, 38, 347. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; To, K.F.; Tong, J.H.; Xiao, Z.; Xia, T.; Lai, P.B.; Chow, S.C.; Zhu, Y.X.; Chan, S.L.; Marquez, V.E.; et al. Enhancer of zeste homolog 2 silences microRNA-218 in human pancreatic ductal adenocarcinoma cells by inducing formation of heterochromatin. Gastroenterology 2013, 144, 1086–1097.e1089. [Google Scholar] [CrossRef]
- Patil, S.; Steuber, B.; Kopp, W.; Kari, V.; Urbach, L.; Wang, X.; Küffer, S.; Bohnenberger, H.; Spyropoulou, D.; Zhang, Z.; et al. EZH2 Regulates Pancreatic Cancer Subtype Identity and Tumor Progression via Transcriptional Repression of GATA6. Cancer Res. 2020, 80, 4620–4632. [Google Scholar] [CrossRef]
- Chibaya, L.; Murphy, K.C.; DeMarco, K.D.; Gopalan, S.; Liu, H.; Parikh, C.N.; Lopez-Diaz, Y.; Faulkner, M.; Li, J.; Morris, J.P.; et al. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. Nat. Cancer 2023, 4, 872–892. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Cui, Y.; Jiang, W.; Zhan, H.; Feng, L.; Gao, M.; Zhao, K.; Zhang, L.; Xie, X.; et al. EZH2 regulates pancreatic cancer cells through E2F1, GLI1, CDK3, and Mcm4. Hereditas 2023, 160, 23. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, W.; Hua, H.; Ji, Z. LncRNA-BLACAT1 Facilitates Proliferation, Migration and Aerobic Glycolysis of Pancreatic Cancer Cells by Repressing CDKN1C via EZH2-Induced H3K27me3. Front. Oncol. 2020, 10, 539805. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Weng, Y.C.; Wang, J.C. EZH2-Mediated microRNA-139-5p Regulates Epithelial-Mesenchymal Transition and Lymph Node Metastasis of Pancreatic Cancer. Mol. Cells 2018, 41, 868–880. [Google Scholar] [CrossRef]
- Han, T.; Jiao, F.; Hu, H.; Yuan, C.; Wang, L.; Jin, Z.L.; Song, W.F.; Wang, L.W. EZH2 promotes cell migration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer. Oncotarget 2016, 7, 11194–11207. [Google Scholar] [CrossRef]
- Chen, J.; Xu, H.; Zou, X.; Wang, J.; Zhu, Y.; Chen, H.; Shen, B.; Deng, X.; Zhou, A.; Chin, Y.E.; et al. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells. Cancer Res. 2014, 74, 4353–4363. [Google Scholar] [CrossRef]
- Yamamoto, K.; Tateishi, K.; Kudo, Y.; Sato, T.; Yamamoto, S.; Miyabayashi, K.; Matsusaka, K.; Asaoka, Y.; Ijichi, H.; Hirata, Y.; et al. Loss of histone demethylase KDM6B enhances aggressiveness of pancreatic cancer through downregulation of C/EBPα. Carcinogenesis 2014, 35, 2404–2414. [Google Scholar] [CrossRef]
- Kuroki, H.; Hayashi, H.; Okabe, H.; Hashimoto, D.; Takamori, H.; Nakahara, O.; Nakagawa, S.; Fukushima, Y.; Chikamoto, A.; Beppu, T.; et al. EZH2 is associated with malignant behavior in pancreatic IPMN via p27Kip1 downregulation. PLoS ONE 2014, 9, e100904. [Google Scholar] [CrossRef]
- Maftouh, M.; Avan, A.; Funel, N.; Paolicchi, E.; Vasile, E.; Pacetti, P.; Vaccaro, V.; Faviana, P.; Campani, D.; Caponi, S.; et al. A polymorphism in the promoter is associated with EZH2 expression but not with outcome in advanced pancreatic cancer patients. Pharmacogenomics 2014, 15, 609–618. [Google Scholar] [CrossRef]
- Xin, L. EZH2 accompanies prostate cancer progression. Nat. Cell Biol. 2021, 23, 934–936. [Google Scholar] [CrossRef]
- Xu, K.; Wu, Z.J.; Groner, A.C.; He, H.H.; Cai, C.; Lis, R.T.; Wu, X.; Stack, E.C.; Loda, M.; Liu, T.; et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012, 338, 1465–1469. [Google Scholar] [CrossRef]
- Wee, Z.N.; Li, Z.; Lee, P.L.; Lee, S.T.; Lim, Y.P.; Yu, Q. EZH2-Mediated Inactivation of IFN-γ-JAK-STAT1 Signaling Is an Effective Therapeutic Target in MYC-Driven Prostate Cancer. Cell Rep. 2014, 8, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, Y.; Lu, X.; Song, B.; Fong, K.W.; Cao, Q.; Licht, J.D.; Zhao, J.C.; Yu, J. Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell Rep. 2018, 25, 2808–2820.e4. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Fong, K.W.; Kim, J.; Wang, F.; Lu, X.; Lee, Y.; Brea, L.T.; Wadosky, K.; Guo, C.; Abdulkadir, S.A.; et al. Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci. Adv. 2021, 7, eabe2261. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.J.; Engers, R.; Florl, A.R.; Otte, A.P.; Muller, M.; Schulz, W.A. Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biol. Ther. 2007, 6, 1403–1412. [Google Scholar] [CrossRef]
- Spetsieris, N.; Boukovala, M.; Patsakis, G.; Alafis, I.; Efstathiou, E. Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers 2020, 12, 3792. [Google Scholar] [CrossRef]
- Yamada, Y.; Beltran, H. Clinical and Biological Features of Neuroendocrine Prostate Cancer. Curr. Oncol. Rep. 2021, 23, 15. [Google Scholar] [CrossRef]
- Wang, J.; Park, K.S.; Yu, X.; Gong, W.; Earp, H.S.; Wang, G.G.; Jin, J.; Cai, L. A cryptic transactivation domain of EZH2 binds AR and AR’s splice variant, promoting oncogene activation and tumorous transformation. Nucleic Acids Res. 2022, 50, 10929–10946. [Google Scholar] [CrossRef] [PubMed]
- Dardenne, E.; Beltran, H.; Benelli, M.; Gayvert, K.; Berger, A.; Puca, L.; Cyrta, J.; Sboner, A.; Noorzad, Z.; MacDonald, T.; et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell 2016, 30, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Fischetti, I.; Botti, L.; Sulsenti, R.; Cancila, V.; Enriquez, C.; Ferri, R.; Bregni, M.; Crivelli, F.; Tripodo, C.; Colombo, M.P.; et al. Combined therapy targeting AR and EZH2 curbs castration-resistant prostate cancer enhancing anti-tumor T-cell response. Epigenomics 2024, 16, 653–670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Nie, Q.; Zhang, X.; Huang, L.; Pang, G.; Chu, J.; Yuan, X. miR-26a-5p restoration via EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer. Expert Opin. Ther. Targets 2023, 27, 1285–1297. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, M.; Luo, H.; Zhong, J.; Tan, J.; Xu, Y.; Pan, X.; Zeng, H.; Nie, L.; Xu, M.; et al. circEZH2(E2) (/E3) is a dual suppressor of miR363/miR708 to promote EZH2 expression and prostate cancer progression. Cancer Sci. 2023, 114, 1378–1395. [Google Scholar] [CrossRef]
- Hansen, A.F.; Høiem, T.S.; Selnaes, K.M.; Bofin, A.M.; Størkersen, Ø.; Bertilsson, H.; Wright, A.J.; Giskeødegård, G.F.; Bathen, T.F.; Rye, M.B.; et al. Prediction of recurrence from metabolites and expression of TOP2A and EZH2 in prostate cancer patients treated with radiotherapy. NMR Biomed. 2023, 36, e4694. [Google Scholar] [CrossRef]
- Huang, K.; Tang, Y. SChLAP1 promotes prostate cancer development through interacting with EZH2 to mediate promoter methylation modification of multiple miRNAs of chromosome 5 with a DNMT3a-feedback loop. Cell Death Dis. 2021, 12, 188. [Google Scholar] [CrossRef]
- Ma, L.; Yan, Y.; Bai, Y.; Yang, Y.; Pan, Y.; Gang, X.; Karnes, R.J.; Zhang, J.; Lv, Q.; Wu, Q.; et al. Overcoming EZH2 Inhibitor Resistance by Taxane in PTEN-Mutated Cancer. Theranostics 2019, 9, 5020–5034. [Google Scholar] [CrossRef]
- Xu, S.G.; Yu, J.J.; Shi, Q.; Niu, Q.; Guo, Z.; Guo, B.Y.; Zhou, G.C.; Gu, X.; Wu, Y.X. Conditionally replicative adenovirus carrying shRNA targeting EZH2 inhibits prostate cancer growth and invasion. Oncol. Rep. 2019, 42, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Scott, H.; Carlsson, S.V.; Sjoberg, D.D.; Cerundolo, L.; Lilja, H.; Prevo, R.; Rieunier, G.; Macaulay, V.; Higgins, G.S.; et al. Increased EZH2 expression in prostate cancer is associated with metastatic recurrence following external beam radiotherapy. Prostate 2019, 79, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.; Yadav, A.; Tiwari, R.; Nigam, S.; Goel, S.; Carskadon, S.; Gupta, N.; Goel, A.; Palanisamy, N.; Ateeq, B. Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer. Clin. Cancer Res. 2019, 25, 2755–2768. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.A.; McKenney, J.K.; Reynolds, J.P.; Przybycin, C.G.; Magi-Galluzzi, C. Clinical significance and EZH2, ERG and SPINK1 protein expression in pure and mixed ductal adenocarcinoma of the prostate. Histol. Histopathol. 2019, 34, 381–390. [Google Scholar] [CrossRef]
- Lobo, J.; Rodrigues, Â.; Antunes, L.; Graça, I.; Ramalho-Carvalho, J.; Vieira, F.Q.; Martins, A.T.; Oliveira, J.; Jerónimo, C.; Henrique, R. High immunoexpression of Ki67, EZH2, and SMYD3 in diagnostic prostate biopsies independently predicts outcome in patients with prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2018, 36, e167. [Google Scholar] [CrossRef]
- Labbé, D.P.; Sweeney, C.J.; Brown, M.; Galbo, P.; Rosario, S.; Wadosky, K.M.; Ku, S.Y.; Sjöström, M.; Alshalalfa, M.; Erho, N.; et al. TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clin. Cancer Res. 2017, 23, 7072–7083. [Google Scholar] [CrossRef]
- Abdelrahman, A.E.; Arafa, S.A.; Ahmed, R.A. Prognostic Value of Twist-1, E-cadherin and EZH2 in Prostate Cancer: An Immunohistochemical Study. Turk Patoloji Derg. 2017, 1, 198–210. [Google Scholar] [CrossRef]
- Melling, N.; Thomsen, E.; Tsourlakis, M.C.; Kluth, M.; Hube-Magg, C.; Minner, S.; Koop, C.; Graefen, M.; Heinzer, H.; Wittmer, C.; et al. Overexpression of enhancer of zeste homolog 2 (EZH2) characterizes an aggressive subset of prostate cancers and predicts patient prognosis independently from pre- and postoperatively assessed clinicopathological parameters. Carcinogenesis 2015, 36, 1333–1340. [Google Scholar] [CrossRef]
- Matsika, A.; Srinivasan, B.; Day, C.; Mader, S.A.; Kiernan, D.M.; Broomfield, A.; Fu, J.; Hooper, J.D.; Kench, J.G.; Samaratunga, H. Cancer stem cell markers in prostate cancer: An immunohistochemical study of ALDH1, SOX2 and EZH2. Pathology 2015, 47, 622–628. [Google Scholar] [CrossRef]
- Jacobs, C.; Tumati, V.; Kapur, P.; Yan, J.; Hong, D.; Bhuiyan, M.; Xie, X.J.; Pistenmaa, D.; Yu, L.; Hsieh, J.T.; et al. DOC-2/DAB2 interacting protein status in high-risk prostate cancer correlates with outcome for patients treated with radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Changchien, Y.C.; Tátrai, P.; Papp, G.; Sápi, J.; Fónyad, L.; Szendrői, M.; Pápai, Z.; Sápi, Z. Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). J. Transl. Med. 2012, 10, 216. [Google Scholar] [CrossRef]
- Simeone, N.; Frezza, A.M.; Zaffaroni, N.; Stacchiotti, S. Tazemetostat for advanced epithelioid sarcoma: Current status and future perspectives. Future Oncol. 2021, 17, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Peng, H. LncRNA-ANCR regulates the cell growth of osteosarcoma by interacting with EZH2 and affecting the expression of p21 and p27. J. Orthop. Surg. Res. 2017, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, M.; Liaño-Pons, J.; Wang, J.; Alzrigat, M.; Yuan, Y.; Ruiz-Pérez, M.V.; Chen, Y.; Kashuba, E.; de Flon, F.H.; Brodin, B.; et al. EZH2 inhibition sensitizes retinoic acid-driven senescence in synovial sarcoma. Cell Death Dis. 2024, 15, 836. [Google Scholar] [CrossRef]
- Yalçınkaya, U.; Uğraş, N.; Özgün, G.; Ocakoğlu, G.; Deligönül, A.; Çetintaş, S.K.; Bilgen, M.S. Enhancer of zeste homologue 2 (EZH2) expression in synovial sarcomas as a promising indicator of prognosis. Bosn. J. Basic Med. Sci. 2017, 17, 302–308. [Google Scholar] [CrossRef]
- Ramaglia, M.; D’Angelo, V.; Iannotta, A.; Di Pinto, D.; Pota, E.; Affinita, M.C.; Donofrio, V.; Errico, M.E.; Lombardi, A.; Indolfi, C.; et al. High EZH2 expression is correlated to metastatic disease in pediatric soft tissue sarcomas. Cancer Cell Int. 2016, 16, 59. [Google Scholar] [CrossRef]
- Sun, R.; Shen, J.; Gao, Y.; Zhou, Y.; Yu, Z.; Hornicek, F.; Kan, Q.; Duan, Z. Overexpression of EZH2 is associated with the poor prognosis in osteosarcoma and function analysis indicates a therapeutic potential. Oncotarget 2016, 7, 38333–38346. [Google Scholar] [CrossRef]
- Béguelin, W.; Popovic, R.; Teater, M.; Jiang, Y.; Bunting, K.L.; Rosen, M.; Shen, H.; Yang, S.N.; Wang, L.; Ezponda, T.; et al. EZH2 Is Required for Germinal Center Formation and Somatic EZH2 Mutations Promote Lymphoid Transformation. Cancer Cell 2013, 23, 677–692. [Google Scholar] [CrossRef]
- Gartin, A.K.; Frost, T.C.; Cushman, C.H.; Leeper, B.A.; Gokhale, P.C.; DeCaprio, J.A. Merkel Cell Carcinoma Sensitivity to EZH2 Inhibition Is Mediated by SIX1 Derepression. J. Investig. Dermatol. 2022, 142, 2783–2792.e15. [Google Scholar] [CrossRef]
- Durand, M.-A.; Drouin, A.; Mouchard, A.; Durand, L.; Esnault, C.; Berthon, P.; Tallet, A.; Le Corre, Y.; Hainaut-Wierzbicka, E.; Blom, A.; et al. Distinct Regulation of EZH2 and its Repressive H3K27me3 Mark in Polyomavirus-Positive and -Negative Merkel Cell Carcinoma. J. Investig. Dermatol. 2023, 143, 1937–1946.e7. [Google Scholar] [CrossRef]
- Huang, X.M.; Shi, S.S.; Jian, T.M.; Tang, D.R.; Wu, T.; Sun, F.Y. LncRNA PVT1 knockdown affects proliferation and apoptosis of uveal melanoma cells by inhibiting EZH2. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2880–2887. [Google Scholar] [CrossRef]
- Uebel, A.; Kewitz-Hempel, S.; Willscher, E.; Gebhardt, K.; Sunderkötter, C.; Gerloff, D. Resistance to BRAF Inhibitors: EZH2 and Its Downstream Targets as Potential Therapeutic Options in Melanoma. Int. J. Mol. Sci. 2023, 24, 1963. [Google Scholar] [CrossRef] [PubMed]
- Acikalin, A.; Bagir, E.; Paydas, S. Prognostic and predictive value of EZH2 expression and the tumor immune microenvironment in Merkel cell carcinoma. Pol. J. Pathol. 2021, 72, 140–147. [Google Scholar] [PubMed]
- Hoffmann, F.; Niebel, D.; Aymans, P.; Ferring-Schmitt, S.; Dietrich, D.; Landsberg, J. H3K27me3 and EZH2 expression in melanoma: Relevance for melanoma progression and response to immune checkpoint blockade. Clin. Epigenetics 2020, 12, 24. [Google Scholar] [CrossRef]
- Cao, J.; Pontes, K.C.; Heijkants, R.C.; Brouwer, N.J.; Groenewoud, A.; Jordanova, E.S.; Marinkovic, M.; van Duinen, S.; Teunisse, A.F.; Verdijk, R.M.; et al. Overexpression of EZH2 in conjunctival melanoma offers a new therapeutic target. J. Pathol. 2018, 245, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Harms, K.L.; Chubb, H.; Zhao, L.; Fullen, D.R.; Bichakjian, C.K.; Johnson, T.M.; Carskadon, S.; Palanisamy, N.; Harms, P.W. Increased expression of EZH2 in Merkel cell carcinoma is associated with disease progression and poorer prognosis. Hum. Pathol. 2017, 67, 78–84. [Google Scholar] [CrossRef]
- Yu, H.; Ma, M.; Yan, J.; Xu, L.; Yu, J.; Dai, J.; Xu, T.; Tang, H.; Wu, X.; Li, S.; et al. Identification of coexistence of BRAF V600E mutation and EZH2 gain specifically in melanoma as a promising target for combination therapy. J. Transl. Med. 2017, 15, 243. [Google Scholar] [CrossRef]
- Veija, T.; Koljonen, V.; Bohling, T.; Kero, M.; Knuutila, S.; Sarhadi, V.K. Aberrant expression of ALK and EZH2 in Merkel cell carcinoma. BMC Cancer 2017, 17, 236. [Google Scholar] [CrossRef]
- Tiffen, J.; Gallagher, S.J.; Filipp, F.; Gunatilake, D.; Emran, A.A.; Cullinane, C.; Dutton-Register, K.; Aoude, L.; Hayward, N.; Chatterjee, A.; et al. EZH2 Cooperates with DNA Methylation to Downregulate Key Tumor Suppressors and IFN Gene Signatures in Melanoma. J. Investig. Dermatol. 2020, 140, 2442–2454.e5. [Google Scholar] [CrossRef]
- Rao, R.C.; Chan, M.P.; Andrews, C.A.; Kahana, A. EZH2, Proliferation Rate, and Aggressive Tumor Subtypes in Cutaneous Basal Cell Carcinoma. JAMA Oncol. 2016, 2, 962–963. [Google Scholar] [CrossRef] [PubMed]
- Montagnani, V.; Benelli, M.; Apollo, A.; Pescucci, C.; Licastro, D.; Urso, C.; Gerlini, G.; Borgognoni, L.; Luzzatto, L.; Stecca, B. Thin and thick primary cutaneous melanomas reveal distinct patterns of somatic copy number alterations. Oncotarget 2016, 7, 30365–30378. [Google Scholar] [CrossRef] [PubMed]
- Emadali, A.; Hoghoughi, N.; Duley, S.; Hajmirza, A.; Verhoeyen, E.; Cosset, F.L.; Bertrand, P.; Roumier, C.; Roggy, A.; Suchaud-Martin, C.; et al. Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms. Blood 2016, 127, 3040–3053. [Google Scholar] [CrossRef] [PubMed]
- Harms, P.W.; Collie, A.M.; Hovelson, D.H.; Cani, A.K.; Verhaegen, M.E.; Patel, R.M.; Fullen, D.R.; Omata, K.; Dlugosz, A.A.; Tomlins, S.A.; et al. Next generation sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations and recurrent TP53 and RB1 inactivation. Mod. Pathol. 2016, 29, 240–248. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Astolfi, A.; Gronchi, A.; Fontana, A.; Pantaleo, M.A.; Negri, T.; Brenca, M.; Tazzari, M.; Urbini, M.; Indio, V.; et al. Evolution of Dermatofibrosarcoma Protuberans to DFSP-Derived Fibrosarcoma: An Event Marked by Epithelial-Mesenchymal Transition-like Process and 22q Loss. Mol. Cancer Res. MCR 2016, 14, 820–829. [Google Scholar] [CrossRef]
- Masudo, K.; Suganuma, N.; Nakayama, H.; Oshima, T.; Rino, Y.; Iwasaki, H.; Matsuzu, K.; Sugino, K.; Ito, K.; Kondo, T.; et al. EZH2 Overexpression as a Useful Prognostic Marker for Aggressive Behaviour in Thyroid Cancer. In Vivo 2018, 32, 25–31. [Google Scholar] [CrossRef]
- Borbone, E.; Troncone, G.; Ferraro, A.; Jasencakova, Z.; Stojic, L.; Esposito, F.; Hornig, N.; Fusco, A.; Orlando, V. Enhancer of zeste homolog 2 overexpression has a role in the development of anaplastic thyroid carcinomas. J. Clin. Endocrinol. Metab. 2011, 96, 1029–1038. [Google Scholar] [CrossRef]
- Sawicka-Gutaj, N.; Shawkat, S.; Andrusiewicz, M.; Ziółkowska, P.; Czarnywojtek, A.; Gut, P.; Ruchała, M. EZH2 and SMYD3 expression in papillary thyroid cancer. Oncol. Lett. 2021, 21, 342. [Google Scholar] [CrossRef]
- Xue, L.; Yan, H.; Chen, Y.; Zhang, Q.; Xie, X.; Ding, X.; Wang, X.; Qian, Z.; Xiao, F.; Song, Z.; et al. EZH2 upregulation by ERα induces proliferation and migration of papillary thyroid carcinoma. BMC Cancer 2019, 19, 1094. [Google Scholar] [CrossRef]
- Sabour-Takanlou, M.; Sabour-Takanlou, L.; Biray-Avci, C. EZH2-associated tumor malignancy: A prominent target for cancer treatment. Clin. Genet. 2024, 106, 377–385. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, J.; Yan, J.; Zhang, Y.; Yin, Z. Targeting EZH2 as a novel therapeutic strategy for sorafenib-resistant thyroid carcinoma. J. Cell. Mol. Med. 2019, 23, 4770–4778. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Song, Y.; Xu, G. Long Noncoding RNA CCDC26 Promotes Thyroid Cancer Malignant Progression via miR-422a/EZH2/Sirt6 Axis. OncoTargets Ther. 2021, 14, 3083–3094. [Google Scholar] [CrossRef]
- Rinke, J.; Müller, J.P.; Blaess, M.F.; Chase, A.; Meggendorfer, M.; Schäfer, V.; Winkelmann, N.; Haferlach, C.; Cross, N.C.P.; Hochhaus, A.; et al. Molecular characterization of EZH2 mutant patients with myelodysplastic/myeloproliferative neoplasms. Leukemia 2017, 31, 1936–1943. [Google Scholar] [CrossRef] [PubMed]
- Stomper, J.; Meier, R.; Ma, T.; Pfeifer, D.; Ihorst, G.; Blagitko-Dorfs, N.; Greve, G.; Zimmer, D.; Platzbecker, U.; Hagemeijer, A.; et al. Integrative study of EZH2 mutational status, copy number, protein expression and H3K27 trimethylation in AML/MDS patients. Clin. Epigenetics 2021, 13, 77. [Google Scholar] [CrossRef] [PubMed]
- Lasho, T.L.; Mudireddy, M.; Finke, C.M.; Hanson, C.A.; Ketterling, R.P.; Szuber, N.; Begna, K.H.; Patnaik, M.M.; Gangat, N.; Pardanani, A.; et al. Targeted next-generation sequencing in blast phase myeloproliferative neoplasms. Blood Adv. 2018, 2, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Venton, G.; Courtier, F.; Charbonnier, A.; D’Incan, E.; Saillard, C.; Mohty, B.; Mozziconacci, M.J.; Birnbaum, D.; Murati, A.; Vey, N.; et al. Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms. Am. J. Hematol. 2018, 93, 330–338. [Google Scholar] [CrossRef]
- Kosalai, S.T.; Morsy, M.H.A.; Papakonstantinou, N.; Mansouri, L.; Stavroyianni, N.; Kanduri, C.; Stamatopoulos, K.; Rosenquist, R.; Kanduri, M. EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia. Epigenetics 2019, 14, 1125–1140. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, L.; Li, G.; Zhang, Y.; Dong, C.; Ren, F.; Chen, W.; Ma, Y. EZH2/EHMT2 Histone Methyltransferases Inhibit the Transcription of DLX5 and Promote the Transformation of Myelodysplastic Syndrome to Acute Myeloid Leukemia. Front. Cell Dev. Biol. 2021, 9, 619795. [Google Scholar] [CrossRef]
- Chai, J.; Choudhuri, J.; Gong, J.Z.; Wang, Y.; Tian, X. Upregulation of Enhancer of Zeste Homolog 2 (EZH2) with Associated pERK Co-Expression and PRC2 Complex Protein SUZ12 Correlation in Adult T-Cell Leukemia/Lymphoma. Cancers 2024, 16, 646. [Google Scholar] [CrossRef]
- Rinke, J.; Chase, A.; Cross, N.C.P.; Hochhaus, A.; Ernst, T. EZH2 in Myeloid Malignancies. Cells 2020, 9, 1639. [Google Scholar] [CrossRef]
- Stasik, S.; Middeke, J.M.; Kramer, M.; Röllig, C.; Krämer, A.; Scholl, S.; Hochhaus, A.; Crysandt, M.; Brümmendorf, T.H.; Naumann, R.; et al. EZH2 mutations and impact on clinical outcome: An analysis in 1,604 patients with newly diagnosed acute myeloid leukemia. Haematologica 2020, 105, e228–e231. [Google Scholar] [CrossRef]
- Shen, J.K.; Cote, G.M.; Gao, Y.; Choy, E.; Mankin, H.J.; Hornicek, F.J.; Duan, Z. Targeting EZH2-mediated methylation of H3K27 inhibits proliferation and migration of Synovial Sarcoma in vitro. Sci. Rep. 2016, 6, 25239. [Google Scholar] [CrossRef]
- Li, B.; Chng, W.J. EZH2 abnormalities in lymphoid malignancies: Underlying mechanisms and therapeutic implications. J. Hematol. Oncol. 2019, 12, 118. [Google Scholar] [CrossRef]
- Kim, D.H.; Siddiqui, S.; Jain, P.; Wang, M.; Thakral, B.; Li, S.; Miranda, R.; Vega, F.; Medeiros, L.J.; Ok, C.Y. TP53 mutation is frequent in mantle cell lymphoma with EZH2 expression and have dismal outcome when both are present. Hum. Pathol. 2024, 146, 1–7. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, L.; Wang, D.; Ye, Z.; He, Y.; Ma, L.; Zhu, R.; Pan, Y.; Wu, Q.; Pang, K.; et al. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J. 2019, 38, e99599. [Google Scholar] [CrossRef]
- Profitós-Pelejà, N.; Santos, J.C.; Marín-Niebla, A.; Roué, G.; Ribeiro, M.L. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers 2022, 14, 860. [Google Scholar] [CrossRef]
- Martínez-Laperche, C.; Sanz-Villanueva, L.; Díaz Crespo, F.J.; Muñiz, P.; Martín Rojas, R.; Carbonell, D.; Chicano, M.; Suárez-González, J.; Menárguez, J.; Kwon, M.; et al. EZH2 mutations at diagnosis in follicular lymphoma: A promising biomarker to guide frontline treatment. BMC Cancer 2022, 22, 982. [Google Scholar] [CrossRef] [PubMed]
- Groß, E.; Hilger, R.-A.; Schümann, F.L.; Bauer, M.; Bouska, A.; Rohde, C.; Willscher, E.; Lützkendorf, J.; Müller, L.P.; Edemir, B.; et al. SAM-Competitive EZH2-Inhibitors Induce Platinum Resistance by EZH2-Independent Induction of ABC-Transporters. Cancers 2023, 15, 3043. [Google Scholar] [CrossRef] [PubMed]
- Schümann, F.L.; Groß, E.; Bauer, M.; Rohde, C.; Sandmann, S.; Terziev, D.; Müller, L.P.; Posern, G.; Wienke, A.; Fend, F.; et al. Divergent Effects of EZH1 and EZH2 Protein Expression on the Prognosis of Patients with T-Cell Lymphomas. Biomedicines 2021, 9, 1842. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Baquero, D.; Sakhdari, A.; Mo, H.; Kim, D.H.; Kanagal-Shamanna, R.; Li, S.; Young, K.H.; O’Malley, D.P.; Dogan, A.; Jain, P.; et al. EZH2 expression is associated with inferior overall survival in mantle cell lymphoma. Mod. Pathol. 2021, 34, 2183–2191. [Google Scholar] [CrossRef]
- Wu, S.-y.; Xie, Z.-y.; Yan, L.-y.; Liu, X.-f.; Zhang, Y.; Wang, D.-a.; Dong, J.; Sun, H.-t. The correlation of EZH2 expression with the progression and prognosis of hepatocellular carcinoma. BMC Immunol. 2022, 23, 28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lv, H.; Jia, X.; Hu, G.; Kong, L.; Zhang, T.; Li, L.; Pan, Y.; Zhai, Q.; Meng, B.; et al. Clinical significance of enhancer of zeste homolog 2 and histone deacetylases 1 and 2 expression in peripheral T-cell lymphoma. Oncol. Lett. 2019, 18, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Chen, X.; Huang, C.; Chen, G.; Chen, F.; Lu, J.; Shi, X.; He, C.; Zeng, Z.; Qiu, Y.; et al. EZH2/Bcl-2 Coexpression Predicts Worse Survival in Diffuse Large B-cell Lymphomas and Demonstrates Poor Efficacy to Rituximab in Localized Lesions. J. Cancer 2019, 10, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Huet, S.; Xerri, L.; Tesson, B.; Mareschal, S.; Taix, S.; Mescam-Mancini, L.; Sohier, E.; Carrère, M.; Lazarovici, J.; Casasnovas, O.; et al. EZH2 alterations in follicular lymphoma: Biological and clinical correlations. Blood Cancer J. 2017, 7, e555. [Google Scholar] [CrossRef]
- Wang, X.; Sehgal, L.; Jain, N.; Khashab, T.; Mathur, R.; Samaniego, F. LncRNA MALAT1 promotes development of mantle cell lymphoma by associating with EZH2. J. Transl. Med. 2016, 14, 346. [Google Scholar] [CrossRef]
- Oh, E.J.; Kim, S.H.; Yang, W.I.; Ko, Y.H.; Yoon, S.O. Long Non-coding RNA HOTAIR Expression in Diffuse Large B-Cell Lymphoma: In Relation to Polycomb Repressive Complex Pathway Proteins and H3K27 Trimethylation. J. Pathol. Transl. Med. 2016, 50, 369–376. [Google Scholar] [CrossRef]
- Tian, X.; Pelton, A.; Shahsafaei, A.; Dorfman, D.M. Differential expression of enhancer of zeste homolog 2 (EZH2) protein in small cell and aggressive B-cell non-Hodgkin lymphomas and differential regulation of EZH2 expression by p-ERK1/2 and MYC in aggressive B-cell lymphomas. Mod. Pathol. 2016, 29, 1050–1057. [Google Scholar] [CrossRef]
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2024 | Li et al. [44] | 230 | ELISA | Elevated EZH2 levels in the serum of patients with bladder cancer are associated with poor prognosis. |
2023 | Weikert et al. [51] | 37 | qRT-PCR | Increased EZH2 expression in aggressive and invasive urothelial carcinoma leads to the progression of bladder tumors. |
2023 | Mohamedali et al. [52] | 150 | IHC | Strong EZH2 expression and reduced H3K27me3 levels are associated with higher tumor grade, increased proliferative index, and invasive behavior. |
2021 | Sameh et al. [53] | 56 | IHC | EZH2 and ARID1A contribute to tumorigenesis and cellular differentiation and may serve as independent prognostic markers. |
2021 | Zhang et al. [54] | 427 | qRT-PCR | High EZH2 expression was associated with poor prognosis in bladder cancer patients. |
2018 | Zhou et al. [55] | 189 | IHC | EZH2 can serve as a marker for identifying more aggressive phenotypes in patients with urothelial carcinoma. |
2018 | Chen et al. [47] | 34 | IHC | EZH2 enhances the proliferation and migration of bladder cancer cells through activation of the JAK2/STAT3 signaling pathway. |
2017 | Bi et al. [56] | 9 | WB | Upregulation of EZH2, along with exposure to surgery-induced wound fluid promotes therapeutic resistance in bladder cancer cells. |
2016 | Joshua Warrick et al. [57] | 657 | IHC | Correlation of EZH2 status between noninvasive and invasive tumors within individual patients suggests that EZH2 may serve as a marker of tumor lineage. |
2016 | Chang et al. [58] | 375 | Statistical Analysis | Aberration in EZH2 gene may be associated with a lower risk of bladder cancer development, particularly in non-smokers. |
2016 | Yung-Luen et al. [59] | 785 | qRT-PCR | EZH2 variants may serve as novel susceptibility markers for urothelial cell carcinoma. |
2014 | Akimasa et al. [60] | 171 | IHC | Increased EZH2 expression was significantly associated with female gender, ureteral tumor location, sessile architecture, high histological grade, presence of lympho-vascular invasion, concomitant carcinoma in situ, advanced tumor stage, and elevated Ki-67 expression. |
2012 | Wang et al. [61] | 81 | IHC | Elevated EZH2 protein expression was associated with more aggressive forms of bladder cancer, including invasive urothelial carcinoma. |
2008 | Hinz et al. [62] | 99 | IHC | Members of the PCG family, including BMI1, EZH2, SUZ12, RING1, and CBX7 are expressed in urothelial carcinomas of the bladder. |
2007 | Hinz et al. [63] | 100 | qRT-PCR | EZH2 expression was linked to aggressive tumor behavior in urothelial carcinoma and is strongly associated with various pathological features. |
2005 | Sameh et al. [53] | 56 | IHC | EZH2 and ARID1A contribute to tumor carcinogenesis and differentiation and may serve as independent prognostic factors in urothelial carcinoma. |
2005 | Raman et al. [64] | 24 | IHC | Increased EZH2 expression was correlated with bladder oncogenesis. |
2005 | Arisan et al. [65] | 68 | qRT-PCR | EZH2 upregulation precedes increased proliferation rates and the gradual progression of bladder cancer. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2023 | Yu et al. [73] | 113 | IHC | Phosphorylation-dependent EZH2 expression in the cytoplasm and nucleus of breast cancer tissues correlates with lymph node metastasis in HER2-positive cases. |
2022 | Gan et al. [78] | 46 | IHC | In ER+ breast cancer, high EZH2 expression correlated with poor prognosis and endocrine therapy resistance, independent of tumor grade and Ki67 status. |
2022 | Wang et al. [79] | 139 | IHC | EZH2 inhibition impairs breast cancer progression by suppressing M2 macrophage polarization and infiltration. |
2022 | Liu et al. [80] | 176 | RT-PCR | Low EZH2 expression predicted worse survival in TNBC, and EZH2 gene aberration was linked to younger patients (<60 years). |
2021 | McMullen et al. [81] | 35 | IHC | pEZH2 T367 patterns vary with metaplastic differentiation and are linked to lymph node metastasis. |
2021 | Yang et al. [82] | 12 | WB | EZH2 expression was upregulated post-chemotherapy in patients with poor neoadjuvant response. |
2020 | Zhou et al. [83] | 100 | IHC | Positive EZH2 expression was linked to poor prognosis in TNBC. |
2019 | Dou et al. [84] | 48 | qRT-PCR | Elevated EZH2 expression in breast cancer tissues was linked to poor prognosis. |
2018 | Anwar et al. [85] | 146 | IHC/IF | Cytoplasmic localization and T367 phosphorylation drive EZH2-mediated breast cancer progression. |
2018 | Boostani et al. [86] | 100 | IHC | Elevated EZH2 expression was not tied to poor overall survival or disease-free survival but may indicate poor prognosis in breast cancer. |
2018 | Wu et al. [87] | 130 | IHC | EZH2 was linked to therapy resistance, with an inverse correlation to GREB1 expression. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2022 | Salmerón-Bárcenas et al. [91] | 96 | IHC | Increased EZH2 expression in cervical cancer was associated with tumor progression and the suppression of senescence. |
2019 | Zhang et al. [92] | 64 | qRT-PCR | HPV18 E6/E7 increases EZH2 and H3K27me3 expression via FOXM1 and E2F-1 binding to the EZH2 promoter and suppress DNMT3A expression. |
2017 | Azizmohammadi et al. [93] | 39 | IHC | EZH2 upregulation correlates with the International Federation of Gynecology and Obstetrics (FIGO) stage, histological type, and lymph node metastasis. RIPK4/EZH2 markers may be useful for predicting prognosis in cervical cancer. |
2016 | Chen et al. [94] | 62 | IHC | EZH2 expression was 17 times higher in cervical cancer tissues, suggesting its role in cervical carcinoma development and progression. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2022 | Cheraghi et al. [101] | 114 | RT-PCR | EZH2 expression was higher in tumor and polyp tissues during colorectal cancer development, indicating its potential as a biomarker. |
2021 | Abou Gabal et al. [102] | 120 | IHC | High EZH2 and ERRα expression was linked to shorter overall and progression-free survival, indicating their potential as prognostic markers in CRC. |
2021 | Sanches et al. [103] | 150 | IHC | KDM2B downregulation inhibited proliferation, induced DNA damage, and decreased EZH2 expression, activating PI3K/AKT signaling and impairing CRC migration. Their interaction may be a novel prognostic marker for CRC. |
2021 | Liang et al. [70] | 80 | IHC | LINC01116 enhances CRC cell proliferation and angiogenesis by recruiting EZH2 to methylate the TPM1 promoter, inhibiting TPM1 transcription. |
2016 | Kurihara et al. [104] | 528 | IHC | Elevated EZH2 expression was linked to a favorable prognosis, with an inverse relationship between EZH2 and miR-31 in colorectal cancer. |
2016 | Chen et al. [105] | 81 | IHC | High EZH2 expression linked to poorer survival in both early and advanced stage CRC, suggesting it as a predictive marker for prognosis. |
2015 | Liu et al. [99] | 82 | qRT-PCR | Elevated expressions of EED, SUZ12, and EZH2 could play a role in the development and progression of CRC. |
2015 | Lorenzo Fornaro et al. [106] | 119 | qRT-PCR | EZH2 genotype correlates with higher EZH2 and H3K27me3 immunoreactivity as potential biomarker for EZH2-targeting agents. |
2014 | Benard et al. [107] | 247 | IHC, qRT-PCR | Combined expressions of EZH2, BMI1, and SUZ12, along with H3K27me3 modification, provide prognostic value in colorectal cancer. |
2014 | Meng et al. [100] | 112 | IHC | Low EZH2 expression in biopsy tissue could predict a better tumor response to neoadjuvant therapy and longer 5-year disease free survival in patients with locally advanced rectal cancer. |
2010 | Wang et al. [108] | 119 | IHC | EZH2 and STAT6 expression levels are valuable for distinguishing CRC clinical stages and predicting patient prognosis. |
2009 | Fluge et al. [109] | 412 | IHC | EZH2 expression correlated significantly with higher tumor cell proliferation, as measured by Ki-67 expression. |
2005 | Mimori et al. [110] | 61 | IHC, qRT-PCR | EZH2 amplification in CRC suggests it as an oncogene and prognostic marker, with concordant expression of HDAC1. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2022 | Qin et al. [118] | 89 | qRT-PCR | LINC00114 accelerates EC development by recruiting EZH2, which enhances H3K27me3 on the DLC1 gene. |
2020 | Qiu et al. [119] | 120 | qRT-PCR | PSMA3-AS1 is elevated in esophageal squamous cell carcinoma tissues and acts as a miR-101 sponge, thereby upregulating EZH2 expression and contributing to oncogenesis. |
2020 | Rehman et al. [113] | 58 | IHC | EZH2 was upregulated in tumors compared to normal tissues, with no link to dysphagia grade with a significant positive correlation with RUNX3 expression. |
2020 | Zhang et al. [120] | 76 | qRT-PCR | EZH2 amplification increases ZEB1 expression, with LINC00152 enhancing this effect, promoting epithelial–mesenchymal transition in endometrial cancer cells. |
2016 | Wang et al. [121] | 106 | qRT-PCR | MALAT1 downregulation decreases β-catenin, Lin28, and EZH2 expression, while EZH2 upregulation reversed this effect in esophageal cancer cells. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2024 | Ghoreshi et al. [129] | 304 | qRT-PCR | Reduced miR-124 expression in gastric cancer patients was associated with higher EZH2 mRNA levels, particularly in EBV-infected cases. |
2022 | Yan et al. [127] | 107 | qRT-PCR | circKIF4A sponges miR-144-3p to regulate EZH2 in gastric cancer cells, and miR-144-3p inhibition or EZH2 restoration reverses the effects of circKIF4A knockdown. |
2021 | Ma et al. [128] | 56 | qRT-PCR | Low circGSK3B and high EZH2 expression correlated with larger tumor size and poor prognosis. circGSK3B inhibited EZH2-mediated RORA suppression, limiting gastric cancer progression. |
2020 | Li et al. [130] | 36 | qRT-PCR | Elevated EZH2 expression in gastric cancer counteracts miR-625-3p’s inhibitory effects, promoting tumor progression. |
2018 | Pan et al. [131] | 51 | qRT-PCR | Overexpression of miR-124 or inhibition of JAG1/EZH2 reduced fibronectin and vimentin levels in gastric cancer, with miR-124 directly downregulating JAG1 and EZH2. |
2018 | Gan et al. [122] | 156 | qRT-PCR | EZH2 was highly expressed in gastric cancer tissues relative to non-tumorous epithelium and correlated with aggressive features and poor outcomes. |
2017 | Deng et al. [132] | 109 | qRT-PCR, IHC | TET facilitated gastric cancer by binding miR-26 via its 3′UTR, preventing EZH2 suppression and resulting in EZH2 upregulation. |
2016 | Sun et al. [133] | 85 | qRT-PCR | In the cytoplasm, HOXA11-AS acts as a Competing Endogenous RNA (ceRNA) for miR-1297, releasing EZH2 from miR-1297 inhibition and elevating EZH2 expression. |
2015 | Wang et al. [134] | 106 | qRT-PCR | XIST knockdown suppressed gastric cancer progression by regulating the miR-101/EZH2 pathway. |
2015 | Xie et al. [135] | 55 | IHC, qRT-PCR | HOXA-AS2 knockdown upregulated EZH2-repressed genes, indicating that HOXA-AS2 may inhibit target genes by interacting with EZH2. |
2015 | Kong et al. [136] | 80 | IHC, qRT-PCR | PVT1 expression positively correlated with EZH2 protein levels in gastric cancer tissues. |
2012 | He et al. [137] | 117 | IHC | Higher EZH2 and H3K27me3 expressions were associated with advanced stages and lymph node metastasis in gastric cancer, but not with age, gender, or tumor grade. |
2010 | Choi et al. [138] | 137 | IHC | Elevated EZH2 expression was linked to distant metastases, non-signet ring cell types, and correlated with Ki-67 and p53 levels. |
2006 | Matsukawa et al. [139] | 83 | IHC, qRT-PCR | High EZH2 levels correlate with larger tumor size, deeper invasion, and advanced clinical features in cancer. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2019 | Karlowee et al. [145] | 12 | IHC | High EZH2 expression was linked to shorter overall survival and positively associated with high tumor grade. |
2017 | Zheng et al. [146] | 67 | IHC | The positive correlation between EZH2 and NICD1 expression indicates that NOTCH1 could be a potential target of EZH2 in glioblastoma. |
2016 | Pang et al. [147] | 105 | IHC | EZH2 expression was inversely correlated with EAF2, suggesting EAF2 as a potential target. Upregulation of EZH2 also activated HIF1α. |
2015 | Zhang et al. [148] | 83 | IHC, qRT-PCR | High EZH2 expression correlates with Ki-67 but not with MGMT methylation or IDH1 mutation. |
2016 | Zakrzewska et al. [149] | 53 | qRT-PCR | miR-19a, miR-17-5p, and miR-106b expression levels were significantly associated with EZH2 expression. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2018 | Nienstedt et al. [151] | 394 | IHC | EZH2 expression was linked to lymph node metastasis but not to tumor grade, stage, surgical margin, distant metastasis, or patient survival. |
2016 | Chang et al. [153] | 90 | IHC | High EZH2 expression is linked to advanced T stage, poor survival, and tumor aggressiveness via epithelial-to-mesenchymal transition. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2022 | Lyu et al. [160] | 2 | RT-qPCR | EZH2 may be a prognostic and microenvironment-associated factor in ccRCC. |
2021 | Wu et al. [161] | 30 | qRT-PCR, WB | High EZH2 levels contribute to the overactivation of the IFN-I signaling pathway in systemic lupus erythematosus patients, making EZH2 a promising therapeutic target. |
2020 | Echenauer et al. [154] | 1603 | IHC | EZH2 expression and CD8+ cell density are crucial prognostic factors in RCC, with EZH2 upregulation linked to high lymphocyte content. |
2018 | Sun et al. [162] | 62 | IHC | Low BRCA1-associated protein 1 (BAP1) levels in ccRCC was linked to poor prognosis and high EZH2 expression. |
2017 | Ho et al. [163] | 1992 | IHC | High EZH2 expression in ccRCC doubles mortality risk and improves RCC death prediction, especially in low- and intermediate-risk tumors. |
2015 | Liu et al. [164] | 257 | IHC, qRT-PCR | Elevated EZH2 expression correlates significantly with advanced TNM stage. |
2016 | Karlsson et al. [165] | 14 | IHC | EZH2 expression was higher in clear cell sarcoma of the kidneys than in Wilms’ tumors, fetal, and adult kidney. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2023 | Wu et al. [174] | 24 | qRT-PCR | High EZH2 expression in HCC patients was linked to poor survival and differed significantly from normal controls. |
2022 | Zhou et al. [167] | 52 | qRT-PCR, IHC | EZH2 upregulation in HCC inhibited miR-381 expression via H3K27me3-mediated promoter modification. |
2021 | You et al. [171] | 153 | qRT-PCR | OGT, EZH2, and O-GlcNAc were upregulated in HCC tissues, while p53 suppressed HCC development by promoting miR-15a, which destabilized EZH2. |
2021 | Cui et al. [175] | 32 | DNA-Seq | Aberration in EZH2 was frequently identified as potential novel biomarkers for liver cancer. |
2019 | Xiao et al. [168] | 386 | IHC | Higher EZH2 expression in HCC tumors suppressed PD-L1 in an IFNγ-dependent manner. |
2016 | Wang et al. [176] | 7 | WB | EZH2 upregulation in hepatoblastoma drives proliferation by silencing p27. |
2015 | Zheng et al. [177] | 163 | IHC, qRT-PCR | Increased EZH2 expression in HCC is tied to poor prognosis, while miR-101 overexpression reduces EZH2 levels in HCC cells. |
2014 | Gao et al. [178] | 151 | IHC, qRT-PCR | Increased expression of EZH2 and menin correlates with a poor prognosis in HCC patients. |
2014 | Xu et al. [179] | 99 | qRT-PCR | miR-101 expression negatively correlates with EZH2 expression in HCC. |
2013 | Nakagawa et al. [180] | 86 | IHC | EZH2 knockdown increased p16 and p27, while upregulation of EZH2 correlated with tumor size in intrahepatic cholangiocarcinoma, lymph node metastasis in extrahepatic cholangiocarcinoma, and Ki-67 in both. |
2010 | Cai et al. [181] | 338 | IHC | A positive correlation was observed between H3K27me3 and EZH2 expression in HCCs, with a higher frequency of EZH2 positivity in cases with high H3K27me3 expression. |
2009 | Yonemitsu et al. [182] | 86 | IHC | EZH2 expression in HCC was significantly correlated with hypoalbuminemia and advanced TNM stage, whereas BMI1 showed no significant correlation with clinicopathologic factors. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2020 | Fan et al. [188] | 2180 | RNA-seq | High EZH2 expression—alone or synergizing with KRAS/BRAF mutations—predicts poor prognosis in NSCLC, independent of tumor stage or subtype. |
2019 | Matsubara et al. [189] | 350 | IHC | Higher EZH2 expression indicates poor NSCLC prognosis. |
2018 | Toyokawa G. et al. [190] | 428 | IHC | EZH2 expression in lung adenocarcinomas correlates with increased PD-L1 expression, offering the evidence of their association in resected tumors. |
2017 | Shinozaki-Ushiku et al. [191] | 33 | IHC | BAP1 loss and high EZH2 expression are specific markers for malignant mesothelioma, and their combination boosts diagnostic accuracy. |
2016 | Wang et al. [192] | 1695 | RNA-seq | Increased EZH2 expression predicts poor prognosis in NSCLC, especially in Asian patients, lung adenocarcinoma, and stage I, but not in Caucasians. |
2016 | Liu et al. [193] | 109 | IHC | Higher EZH2 expression predicts poor NSCLC survival and serves as a candidate therapeutic target. |
2015 | Geng et al. [186] | 195 | IHC | High EZH2 expression in NSCLC is associated with poor prognosis, larger tumors, higher VEGF-A, and AKT activation. |
2014 | Xu et al. [194] | 360 | IHC | EZH2 expression in advanced NSCLC is linked to drug resistance. |
2013 | Wan et al. [195] | 113 | IHC | Elevated EZH2 parallels lung cancer development and promotes its progression and metastasis. |
2013 | Behrens et al. [185] | 541 | IHC | EZH2 is involved in the initial stages of SCC pathogenesis and correlates with aggressive adenocarcinoma behavior. |
2012 | Lv et al. [196] | 69 | IHC, qRT-PCR | EZH2 drives lung adenocarcinoma progression, and its deletion halts cancer growth and restores cisplatin sensitivity. |
2012 | Huqun et al. [197] | 106 | IHC | EZH2 promotes NSCLC progression and invasion and serves as a novel prognostic marker. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2024 | Chen et al. [204] | 63 | IHC, qRT-PCR | EZH2 boosts cell viability, colony formation, stemness, and epithelial-to-mesenchymal transition in oral squamous carcinoma. |
2023 | Ganesh et al. [205] | 9 | IHC | EZH2 expression in oral epithelium predicts oral squamous cell carcinoma transformation in oral leukoplakia and is linked to T-cell infiltration. |
2021 | Sihavong et al. [206] | 78 | IHC | EZH2 can indicate disease progression in verrucous lesions and oral verrucous carcinoma and may aid in differentiating oral verrucous hyperplasia from oral verrucous carcinoma in unclear cases. |
2020 | Sun et al. [207] | 86 | IHC | In nasopharyngeal carcinoma, EZH2 sustains the stability and inhibitory activity of Tregs induced by EBV-encoded LMP1. |
2020 | Alajez et al. [201] | 15 | qRT-PCR | EZH2 upregulation in recurrent nasopharyngeal carcinoma is modulated by miR-26a, miR-101, and miR-98. |
2019 | Zheng et al. [208] | 68 | IHC, qRT-PCR | High EZH2 expression correlates with metastasis and poor prognosis in oral squamous cell carcinoma. |
2014 | Zhao et al. [209] | 14 | qRT-PCR | EZH2 promotes proliferation, blocks apoptosis, and enhances metastasis and invasion in oral squamous cell carcinoma. |
2014 | Juan Lu et al. [198] | 135 | IHC, qRT-PCR | Higher EZH2 expression was associated with increased microvascular density in tumors. EZH2 contributes to angiogenesis in nasopharyngeal carcinoma by downregulating the miR-1/ET-1 axis. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2024 | Luo et al. [215] | 19 | RNA-seq | Increased EZH2 expression prevents ferroptosis. Blocking EZH2 may offer potential treatment for ovarian endometriosis. |
2023 | Chen et al. [216] | 105 | IHC ChIP-Seq | EZH2 drives ovarian cancer oncogenesis; targeting its noncatalytic activity. |
2021 | Reid et al. [217] | 79 | IHC | EZH2 inhibitor–mediated epigenetic reprogramming boosts T-cell and PD-L1–targeted treatments. |
2020 | Zhai et al. [210] | 39 | IHC | EZH2 inhibits p53 in ovarian cancer, correlates with stage/grade, and serves as a key diagnostic and prognostic marker. |
2020 | Sun et al. [218] | 63 | IHC | EZH2/H3K27me3/pEZH2 predicts chemo response and progression free survival in ovarian cancer. |
2020 | Huo et al. [219] | 160 | IHC | EZH2 drives ovarian cancer cell growth and invasion by regulating steroid biosynthesis genes through H3K27me3. |
2018 | Sun et al. [211] | 84 | RT-qPCR | Higher EZH2 expression correlates with cisplatin resistance and increased intracellular platinum drug accumulation. |
2017 | Wang et al. [220] | 24 | IHC | Inhibiting EZH2 has potential for treatment of small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT). |
2016 | Xu. et al. [221] | 30 | IHC | Elevated EZH2 protein level is implicated in ovarian granulosa cell tumor development. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2023 | Li. et al. [228] | 60 | IHC | EZH2 upregulation enhances proliferation and migration in BXP3 cells and could regulate normal pancreatic cell proliferation. |
2020 | Zhou et al. [229] | 42 | IHC, qRT-PCR | BLACAT1 interference blocks EZH2 recruitment to CDKN1C, promoting CDKN1C expression, inhibiting CCNE, and suppressing pancreatic cell proliferation. |
2018 | Ma et al. [230] | 105 | IHC qRT-PCR | Targeting EZH2 and restoring miR-139-5p could improve prognosis by reducing pancreatic cancer aggression. |
2016 | Han et al. [231] | 84 | IHC, qRT-PCR | EZH2 levels were positively associated with clinical stage and lymph node metastasis. |
2014 | Chen et al. [232] | 80 | IHC, qRT-PCR | EZH2 expression was positively correlated with Ring1B. |
2014 | Yamamoto et al. [233] | 7 | IHC, qRT-PCR | EZH2 knockdown upregulated CEBPA mRNA, but this effect was blocked in KDM6B-KD cells. |
2014 | Kuroki et al. [234] | 181 | IHC, qRT-PCR | Increased EZH2 expression in pancreatic IPMN reduces p27Kip1, accelerating cell proliferation in malignant lesions (CIS). |
2014 | Maftouh et al. [235] | 247 | IHC, qRT-PCR | EZH2 is a prognostic indicator for advanced/metastatic PDAC, while polymorphisms do not predict clinical outcomes. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2024 | Feschetti et al. [246] | 38 | IHC, PCR | Blocking AR and EZH2 restrain castration-resistant and neuroendocrine differentiated prostate cancer, re-sensitizes to enzalutamide, and triggers anti-tumor T-cells in prostate cancer. |
2023 | Zhang et al. [247] | 33 | IHC/IF | EZH2 controls miR-26a-5p expression in prostate cancer by recruiting H3K27me3 to the promoter. |
2022 | Su et al. [248] | 179 | IHC RT-PCR | The circRNA circEZH2E2/E3 suppresses miR363 and miR708 in prostate cancer boosting EZH2 expression via an auto-enhancing loop. |
2023 | Hansen et al. [249] | 90 | IHC | TOP2A and EZH2 co-expression could be an independent recurrence predictor. |
2021 | Huang et al. [250] | 30 | RT-PCR | SCHLAP1 fosters prostate cancer by using EZH2 to methylate chromosome 5 miRNAs, with DNMT3a feedback. |
2019 | Ma et al. [251] | 42 | IHC | EZH2 expression was inversely correlated with FOXO1 protein levels and may negatively regulate FOXO1 in prostate cancer patients. |
2019 | Xu et al. [252] | 120 | IHC | EZH2 expression was markedly higher in androgen-dependent and castration-resistant prostate cancer samples. EZH2 staining was more intense in castration-resistant prostate cancer. |
2019 | Wu et al. [253] | 113 | IHC | Increased EZH2 expression in prostate cancer biopsies links to higher post-radiotherapy metastasis recurrence. |
2018 | Bhatia et al. [254] | 238 | IHC, qRT-PCR | Increased EZH2 expression in SPINK1-positive prostate cancer highlights its role in epigenetically silencing miRNA-338-5p/-421. |
2018 | Patil et al. [255] | 61 | IHC | Higher EZH2/SPINK1 protein expression compared to acinar adenocarcinoma underline increased aggressiveness of ductal adenocarcinoma of the prostate. |
2018 | Lobo et al. [256] | 189 | IHC | High Ki67, EZH2, and SMYD3 immuno-expression independently predicts outcome in prostate cancer patients at diagnosis. |
2017 | Labbe et al. [257] | 89 | IHC | TOP2A and EZH2 are key oncogenic drivers in prostate cancer cells, and EZH2 may identify patients with metastatic potential. |
2017 | Albdelrahman et al. [258] | 70 | IHC | Elevated Twist-1 and EZH2, combined with E-cadherin indicate an aggressive prostate tumor with high metastatic risk. |
2015 | Melling et al. [259] | 12427 | IHC | EZH2 upregulation in prostate cancer was associated with TMPRSS2:ERG rearrangement, ERG expression, and PTEN loss. |
2015 | Matsika et al. [260] | 142 | IHC | ALDH1, EZH2, and SOX2 CSC marker expression varies in prostate adenocarcinomas. |
2014 | Jacobs et al. [261] | 54 | IHC | DAB2IP status alongside highest EZH2 could aid in pinpoint high-risk prostate cancer patients with worse prognoses. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2024 | Mushtaq et al. [265] | 55 | NGS | Preferentially Expressed Antigen in Melanoma (PRAME) influences retinoic acid signaling by forming a ternary complex with retinoic acid receptor α (RARα) and EZH2. |
2017 | Yalcinkaya et al. [266] | 29 | IHC | EZH2 upregulation indicates poor prognosis in synovial sarcoma and is associated with distant metastasis and necrosis. |
2016 | Ramaglia et al. [267] | 17 | IHC | Higher EZH2 expression correlated with lower survival probability and the presence of lymph node and/or distant metastases. |
2016 | Sun et al. [268] | 64 | IHC | EZH2 expression is a significant prognostic factor in osteosarcoma, with high expression indicating poor disease-free survival and overall survival, and significantly higher levels observed in non-survivors. |
Year | Authors | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2023 | Durand et al. [271] | 170 | IHC | EZH2 expression was higher in virus-positive than virus-negative Merkel cell carcinoma tumors. |
2021 | Acikalin et al. [274] | 13 | IHC | EZH2 plays a key role in Merkel cell carcinoma. |
2020 | Hoffman et al. [275] | 44 | IHC | H3K27me3 expression is more common than EZH2 and correlates with a more invasive and metastatic melanoma cell phenotype. |
2019 | Huang et al. [272] | 40 | WB | Knockdown of lncRNA plasmacytoma variant translocation gene 1 (PVT1) in uveal melanoma cells inhibits proliferation and promotes apoptosis by regulating EZH2 expression. |
2018 | Cao et al. [276] | 26 | IHC | EZH2 plays a relevant role in conjunctival melanoma progression. |
2017 | Harms et al. [277] | 85 | IHC | Weak EZH2 expression in the primary tumor (but not nodal metastases) correlated with better prognosis compared to moderate/strong EZH2 expression (5-year Merkel cell carcinoma-specific survival: 68% vs. 22%). |
2017 | Yu et al. [278] | 138 | qRT-PCR | BRAF/EZH2 co-inhibition showed superior melanoma prevention suggesting its potential for melanomas with BRAF V600E and EZH2 gain. |
2017 | Veija et al. [279] | 26 | NGS | EZH2 upregulation indicates its potential as a drug target in Merkel cell carcinoma. |
2016 | Tiffen et al. [280] | 471 | RNA-Seq | Melanoma patients show EZH2 dysregulation, which worsens survival. EZH2 hyperactivation causes DNA methylation and epigenetic silencing of key genes. |
2016 | Rao et al. [281] | 59 | IHC | EZH2 expression correlates with the proliferation marker Ki67 and aggressive basal cell carcinoma subtypes, consistent with higher EZH2 expression. |
2016 | Montagnani et al. [282] | 10 | Exome-Seq | Higher EZH2 mRNA in metastatic melanoma samples, points to EZH2 as a potential driver of metastasis. |
2016 | Emadali et al. [283] | 47 | qRT-PCR, IHC | Glucocorticoid Receptor (NR3C1) deletion in Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) leads to a major downstream effect with loss of EZH2 function. |
2016 | Harms et al. [284] | 15 | NGS IHC, qPCR | The gain of ATK1 and EZH2 was observed in 33.3% of patients. |
2016 | Stacchiotti et al. [285] | 263 | IHC, qRT-PCR | Fibrosarcomatous Dermatofibrosarcoma Protuberans showed more EZH2-positive nuclei, and a higher Ki-67 score than Dermatofibrosarcoma Protuberans. |
Year | Author | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2021 | Sawicka-Gutaj et al. [288] | 30 | qRT-PCR | EZH2 upregulation was potentially linked to papillary thyroid cancer. |
2021 | Ma et al. [292] | 50 | qRT-PCR | Coiled-Coil Domain Containing 26 (CCD26) contributes to thyroid cancer’s malignant progression via the miR-422a/EZH2/Sirt6 axis, highlighting EZH2 and Sirt6 as crucial factors in its development. |
2019 | Xue et al. [289] | 65 | IHC qRT-PCR | EZH2 plays a role in papillary thyroid carcinoma growth and metastasis. |
2018 | Masudo et al. [286] | 48 | IHC | Higher EZH2 expression correlates with malignancy in thyroid cancer and may serve as a prognostic marker for aggressive forms. |
Year | Author | N Patients | Method | Clinical Pathological Features Prognosis |
---|---|---|---|---|
2018 | Lasho et al. [295] | 64 | NGS | EZH2 upregulation during the blast phase may contribute to leukemic transformation in myeloproliferative neoplasms. |
2018 | Venton et al. [296] | 56 | NGS | EZH2 remains frequently altered gene and plays a role in Myeloproliferative Neoplasms transformation into secondary Acute Myeloid Leukemia. |
Year | Author | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2020 | Stasik et al. [301] | 1604 | IHC | In leukemia patients, high EZH2 expression was associated with significantly poorer disease-free survival (DFS) and overall survival (OS), with non-survivors showing markedly higher EZH2 levels than survivors. |
2016 | Shen et al. [302] | 50 | qRT-PCR | EZH2 was associated with synovial sarcoma, and its knockdown inhibited cell growth and migration across multiple synovial sarcoma cell lines. |
Year | Author | N Patients | Method | Clinical Pathological Features/Prognosis |
---|---|---|---|---|
2024 | Kim et al. [304] | 81 | IHC | EZH2 upregulation in Mantle Cell Lymphoma (MCL) correlates with aggressive histology, high Ki-67, and p53 mutation. Patients with either EZH2 expression or TP53 mutation have worse outcomes, which are dismal when both are present. |
2023 | Grob et al. [308] | 50 | qRT-PCR | High EZH2 expression correlated with poorer overall survival rates in nodal MCL. |
2021 | Schumann et al. [309] | 33 | IHC | EZH2 and H3K27me3 are upregulated in T-cell lymphomas, and their high expression levels correlate with poorer overall survival and progression-free survival. |
2021 | Martinez-Baquero et al. [310] | 150 | IHC | EZH2 expression in Mantle Cell Lymphoma is associated with high proliferation, higher p53 levels, aggressive histology, and worse overall survival. |
2022 | Wu et al. [311] | 41 | IHC | EZH2 likely plays a role in MCL pathogenesis and could be a biomarker for predicting clinical outcomes. High EZH2 expression correlates with poor overall survival. |
2019 | Zhang et al. [312] | 82 | IHC | peripheral T-cell lymphoma (PTCL) patients show high EZH2 expression, which is linked to worse survival. EZH2 and HDAC2 could serve as prognostic markers in PTCL, particularly PTCL-not otherwise specified. |
2019 | Deng et al. [313] | 136 | IHC | In diffuse large B-cell lymphoma (DLBCL), high EZH2 expression strongly associates B symptoms and relapse. EZH2 (H3K27 methyltransferase) and Bcl-2 could be candidate biomarkers. |
2017 | Huet et al. [314] | 159 | IHC | EZH2 gene alteration strongly correlated with increased EZH2 mRNA expression. |
2016 | Wang et al. [315] | 40 | qRT-PCR | MCL tissues showed significantly elevated EZH2 expression compared to healthy donors. EZH2 levels were also significantly higher in intermediate and high-risk MCL than in the low-risk group. |
2016 | Oh et al. [316] | 231 | IHC | High EZH2 protein expression in DLBCL, and HOTAIR expression correlates with EZH2 expression. |
2016 | Tian et al. [317] | 106 | IHC | EZH2 upregulation in aggressive B-cell lymphomas indicates its oncogenic function with likely regulation by diverse signaling in different subtypes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, S.; Goyal, N.; Goyal, S.; Kaur, P.; Gupta, S. EZH2 Dysregulation and Its Oncogenic Role in Human Cancers. Cancers 2025, 17, 3111. https://doi.org/10.3390/cancers17193111
Verma S, Goyal N, Goyal S, Kaur P, Gupta S. EZH2 Dysregulation and Its Oncogenic Role in Human Cancers. Cancers. 2025; 17(19):3111. https://doi.org/10.3390/cancers17193111
Chicago/Turabian StyleVerma, Shiv, Nikita Goyal, Suhani Goyal, Parminder Kaur, and Sanjay Gupta. 2025. "EZH2 Dysregulation and Its Oncogenic Role in Human Cancers" Cancers 17, no. 19: 3111. https://doi.org/10.3390/cancers17193111
APA StyleVerma, S., Goyal, N., Goyal, S., Kaur, P., & Gupta, S. (2025). EZH2 Dysregulation and Its Oncogenic Role in Human Cancers. Cancers, 17(19), 3111. https://doi.org/10.3390/cancers17193111