Development of Nomograms to Predict the Probability of Recurrence at Specific Sites in Patients with Cutaneous Melanoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
3.1. Patient and Disease Characteristics
3.2. Kaplan–Meier Survival Analysis
3.3. Cox Regression Analysis and Nomogram
3.3.1. Cox Regression Analyses of Melanoma Recurrence in Regional Lymph Nodes
3.3.2. Cox Regression Analyses of Melanoma Recurrence in the Skin, Soft Tissue (Including Muscle), and/or Non-Regional Lymph Nodes
3.3.3. Cox Regression Analyses of Melanoma Recurrence in the Lung, Non-Central Nervous System Visceral Sites and the Brain
3.4. Nomogram Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.J.; Kim, Y.H. Molecular Frontiers in Melanoma: Pathogenesis, Diagnosis, and Therapeutic Advances. Int. J. Mol. Sci. 2024, 25, 2984. [Google Scholar] [CrossRef]
- Waseh, S.; Lee, J.B. Advances in melanoma: Epidemiology, diagnosis, and prognosis. Front. Med. 2023, 10, 1268479. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Brochez, L.; Del Marmol, V.; et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics—Update 2024. Eur. J. Cancer 2025, 215, 115152. [Google Scholar] [CrossRef]
- Amaral, T.; Ottaviano, M.; Arance, A.; Blank, C.; Chiarion-Sileni, V.; Donia, M.; Dummer, R.; Garbe, C.; Gershenwald, J.E.; Gogas, H.; et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2025, 36, 10–30. [Google Scholar] [CrossRef]
- Pathak, S.; Puckett, Y. Cutaneous Malignant Melanoma: Guideline-Based Management and Interprofessional Collaboration; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Mesgarzadeh, S.; Amamoo, R.S.; Ameneni, G.; Gong, A.H.; Ayoade, O.O.; Stratton, D.B.; Latour, E.; Yu, W.; Curiel-Lewandrowski, C.; Abraham, I.; et al. Validation of risk prediction models for sentinel lymph node metastasis in melanoma in a high UV index region. JAAD Int. 2025, 21, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Weitemeyer, M.B.; Helvind, N.M.; Klausen, S.; Clasen-Linde, E.; Schmidt, G.; Chakera, A.H.; Holmich, L.R. Validation of a Clinicopathologic and Gene Expression Model for Predicting Sentinel Node Metastasis in Melanoma: A Multicenter Danish Cohort Study. J. Surg. Oncol. 2025. [Google Scholar] [CrossRef]
- Verver, D.; Rekkas, A.; Garbe, C.; van Klaveren, D.; van Akkooi, A.C.J.; Rutkowski, P.; Powell, B.; Robert, C.; Testori, A.; van Leeuwen, B.L.; et al. The EORTC-DeCOG nomogram adequately predicts outcomes of patients with sentinel node-positive melanoma without the need for completion lymph node dissection. Eur. J. Cancer 2020, 134, 9–18. [Google Scholar] [CrossRef]
- Shi, Y.; Mo, R.; Chen, Y.; Ma, Z.; Wen, B.; Tan, Q. Establishment and Validation of Prognostic Nomograms for Nonmetastatic Melanoma of the Limbs-A SEER-Based Study. J. Investig. Surg. 2024, 37, 2401125. [Google Scholar] [CrossRef]
- Stassen, R.C.; Maas, C.; van der Veldt, A.A.M.; Lo, S.N.; Saw, R.P.M.; Varey, A.H.R.; Scolyer, R.A.; Long, G.V.; Thompson, J.F.; Rutkowski, P.; et al. Development and validation of a novel model to predict recurrence-free survival and melanoma-specific survival after sentinel lymph node biopsy in patients with melanoma: An international, retrospective, multicentre analysis. Lancet Oncol. 2024, 25, 509–517. [Google Scholar] [CrossRef]
- Guo, Q.; Lv, X.; Zheng, Z.; Lan, G. How to predict early mortality in patients with metastatic melanoma. Sci. Rep. 2025, 15, 25395. [Google Scholar] [CrossRef]
- Tímár, J.; Ladányi, A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int. J. Mol. Sci. 2022, 23, 5384. [Google Scholar] [CrossRef] [PubMed]
- Szabó, I.L.; Emri, G.; Ladányi, A.; Tímár, J. Clinical Applications of the Molecular Landscape of Melanoma: Integration of Research into Diagnostic and Therapeutic Strategies. Cancers 2025, 17, 1422. [Google Scholar] [CrossRef]
- Gao, M.; Wu, B.; Bai, X. Establishment and validation of a nomogram model for predicting the specific mortality risk of melanoma in upper limbs based on the SEER database. Sci. Rep. 2024, 14, 9623. [Google Scholar] [CrossRef]
- Abd ElHafeez, S.; D’Arrigo, G.; Leonardis, D.; Fusaro, M.; Tripepi, G.; Roumeliotis, S. Methods to Analyze Time-to-Event Data: The Cox Regression Analysis. Oxidative Med. Cell. Longev. 2021, 2021, 1302811. [Google Scholar] [CrossRef]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E. Multivariate survival analysis using Cox’s regression model. Hepatology 1987, 7, 1346–1358. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, C.; Apalla, Z.; Manoli, S.M.; Lallas, K.; Vakirlis, E.; Lallas, A. Melanoma: Staging and Follow-Up. Dermatol. Pract. Concept. 2021, 11 (Suppl. 1), e2021162S. [Google Scholar] [CrossRef]
- Hynes, M.C.; Nguyen, P.; Groome, P.A.; Asai, Y.; Mavor, M.E.; Baetz, T.D.; Hanna, T.P. A population-based validation study of the 8th edition UICC/AJCC TNM staging system for cutaneous melanoma. BMC Cancer 2022, 22, 720. [Google Scholar] [CrossRef]
- Yang, C.Q.; Wang, H.; Liu, Z.; Hueman, M.T.; Bhaskaran, A.; Henson, D.E.; Sheng, L.; Chen, D. Integrating additional factors into the TNM staging for cutaneous melanoma by machine learning. PLoS ONE 2021, 16, e0257949. [Google Scholar] [CrossRef] [PubMed]
- Acar, C.; Yuksel, H.C.; Sahin, G.; Acar, F.P.; Gunenc, D.; Karaca, B. Prognostic Utility of the CALLY Index in Metastatic Melanoma: Building a Nomogram for Patients on Anti-PD-1 Therapy. Clin. Transl. Oncol. 2025, 27, 3770–3780. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Gao, Y.F.; Huang, Y.P.; Zou, X.W.; Wang, D.; Su, H. Development of a prognostic prediction model for patients with cutaneous malignant melanoma: A study based on the SEER database. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 9437–9446. [Google Scholar] [CrossRef] [PubMed]
- Xi, Q.; Lu, X.; Zhang, J.; Wang, D.; Sun, Y.; Chen, H. A practical nomogram and risk stratification system predicting the cancer-specific survival for patients aged >50 with advanced melanoma. Front. Oncol. 2023, 13, 1166877. [Google Scholar] [CrossRef]
- Li, W.; Xiao, Y.; Xu, X.; Zhang, Y. A Novel Nomogram and Risk Classification System Predicting the Cancer-Specific Mortality of Patients with Initially Diagnosed Metastatic Cutaneous Melanoma. Ann. Surg. Oncol. 2021, 28, 3490–3500. [Google Scholar] [CrossRef]
- Li, S.; Yin, C.; Yang, X.; Lu, Y.; Wang, C.; Liu, B. Risk factors and predictive models for early death in patients with advanced melanoma: A population-based study. Medicine 2023, 102, e35380. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, S.; Chen, J.; Liu, L.; Huang, L.; Wu, X.; Xu, H.; Yang, Y. A novel tool for predicting the risk of cancer-specific early death in older patients with primary malignant melanoma of skin: A population-based analysis. Front. Oncol. 2024, 14, 1387014. [Google Scholar] [CrossRef]
- Yan, J.; Wang, H.; Lu, X.; Li, F. Development and validation of a nomogram for elderly patients with ulcerative melanoma. Melanoma Res. 2024, 34, 207–214. [Google Scholar] [CrossRef]
- Ji, Q.; Tang, J.; Li, S.; Chen, J. Prognostic model for predicting overall and cancer-specific survival among patients with superficial spreading melanoma: A SEER based study. Medicine 2022, 101, e32521. [Google Scholar] [CrossRef]
- Yin, T.; Zhao, Y.; Yang, Y.; Xu, H.; Zheng, D.; Lyu, J.; Fu, G. Nomogram for Predicting Overall Survival in Acral Lentiginous Melanoma: A Population-based Study. Int. J. Gen. Med. 2021, 14, 9841–9851. [Google Scholar] [CrossRef]
- Xu, C.; Yu, X.; Ding, Z.; Fang, C.; Gao, M.; Liu, W.; Liu, X.; Yin, C.; Gu, R.; Liu, L.; et al. Artificial intelligence-assisted metastasis and prognosis model for patients with nodular melanoma. PLoS ONE 2024, 19, e0305468. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Hao, L.; Luo, J.; He, B.; Liao, S.; Wang, F.; Fu, H.; Zhang, S. Development and validation of a nomogram for predicting overall survival in patients with lower extremity melanoma: Based on the Surveillance, Epidemiology, and End Results (SEER) database. Arch. Dermatol. Res. 2025, 317, 653. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, S.; Qin, X.; Mou, H.; He, B.; Wang, Y.; Xue, B.; Lin, W. Development of a prognostic model for patients with nodular melanoma of the lower extremities: A study based on the SEER database. Arch. Dermatol. Res. 2024, 316, 563. [Google Scholar] [CrossRef]
- Ma, C.; Qin, R.; Cao, Y.; Dai, Y.; Hua, M.; Wang, L.; Cao, L.; Fan, L.; Li, K. Nomogram Predicts Prognostic Factors for Head and Neck Cutaneous Melanoma: A Population-Based Analysis. World Neurosurg. 2024, 187, e839–e851. [Google Scholar] [CrossRef]
- Fan, F.; Gou, J.; Li, S.; Ji, Q. A Prognostic Model for Cancer-Specific Survival Among Patients with Nodular Melanoma in Head and Neck. Laryngoscope 2024, 134, 3611–3619. [Google Scholar] [CrossRef]
- Huang, J.N.; Yu, H.; Wan, Y.; Ming, W.K.; Situ, F.; Zhu, L.; Jiang, Y.; Wu, U.T.; Huang, W.E.; Chen, W.; et al. A prognostic nomogram for the cancer-specific survival of white patients with invasive melanoma at BANS sites based on the Surveillance, Epidemiology, and End Results database. Front. Med. 2023, 10, 1167742. [Google Scholar] [CrossRef] [PubMed]
- Li, A.T.; Law, J.; Ch’ng, S.; Scolyer, R.A.; Thompson, J.F.; Lo, S.N.; Varey, A.H.R. External validation in an Australian population of the EORTC-DeCOG nomogram predicting recurrence, distant metastasis and overall mortality in melanoma patients with positive sentinel lymph nodes. Eur. J. Cancer 2023, 189, 112901. [Google Scholar] [CrossRef]
- Janka, E.A.; Szabó, I.L.; Kollár, S.; Toka-Farkas, T.; Ványai, B.; Várvölgyi, T.; Kapitány, A.; Shabu, H.; Szegedi, A.; Emri, G. Prognostic Role of Clinicopathological Characteristics and Serum Markers in Metastatic Melanoma Patients Treated with BRAF and MEK Inhibitors. Cancers 2024, 16, 2981. [Google Scholar] [CrossRef]
- Janka, E.A.; Ványai, B.; Szabó, I.L.; Toka-Farkas, T.; Várvölgyi, T.; Kapitány, A.; Szegedi, A.; Emri, G. Primary tumour category, site of metastasis, and baseline serum S100B and LDH are independent prognostic factors for survival in metastatic melanoma patients treated with anti-PD-1. Front. Oncol. 2023, 13, 1237643. [Google Scholar] [CrossRef]
- Lourdault, K.; Cowman, A.W.; Hanes, D.; Scholer, A.J.; Aguilar, T.; Essner, R. Are Nomograms Useful for Predicting Sentinel Lymph Node Status in Melanoma Patients? J. Surg. Oncol. 2025, 131, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Hosein, S.; Drebin, H.M.; Kurtansky, N.R.; Olofsson Bagge, R.; Coit, D.G.; Bartlett, E.K.; Marchetti, M.A. Are the MIA and MSKCC nomograms useful in selecting patients with melanoma for sentinel lymph node biopsy? J. Surg. Oncol. 2023, 127, 1167–1173. [Google Scholar] [CrossRef]
- Bertolli, E.; Micheletti, S.B.; de Camargo, V.P.; da Silva, T.V.; Bacchi, C.E.; Buzaid, A.C. Nomograms versus artificial intelligence platforms: Which one can better predict sentinel node positivity in melanoma patients? Melanoma Res. 2025, 35, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.; Donnelly, D.; Call, M.; Johannet, P.; Moran, U.; Polsky, D.; Shapiro, R.; Berman, R.; Pavlick, A.; Weber, J.; et al. Melanoma Prognosis: Accuracy of the American Joint Committee on Cancer Staging Manual Eighth Edition. J. Natl. Cancer Inst. 2020, 112, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Keung, E.Z.; Gershenwald, J.E. The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: Implications for melanoma treatment and care. Expert Rev. Anticancer Ther. 2018, 18, 775–784. [Google Scholar] [CrossRef]
- Ecker, B.L.; Kaur, A.; Douglass, S.M.; Webster, M.R.; Almeida, F.V.; Marino, G.E.; Sinnamon, A.J.; Neuwirth, M.G.; Alicea, G.M.; Ndoye, A.; et al. Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discov. 2019, 9, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Voinea, S.; Blidaru, A.; Panaitescu, E.; Sandru, A. Impact of gender and primary tumor location on outcome of patients with cutaneous melanoma. J. Med. Life 2016, 9, 444–448. [Google Scholar]
- Vossaert, K.A.; Silverman, M.K.; Kopf, A.W.; Bart, R.S.; Rigel, D.S.; Friedman, R.J.; Levenstein, M. Influence of gender on survival in patients with stage I malignant melanoma. J. Am. Acad. Dermatol. 1992, 26 Pt 2, 429–440. [Google Scholar] [CrossRef]
- Bellenghi, M.; Puglisi, R.; Pontecorvi, G.; De Feo, A.; Carè, A.; Mattia, G. Sex and Gender Disparities in Melanoma. Cancers 2020, 12, 1819. [Google Scholar] [CrossRef]
Variables, N (%) | Categories | Patients N = 2003 | Training Set N = 1402 | Validation Set N = 601 | p-Values |
---|---|---|---|---|---|
Age (years) | <40 | 265 (13.2) | 172 (12.3) | 93 (15.5) | 0.193 |
40–49 | 291 (14.5) | 196 (14.0) | 95 (15.8) | ||
50–59 | 388 (19.4) | 273 (19.5) | 115 (19.1) | ||
60–69 | 476 (23.8) | 344 (24.5) | 132 (22.0) | ||
≥70 | 583 (29.1) | 417 (29.7) | 166 (27.6) | ||
Sex | male | 941 (47.0) | 649 (46.3) | 292 (48.6) | 0.346 |
female | 1062 (53.0) | 753 (53.7) | 309 (51.4) | ||
Localization of primary tumor | head and neck | 338 (16.9) | 241 (17.2) | 97 (16.1) | 0.167 |
upper extremities | 324 (16.2) | 243 (17.3) | 81 (13.5) | ||
lower extremities | 435 (21.7) | 303 (21.6) | 132 (22.0) | ||
trunk | 850 (42.4) | 579 (41.3) | 271 (45.1) | ||
occult | 56 (2.8) | 36 (2.6) | 20 (3.3) | ||
Histological subtype | SSM | 1105 (55.2) | 772 (55.1) | 333 (55.4) | 0.525 |
LMM | 133 (6.6) | 99 (7.1) | 34 (5.7) | ||
NM | 292 (14.6) | 197 (14.1) | 95 (15.8) | ||
MM | 473 (23.6) | 334 (23.8) | 139 (23.1) | ||
Clark level | I-II-III | 1260 (62.9) | 869 (62.0) | 391 (65.0) | 0.149 |
IV | 394 (19.7) | 274 (19.5) | 120 (20.0) | ||
V | 160 (8.0) | 122 (8.7) | 38 (6.3) | ||
occult | 56 (2.8) | 36 (2.6) | 20 (3.3) | ||
unknown | 133 (6.6) | 101 (7.2) | 32 (5.3) | ||
AJCC 8th edition T category | T1a | 768 (38.3) | 540 (38.5) | 228 (37.9) | 0.239 |
T1b-T2a | 375 (18.7) | 268 (19.1) | 107 (17.8) | ||
T2b-T3a | 219 (10.9) | 142 (10.1) | 77 (12.8) | ||
T3b-T4a | 267 (13.3) | 190 (13.6) | 77 (12.8) | ||
T4b | 276 (13.8) | 205 (14.6) | 71 (11.8) | ||
T0 | 56 (2.8) | 36 (2.6) | 20 (3.3) | ||
unknown | 42 (2.1) | 21 (1.5) | 21 (3.5) | ||
Metastasis during follow-up | no | 1147 (57.3) | 801 (57.1) | 346 (57.6) | 0.856 |
yes | 856 (42.7) | 601 (42.9) | 255 (42.4) | ||
Death during follow-up | no | 1153 (57.6) | 803 (57.3) | 350 (58.2) | 0.690 |
yes | 850 (42.4) | 599 (42.7) | 251 (41.8) |
Variables | Categories | Univariate | Multivariate | ||
---|---|---|---|---|---|
HR [95% CI] | p-Value | HR [95% CI] | p-Value | ||
Age (years) | 40–49/<40 | 1.64 [1.19; 2.26] | 0.002 | 1.54 [1.11; 2.12] | 0.009 |
50–59/<40 | 1.47 [1.08; 2.01] | 0.015 | 1.20 [0.88; 1.64] | 0.249 | |
60–69/<40 | 1.91 [1.43; 2.57] | <0.001 | 1.24 [0.92; 1.67] | 0.158 | |
≥70/<40 | 1.56 [1.16; 2.10] | 0.003 | 0.92 [0.68; 1.25] | 0.589 | |
Sex | male/female | 1.53 [1.31; 1.79] | <0.001 | 1.34 [1.13; 1.58] | 0.001 |
Localization of primary tumor | upper extremities/head-neck | 1.11 [0.81; 1.52] | 0.499 | 1.05 [0.76; 1.45] | 0.769 |
lower extremities/head-neck | 1.91 [1.46; 2.50] | <0.001 | 1.63 [1.23; 2.15] | <0.001 | |
trunk/head-neck | 1.37 [1.06; 1.77] | 0.016 | 1.22 [0.93; 1.61] | 0.148 | |
occult/head-neck | 6.94 [4.70; 10.26] | <0.001 | 4.86 [3.02; 6.72] | <0.001 | |
Histological subtype | LMM/SSM | 0.56 [0.31; 1.00] | 0.051 | 1.15 [0.62; 2.15] | 0.661 |
NM/SSM | 4.93 [3.94; 6.17] | <0.001 | 1.79 [1.38; 2.32] | <0.001 | |
MM/SSM | 5.38 [4.44; 6.53] | <0.001 | 1.47 [1.15; 1.87] | <0.001 | |
Clark level | IV/I-II-III | 4.31 [3.55; 5.23] | <0.001 | 1.39 [1.11; 1.74] | 0.004 |
V/I-II-III | 7.01 [5.51; 8.92] | <0.001 | 1.60 [1.20; 2.13] | 0.001 | |
occult/I-II-III | 11.22 [7.92; 15.88] | <0.001 | 1.54 [1.13; 2.10] | 0.007 | |
AJCC 8th edition T category | T1b-T2a/T1a | 3.97 [2.83; 5.58] | <0.001 | 3.39 [2.39; 4.81] | <0.001 |
T2b-T3a/T1a | 9.39 [6.70; 13.17] | <0.001 | 5.92 [4.02; 8.71] | <0.001 | |
T3b-T4a/T1a | 13.88 [10.08; 19.11] | <0.001 | 8.26 [5.57; 12.23] | <0.001 | |
T4b/T1a | 20.67 [15.11; 28.27] | <0.001 | 10.66 [7.13; 15.93] | <0.001 | |
T0/T1a | 13.22 [8.09; 21.62] | <0.001 | 6.70 [3.82; 11.74] | <0.001 |
Variables | Categories | Univariate | Multivariate | ||
---|---|---|---|---|---|
HR [95% CI] | p-Value | HR [95% CI] | p-Value | ||
Age (years) | 40–49/<40 | 1.56 [1.06; 2.28] | 0.023 | 1.18 [0.80; 1.73] | 0.408 |
50–59/<40 | 1.67 [1.17; 2.40] | 0.005 | 1.26 [0.88; 1.81] | 0.213 | |
60–69/<40 | 2.03 [1.44; 2.86] | <0.001 | 1.20 [0.84; 1.71] | 0.315 | |
≥70/<40 | 2.27 [1.62; 3.18] | <0.001 | 1.75 [1.23; 2.48] | 0.002 | |
Sex | male/female | 1.46 [1.23; 1.74] | <0.001 | 1.21 [1.01; 1.47] | 0.049 |
Localization of primary tumor | upper extremities/head-neck | 0.80 [0.56; 1.14] | 0.216 | 0.80 [0.55; 1.16] | 0.242 |
lower extremities/head-neck | 1.74 [1.31; 2.32] | <0.001 | 1.19 [0.88; 1.61] | 0.249 | |
trunk/head-neck | 1.06 [0.80; 1.39] | 0.700 | 0.90 [0.67; 1.21] | 0.488 | |
occult/head-neck | 7.01 [4.70; 10.45] | <0.001 | 8.21 [4.77; 14.14] | <0.001 | |
Histological subtype | LMM/SSM | 0.58 [0.30; 1.10] | 0.093 | 0.99 [0.49; 1.97] | 0.969 |
NM/SSM | 4.64 [3.61; 5.94] | <0.001 | 1.30 [0.98; 1.73] | 0.066 | |
MM/SSM | 4.70 [3.79; 5.83] | <0.001 | 1.19 [0.91; 1.54] | 0.201 | |
Clark level | IV/I-II-III | 4.43 [3.56; 5.51] | <0.001 | 1.25 [0.97; 1.61] | 0.091 |
V/I-II-III | 7.30 [5.57; 9.56] | <0.001 | 1.49 [1.08; 2.06] | 0.017 | |
occult/I-II-III | 13.48 [9.43; 19.28] | <0.001 | 1.35 [0.94; 1.93] | 0.102 | |
AJCC 8th edition T category | T1b-T2a/T1a | 3.55 [2.44; 5.18] | <0.001 | 2.17 [1.45; 3.24] | <0.001 |
T2b-T3a/T1a | 7.89 [5.43; 11.46] | <0.001 | 2.67 [1.71; 4.16] | <0.001 | |
T3b-T4a/T1a | 12.61 [8.91; 17.85] | <0.001 | 3.31 [2.11; 5.18] | <0.001 | |
T4b/T1a | 16.55 [11.75; 23.30] | <0.001 | 3.48 [2.19; 5.53] | <0.001 | |
T0/T1a | 11.33 [6.54; 19.61] | <0.001 | 2.98 [1.56; 5.70] | 0.001 | |
Regional lymph node metastasis | yes/no | 11.64 [9.44; 14.36] | <0.001 | 5.70 [4.48; 7.25] | <0.001 |
Variables | Categories | Univariate | Multivariate | ||
---|---|---|---|---|---|
HR [95% CI] | p-Value | HR [95% CI] | p-Value | ||
Age (years) | 40–49/<40 | 1.77 [1.14; 2.77] | 0.012 | 1.23 [0.78; 1.93] | 0.373 |
50–59/<40 | 1.75 [1.14; 2.68] | 0.010 | 1.32 [0.85; 2.04] | 0.214 | |
60–69/<40 | 2.17 [1.44; 3.27] | <0.001 | 1.39 [0.91; 2.11] | 0.125 | |
≥70/<40 | 2.06 [1.36; 3.12] | 0.001 | 1.35 [0.88; 2.07] | 0.163 | |
Sex | male/female | 1.82 [1.47; 2.25] | <0.001 | 1.30 [1.03; 1.63] | 0.028 |
Localization of primary tumor | upper extremities/head-neck | 0.73 [0.48; 1.09] | 0.124 | 0.77 [0.50; 1.17] | 0.214 |
lower extremities/head-neck | 0.99 [0.69; 1.40] | 0.993 | 1.11 [0.81; 1.54] | 0.120 | |
trunk/head-neck | 1.07 [0.78; 1.46] | 0.675 | 0.89 [0.63; 1.25] | 0.483 | |
occult/head-neck | 5.91 [3.67; 9.53] | <0.001 | 2.61 [0.95; 2.87] | 0.061 | |
Histological subtype | LMM/SSM | 0.85 [0.46; 1.58] | 0.613 | 1.11 [0.66; 1.61] | 0.440 |
NM/SSM | 3.91 [2.90; 5.27] | <0.001 | 1.17 [0.69; 1.36] | 0.864 | |
MM/SSM | 3.83 [2.96; 4.95] | <0.001 | 1.20 [0.60; 1.31] | 0.221 | |
Clark level | IV/I-II-III | 3.60 [2.77; 4.67] | <0.001 | 1.17 [0.86; 1.59] | 0.331 |
V/I-II-III | 5.94 [4.29; 8.24] | <0.001 | 1.25 [0.84; 1.85] | 0.269 | |
occult/I-II-III | 11.71 [7.59; 18.07] | <0.001 | 1.28 [0.85; 1.94] | 0.243 | |
AJCC 8th edition T category | T1b-T2a/T1a | 2.85 [1.89; 4.30] | <0.001 | 1.94 [1.24; 3.02] | 0.004 |
T2b-T3a/T1a | 5.25 [3.43; 8.04] | <0.001 | 2.49 [1.50; 4.13] | <0.001 | |
T3b-T4a/T1a | 7.78 [5.24; 11.53] | <0.001 | 2.93 [1.73; 4.94] | <0.001 | |
T4b/T1a | 15.24 [10.55; 22.01] | <0.001 | 5.53 [3.29; 9.30] | <0.001 | |
T0/T1a | 6.27 [3.04; 12.93] | <0.001 | 2.32 [1.03; 4.00] | 0.043 | |
Regional lymph node metastasis | yes/no | 8.98 [7.07; 11.41] | <0.001 | 2.95 [2.18; 4.00] | <0.001 |
Distant metastasis at sites M1a | yes/no | 7.66 [6.13; 9.57] | <0.001 | 2.63 [2.02; 3.43] | <0.001 |
Variables | Categories | Univariate | Multivariate | ||
---|---|---|---|---|---|
HR [95% CI] | p-Value | HR [95% CI] | p-Value | ||
Age (years) | 40–49/<40 | 1.49 [1.01; 2.02] | 0.048 | 1.04 [0.69; 1.55] | 0.864 |
50–59/<40 | 1.36 [0.93; 1.99] | 0.112 | 0.99 [0.67; 1.46] | 0.953 | |
60–69/<40 | 1.77 [1.23; 2.54] | 0.002 | 1.13 [0.78; 1.65] | 0.514 | |
≥70/<40 | 1.61 [1.12; 2.33] | 0.010 | 1.09 [0.75; 1.60] | 0.646 | |
Sex | male/female | 1.83 [1.50; 2.24] | <0.001 | 1.29 [1.04; 1.61] | 0.021 |
Localization of primary tumor | upper extremities/head-neck | 0.88 [0.60; 1.29] | 0.502 | 0.84 [0.59; 1.20] | 0.338 |
lower extremities/head-neck | 1.08 [0.77; 1.52] | 0.657 | 1.08 [0.73; 1.61] | 0.707 | |
trunk/head-neck | 1.16 [0.86; 1.57] | 0.337 | 1.10 [0.79; 1.53] | 0.583 | |
occult/head-neck | 5.00 [3.13; 7.98] | <0.001 | 3.35 [0.97; 4.05] | 0.059 | |
Histological subtype | LMM/SSM | 0.86 [0.48; 1.56] | 0.063 | 1.18 [0.62; 2.27] | 0.613 |
NM/SSM | 4.11 [3.10; 5.45] | <0.001 | 1.10 [0.80; 1.53] | 0.556 | |
MM/SSM | 4.04 [3.17; 5.15] | <0.001 | 1.19 [0.88; 1.62] | 0.250 | |
Clark level | IV/I-II-III | 3.13 [2.44; 4.01] | <0.001 | 1.02 [0.73; 1.30] | 0.862 |
V/I-II-III | 5.51 [4.06; 7.46] | <0.001 | 1.18 [0.82; 1.69] | 0.384 | |
occult/I-II-III | 8.49 [5.58; 12.92] | <0.001 | 1.04 [0.70; 1.54] | 0.853 | |
AJCC 8th edition T category | T1b-T2a/T1a | 2.66 [1.82; 3.88] | <0.001 | 1.28 [0.84; 1.95] | 0.259 |
T2b-T3a/T1a | 5.07 [3.44; 7.47] | <0.001 | 1.69 [1.05; 2.69] | 0.029 | |
T3b-T4a/T1a | 7.24 [5.06; 10.36] | <0.001 | 1.93 [1.19; 3.12] | 0.007 | |
T4b/T1a | 11.40 [8.09; 16.08] | <0.001 | 2.46 [1.51; 4.00] | <0.001 | |
T0/T1a | 8.56 [4.80; 15.27] | <0.001 | 2.86 [1.44; 5.66] | 0.003 | |
Regional lymph node metastasis | yes/no | 10.04 [7.96; 12.67] | <0.001 | 2.62 [1.96; 3.51] | <0.001 |
Distant metastasis at sites M1a | yes/no | 8.43 [6.81; 10.43] | <0.001 | 2.31 [1.79; 2.97] | <0.001 |
Lung metastasis | yes/no | 10.81 [8.78; 13.30] | <0.001 | 4.00 [3.18; 5.04] | <0.001 |
Variables | Categories | Univariate | Multivariate | ||
---|---|---|---|---|---|
HR [95% CI] | p-Value | HR [95% CI] | p-Value | ||
Age (years) | 40–49/<40 | 1.70 [1.01; 2.87] | 0.046 | 1.40 [0.82; 2.37] | 0.218 |
50–59/<40 | 1.70 [1.03; 2.81] | 0.037 | 1.34 [0.80; 2.22] | 0.265 | |
60–69/<40 | 1.82 [1.12; 2.95] | 0.017 | 1.28 [0.77; 2.10] | 0.341 | |
≥70/<40 | 1.92 [1.19; 3.12] | 0.008 | 1.43 [0.87; 2.35] | 0.159 | |
Sex | male/female | 2.05 [1.58; 2.65] | <0.001 | 1.49 [1.13; 1.96] | 0.005 |
Localization of primary tumor | upper extremities/head-neck | 0.87 [0.54; 1.42] | 0.582 | 0.87 [0.53; 1.43] | 0.583 |
lower extremities/head-neck | 1.11 [0.72; 1.71] | 0.637 | 0.86 [0.55; 1.35] | 0.520 | |
trunk/head-neck | 1.16 [0.79; 1.71] | 0.443 | 0.98 [0.64; 1.48] | 0.906 | |
occult/head-neck | 4.54 [2.51; 8.24] | <0.001 | 2.05 [0.98; 3.58] | 0.058 | |
Histological subtype | LMM/SSM | 0.58 [0.23; 1.43] | 0.235 | 0.79 [0.30; 2.08] | 0.635 |
NM/SSM | 3.81 [2.65; 5.49] | <0.001 | 1.06 [0.69; 1.62] | 0.803 | |
MM/SSM | 4.41 [3.26; 5.98] | <0.001 | 1.17 [0.79; 1.72] | 0.442 | |
Clark level | IV/I-II-III | 2.93 [2.15; 4.00] | <0.001 | 1.11 [0.93; 1.33] | 0.685 |
V/I-II-III | 4.65 [3.14; 6.90] | <0.001 | 1.19 [0.92; 1.46] | 0.721 | |
occult/I-II-III | 7.19 [4.23; 12.25] | <0.001 | 1.17 [0.97; 1.60] | 0.920 | |
AJCC 8th edition T category | T1b-T2a/T1a | 2.39 [1.44; 3.94] | 0.001 | 1.53 [0.90; 2.61] | 0.118 |
T2b-T3a/T1a | 5.13 [3.11; 8.45] | <0.001 | 2.32 [1.28; 4.20] | 0.006 | |
T3b-T4a/T1a | 6.52 [4.06; 10.47] | <0.001 | 2.82 [1.54; 5.19] | 0.001 | |
T4b/T1a | 14.40 [9.37; 22.12] | <0.001 | 5.00 [2.73; 9.18] | <0.001 | |
T0/T1a | 7.47 [3.41; 16.34] | <0.001 | 3.29 [1.33; 8.13] | 0.010 | |
Regional lymph node metastasis | yes/no | 5.72 [4.38; 7.47] | <0.001 | 1.34 [0.81; 2.61] | 0.455 |
Distant metastasis at sites M1a | yes/no | 6.79 [5.22; 8.83] | <0.001 | 2.11 [1.53; 2.92] | <0.001 |
Lung metastasis | yes/no | 8.07 [6.24; 10.45] | <0.001 | 2.45 [1.79; 3.36] | <0.001 |
Non–central nervous system visceral metastases | yes/no | 7.31 [5.65; 9.47] | <0.001 | 2.10 [1.53; 2.89] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janka, E.A.; Szabó, I.L.; Toka-Farkas, T.; Soltész, L.; Szentkereszty-Kovács, Z.; Ványai, B.; Várvölgyi, T.; Kapitány, A.; Szegedi, A.; Emri, G. Development of Nomograms to Predict the Probability of Recurrence at Specific Sites in Patients with Cutaneous Melanoma. Cancers 2025, 17, 3080. https://doi.org/10.3390/cancers17183080
Janka EA, Szabó IL, Toka-Farkas T, Soltész L, Szentkereszty-Kovács Z, Ványai B, Várvölgyi T, Kapitány A, Szegedi A, Emri G. Development of Nomograms to Predict the Probability of Recurrence at Specific Sites in Patients with Cutaneous Melanoma. Cancers. 2025; 17(18):3080. https://doi.org/10.3390/cancers17183080
Chicago/Turabian StyleJanka, Eszter Anna, Imre Lőrinc Szabó, Tünde Toka-Farkas, Lilla Soltész, Zita Szentkereszty-Kovács, Beatrix Ványai, Tünde Várvölgyi, Anikó Kapitány, Andrea Szegedi, and Gabriella Emri. 2025. "Development of Nomograms to Predict the Probability of Recurrence at Specific Sites in Patients with Cutaneous Melanoma" Cancers 17, no. 18: 3080. https://doi.org/10.3390/cancers17183080
APA StyleJanka, E. A., Szabó, I. L., Toka-Farkas, T., Soltész, L., Szentkereszty-Kovács, Z., Ványai, B., Várvölgyi, T., Kapitány, A., Szegedi, A., & Emri, G. (2025). Development of Nomograms to Predict the Probability of Recurrence at Specific Sites in Patients with Cutaneous Melanoma. Cancers, 17(18), 3080. https://doi.org/10.3390/cancers17183080