Minimally Invasive Distal Pancreatectomy as the Standard of Care in the US: Are We There Yet?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Sources
2.2. NCDB
2.3. NSQIP
2.4. Statistical Analysis
3. Results
3.1. NCDB Cohort Demographics and Clinical Characteristics
3.2. Trends in the Use of Surgical Approaches and Outcomes
3.3. NSQIP Cohort Demographics and Clinical Characteristics
3.4. Trends in CR-POPF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIDP | Minimally invasive distal pancreatectomy |
LDP | Laparoscopic distal pancreatectomy |
RDP | Robotic distal pancreatectomy |
ODP | Open distal pancreatectomy |
CR-POPF | Clinically relevant postoperative pancreatic fistula |
NCDB | National Cancer Database |
NSQIP | National Surgical Quality Improvement Program |
APC | Annual percent change |
AAPC | Average annual percent change |
PSM | Propensity score matching |
LOS | Length of stay |
ISGPF | International Study Group on Pancreatic Fistula |
PDAC | Pancreatic ductal adenocarcinoma |
PNET | Pancreatic neuroendocrine tumor |
References
- Lai, T.-J.; Roxburgh, C.; Boyd, K.A.; Bouttell, J. Clinical effectiveness of robotic versus laparoscopic and open surgery: An overview of systematic reviews. BMJ Open 2024, 14, e076750. [Google Scholar] [CrossRef]
- Damoli, I.; Butturini, G.; Ramera, M.; Paiella, S.; Marchegiani, G.; Bassi, C. Minimally invasive pancreatic surgery—A review. Videosurgery Other Miniinvasive Tech. 2015, 10, 141–149. [Google Scholar] [CrossRef]
- Ausania, F.; Landi, F.; Martinie, J.B.; Vrochides, D.; Walsh, M.; Hossain, S.M.; White, S.; Prabakaran, V.; Melstrom, L.G.; Fong, Y.; et al. Robotic versus laparoscopic distal pancreatectomy in obese patients. Surg. Endosc. 2023, 37, 8384–8393. [Google Scholar] [CrossRef]
- van Hilst, J.; Korrel, M.; Lof, S.; de Rooij, T.; Vissers, F.; Al-Sarireh, B.; Alseidi, A.; Bateman, A.C.; Björnsson, B.; Boggi, U.; et al. Minimally invasive versus open distal pancreatectomy for pancreatic ductal adenocarcinoma (DIPLOMA): Study protocol for a randomized controlled trial. Trials 2021, 22, 608. [Google Scholar] [CrossRef] [PubMed]
- van Hilst, J.; de Rooij, T.; Abu Hilal, M.; Asbun, H.J.; Barkun, J.; Boggi, U.; Busch, O.R.; Conlon, K.C.; Dijkgraaf, M.G.; Han, H.-S.; et al. Worldwide survey on opinions and use of minimally invasive pancreatic resection. HPB 2017, 19, 190–204. [Google Scholar] [CrossRef] [PubMed]
- American College of Surgeons, Commission on Cancer. National Cancer Database (NCDB). Published 2024. Available online: https://www.facs.org/quality-programs/cancer-programs/national-cancer-database/ (accessed on 29 January 2025).
- American College of Surgeons. National Surgical Quality Improvement Program (NSQIP). Published 2024. Available online: https://www.facs.org/quality-programs/data-and-registries/acs-nsqip/ (accessed on 29 January 2025).
- van der Heijde, N.; Lof, S.; Busch, O.R.; de Hingh, I.; de Kleine, R.H.; Molenaar, I.Q.; Mungroop, T.H.; Stommel, M.W.; Besselink, M.G.; van Eijck, C. Incidence and impact of postoperative pancreatic fistula after minimally invasive and open distal pancreatectomy. Surgery 2022, 171, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.; Imai, K.; King, G.; Stuart, E.A. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef]
- Kim, H.; Chen, H.; Byrne, J.; Wheeler, B.; Feuer, E.J. Twenty years since Joinpoint 1.0: Two major enhancements, their justification, and impact. Stat. Med. 2022, 41, 3102–3130. [Google Scholar] [CrossRef]
- National Cancer Institute. Joinpoint Regression Program, Version 5.3.0.0. Statistical Methodology and Applications Branch, Surveillance Research Program. 2024. Available online: https://surveillance.cancer.gov/joinpoint/ (accessed on 29 January 2025).
- Jehan, F.S.; Khreiss, M.; Seth, A.; Aziz, H. Trends and disparities in access to minimally invasive distal pancreatectomy (midp): An eight-year analysis from the national cancer database. J. Robot. Surg. 2024, 18, 52. [Google Scholar] [CrossRef]
- Hoehn, R.S.; Nassour, I.; Adam, M.A.; Winters, S.; Paniccia, A.; Zureikat, A.H. National Trends in Robotic Pancreas Surgery. J. Gastrointest. Surg. 2020, 25, 983–990. [Google Scholar] [CrossRef]
- Ilic, I.; Ilic, M. International patterns in incidence and mortality trends of pancreatic cancer in the last three decades: A joinpoint regression analysis. World J. Gastroenterol. 2022, 28, 4698–4715. [Google Scholar] [CrossRef]
- Wu, M.; Gu, K.; Gong, Y.; Wu, C.; Pang, Y.; Zhang, W.; Wang, C.; Shi, Y.; Liu, Y.; Fu, C. Pancreatic cancer incidence and mortality trends in urban Shanghai, China from 1973 to 2017: A joinpoint regression and age-period-cohort analysis. Front. Oncol. 2023, 13, 1113301. [Google Scholar] [CrossRef]
- Seldomridge, A.N.; Rasic, G.; Papageorge, M.V.; Ng, S.C.; de Geus, S.W.; Woods, A.P.; McAneny, D.; Tseng, J.F.; Sachs, T.E. Trends in access to minimally invasive pancreaticoduodenectomy for pancreatic cancers. HPB 2023, 26, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Zeh, H.; Bartlett, D.L.; Moser, A.J. Robotic-Assisted Major Pancreatic Resection. Adv. Surg. 2011, 45, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, P.; Morel, P.; Wagner, O.J.; Inan, I.; Pugin, F.; Hagen, M.E. Set-up and docking of the da Vinci® surgical system: Prospective analysis of initial experience. Int. J. Med. Robot. Comput. Assist. Surg. 2010, 6, 57–60. [Google Scholar] [CrossRef]
- van der Schans, E.M.; Hiep, M.A.J.; Consten, E.C.J.; Broeders, I.A.M.J. From Da Vinci Si to Da Vinci Xi: Realistic times in draping and docking the robot. J. Robot. Surg. 2020, 14, 835–839. [Google Scholar] [CrossRef]
- Müller, P.C.; Kuemmerli, C.; Cizmic, A.; Sinz, S.; Probst, P.M.; de Santibanes, M.; Shrikhande, S.V.; Tschuor, C.; Loos, M.; Mehrabi, A.; et al. Learning Curves in Open, Laparoscopic, and Robotic Pancreatic Surgery. Ann. Surg. Open 2022, 3, e111. [Google Scholar] [CrossRef] [PubMed]
- Boyev, A.; Prakash, L.R.; Chiang, Y.-J.; Childers, C.P.; Jain, A.J.; Newhook, T.E.; Bruno, M.L.; Arvide, E.M.; Dewhurst, W.L.; Kim, M.P.; et al. Postoperative Opioid Use Is Associated with Increased Rates of Grade B/C Pancreatic Fistula After Distal Pancreatectomy. J. Gastrointest. Surg. 2023, 27, 2135–2144. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Y.; Deng, Y.; Cai, Z.-W.; Ma, M.-J.; Wang, L.-X.; Liu, M.; Wang, H.-W.; Jiang, C.-Y. Application of omental interposition to reduce pancreatic fistula and related complications in pancreaticoduodenectomy: A propensity score-matched study. World J. Gastrointest. Surg. 2022, 14, 482–493. [Google Scholar] [CrossRef]
- Nahm, C.B.; Connor, S.J.; Samra, J.S.; Mittal, A. Postoperative pancreatic fistula: A review of traditional and emerging concepts. Clin. Exp. Gastroenterol. 2018, 11, 105–118. [Google Scholar] [CrossRef]
- Mangieri, C.W.; Kuncewitch, M.; Fowler, B.; Erali, R.A.; Moaven, O.; Shen, P.; Clark, C.J. Surgical drain placement in distal pancreatectomy is associated with an increased incidence of postoperative pancreatic fistula and higher readmission rates. J. Surg. Oncol. 2020, 122, 723–728. [Google Scholar] [CrossRef]
- Molina, D.C.; Lambreton, F.; Majul, R.A. Trends in Robotic Pancreaticoduodenectomy and Distal Pancreatectomy. J. Laparoendosc. Adv. Surg. Tech. 2019, 29, 147–151. [Google Scholar] [CrossRef]
- Johansen, K.U.; Augustinus, S.; Wellner, U.F.; Andersson, B.; Beane, J.D.; Björnsson, B.; Busch, O.R.; Davis, C.H.; Ghadimi, M.; Gleeson, E.M.; et al. International differences in the selection and outcome of minimally invasive and open distal pancreatectomy: A transatlantic analysis. Surgery 2024, 176, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Ind, T.; Laios, A.; Hacking, M.; Nobbenhuis, M. A comparison of operative outcomes between standard and robotic laparoscopic surgery for endometrial cancer: A systematic review and meta-analysis. Int. J. Med. Robot. Comput. Assist. Surg. 2017, 13, e1851. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.S.; Wang, Z.K.; Syn, N.; Goh, B.K. Learning curve of laparoscopic and robotic pancreas resections: A systematic review. Surgery 2021, 170, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Gavriilidis, P.; Lim, C.; Menahem, B.; Lahat, E.; Salloum, C.; Azoulay, D. Robotic versus laparoscopic distal pancreatectomy—The first meta-analysis. HPB 2016, 18, 567–574. [Google Scholar] [CrossRef]
Variable | Robotic n = 3464 | Laparoscopic n = 7406 | Open n = 11,096 | All Patients n = 21,966 | p-Value | p-Value (Lap vs. Rob) |
---|---|---|---|---|---|---|
Age, years (median, IQR) | 65 (56, 73) | 65 (56, 73) | 65 (56, 73) | 65 (56, 73) | 0.8 | 0.53 |
Sex Female | 49% | 50% | 51% | 50% | 0.12 | 0.5 |
Race | 0.01 * | 0.67 | ||||
White | 84% | 84% | 83% | 83% | ||
Black | 11% | 11% | 12% | 12% | ||
Other | 5% | 5% | 5% | 5% | ||
Charlson–Deyo Score | 0.2 | 0.27 | ||||
0 | 62% | 64% | 63% | 63% | ||
1 | 24% | 24% | 25% | 25% | ||
2 | 8% | 7% | 7% | 7% | ||
3 | 6% | 5% | 5% | 5% | ||
Income | <0.01 * | 0.16 | ||||
< $30,000 | 14% | 13% | 16% | 15% | ||
$30,000–$34,999 | 18% | 20% | 20% | 20% | ||
$35,000–$45,999 | 25% | 24% | 24% | 24% | ||
≥ $46,000 | 43% | 43% | 40% | 41% | ||
Insurance | <0.01 * | 0.65 | ||||
Medicare | 51% | 50% | 50% | 50% | ||
Private Insurance | 40% | 41% | 39% | 40% | ||
Medicaid/governmental | 7% | 7% | 8% | 7% | ||
Not Insured | 1% | 1% | 2% | 2% | ||
Facility type | <0.01 * | <0.01 * | ||||
Academic | 55% | 59% | 56% | 57% | ||
Comprehensive | 24% | 19% | 24% | 23% | ||
Integrated | 20% | 20% | 18% | 19% | ||
Community | 1% | 1% | 2% | 1% | ||
Facility location | <0.01 * | <0.01 * | ||||
South | 33% | 33% | 36% | 34% | ||
Midwest | 22% | 23% | 24% | 24% | ||
Northeast | 28% | 23% | 22% | 23% | ||
West | 11% | 16% | 13% | 14% | ||
Indication | <0.01 * | <0.01 * | ||||
PDAC | 44% | 49% | 60% | 54% | ||
PNET | 10% | 13% | 14% | 13% | ||
Other | 46% | 38% | 27% | 33% | ||
Grade | <0.01 * | <0.01 * | ||||
I | 45% | 42% | 33% | 37% | ||
II | 28% | 30% | 33% | 32% | ||
III | 10% | 14% | 17% | 15% | ||
IV | 1% | 1% | 1% | 1% | ||
Stage | <0.01 * | <0.01 * | ||||
I | 45% | 43% | 35% | 39% | ||
II | 39% | 42% | 45% | 43% | ||
III | 7% | 5% | 6% | 6% | ||
IV | 3% | 4% | 8% | 6% | ||
Tumor size, cm (median, IQR) | 2.6 (1.7, 4) | 2.9 (1.8, 4.2) | 3.3 (2.1, 5) | 3 (2, 4.5) | <0.01 * | <0.01 * |
Chemotherapy | 31% | 35% | 45% | 40% | <0.01 * | <0.01 * |
Radiotherapy | 6% | 9% | 14% | 11% | <0.01 * | <0.01 * |
Lymph vascular invasion | 31% | 32% | 36% | 34% | <0.01 * | 0.47 |
Number of LN harvested (median, IQR) | 11 (4, 18) | 11 (5, 18) | 12 (5, 18) | 11 (5, 18) | <0.01 * | 0.42 |
Negative surgical margin | 90.6% | 90.8% | 86% | 88% | <0.01 * | 0.85 |
Length of Stay, days (median, IQR) | 5 (4, 6) | 5 (4, 7) | 6 (5, 8) | 5 (4, 7) | <0.01 * | <0.01 * |
Re-admission | 8.5% | 7.6% | 8.5% | 8.2% | 0.08 | 0.14 |
30-day mortality | 0.6% | 1.1% | 1.9% | 1.4% | <0.01 * | <0.01 * |
90-day mortality | 1.6% | 2.2% | 4.2% | 3.1% | <0.01 * | <0.01 * |
Five-year survival | 46.2% | 45.5% | 35.8% | 40.2% | <0.01 * | <0.01 * |
Variable | Robotic n = 3382 | Laparoscopic n = 3382 | Open n = 3382 | All Patients n = 10,146 | p-Value | p-Value (Lap vs. Rob) |
---|---|---|---|---|---|---|
Number of LN harvested (median, IQR) | 11 (4, 18) | 11 (5, 18) | 12 (5, 18) | 11 (5, 18) | <0.01 * | 0.42 |
Negative surgical margin | 90.7% | 89.1% | 89.7% | 89.8% | <0.01 * | <0.01 * |
Length of Stay, days (median, IQR) | 5 (4, 6) | 5 (4, 7) | 6 (5, 8) | 5 (4, 7) | <0.01 * | <0.01 * |
Re-admission | 8.3% | 7.8% | 8.6% | 8.2% | <0.01 * | 0.02 * |
30-day mortality | 0.6% | 1.3% | 1.5% | 1.1% | <0.01 * | <0.01 * |
90-day mortality | 1.7% | 2.4% | 3.3% | 2.5% | <0.01 * | <0.01 * |
Five-year survival | 46.0% | 38.1% | 46.4% | 43.0% | <0.01 * | <0.01 * |
Variable | Robotic n = 3140 | Laparoscopic n = 6356 | Open n = 9171 | All Patients n = 18,667 | p-Value | p-Value (Lap vs. Rob) |
---|---|---|---|---|---|---|
Age, years (median, IQR) | 64 (57, 75) | 64 (56, 75) | 64 (57, 75) | 64 (57, 75) | 1 | 1 |
Sex Female | 56% | 56.1% | 53% | 54.6% | <0.01 * | 0.87 |
Race | <0.01 * | <0.01 * | ||||
White | 78.9% | 67.5% | 72.5% | 71.9% | ||
Black | 9.6% | 8.5% | 9.7% | 9.3% | ||
Other | 5.3% | 6.3% | 4.6% | 5.3% | ||
ASA | <0.01 * | <0.01 * | ||||
I | 1.2% | 1.4% | 0.8% | 1.1% | ||
II | 28.7% | 30.5% | 23.1% | 26.6% | ||
III | 66.4% | 62.6% | 69% | 66.4% | ||
IV | 3.8% | 5.4% | 6.8% | 5.8% | ||
V | 0% | 0% | 0.2% | 0.1% | ||
Indication | <0.01 * | <0.01 * | ||||
PDAC | 42.2% | 43.7% | 35.6% | 29.5% | ||
PNET | 27.6% | 28% | 17% | 22.5% | ||
Pancreatitis | 7.6% | 6.6% | 11.3% | 9.1% | ||
IPMN | 13.6% | 11.2% | 7.4% | 9.7% | ||
Vascular resection | <0.01 * | <0.01 * | ||||
No | 95.8% | 93.8% | 87.9% | 91.2% | ||
Artery | 1.2% | 0.8% | 2.1% | 1.5% | ||
Vein | 1.3% | 1.9% | 5.7% | 3.6% | ||
Both | 1.4% | 2.6% | 2.8% | 2.5% | ||
Drain Placement | 90.7% | 86.6% | 84.9% | 86.5% | <0.01 * | <0.01 * |
Operative time, minutes (median, IQR) | 246 (191, 319) | 204 (155, 267) | 217 (156, 298) | 217 (161, 291) | <0.01 * | <0.01 * |
Length of Stay, days (median, IQR) | 5 (4, 6) | 5 (4, 6) | 6 (5, 8) | 5 (4, 7) | <0.01 * | 1 |
CR-POPF | 17.10% | 16.88% | 14.91% | 15.95% | <0.05 * | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foroutani, L.; Gonzalez, A.; Wang, J.J.; Aburayya, B.I.; Ganjouei, A.A.; Feng, J.; Thornblade, L.W.; Hirose, K.; Maker, A.V.; Nakakura, E.; et al. Minimally Invasive Distal Pancreatectomy as the Standard of Care in the US: Are We There Yet? Cancers 2025, 17, 3015. https://doi.org/10.3390/cancers17183015
Foroutani L, Gonzalez A, Wang JJ, Aburayya BI, Ganjouei AA, Feng J, Thornblade LW, Hirose K, Maker AV, Nakakura E, et al. Minimally Invasive Distal Pancreatectomy as the Standard of Care in the US: Are We There Yet? Cancers. 2025; 17(18):3015. https://doi.org/10.3390/cancers17183015
Chicago/Turabian StyleForoutani, Laleh, Andrew Gonzalez, Jaeyun Jane Wang, Bahaa I. Aburayya, Amir Ashraf Ganjouei, Jean Feng, Lucas Willian Thornblade, Kenzo Hirose, Ajay V. Maker, Eric Nakakura, and et al. 2025. "Minimally Invasive Distal Pancreatectomy as the Standard of Care in the US: Are We There Yet?" Cancers 17, no. 18: 3015. https://doi.org/10.3390/cancers17183015
APA StyleForoutani, L., Gonzalez, A., Wang, J. J., Aburayya, B. I., Ganjouei, A. A., Feng, J., Thornblade, L. W., Hirose, K., Maker, A. V., Nakakura, E., Corvera, C. U., Alseidi, A., & Adam, M. A. (2025). Minimally Invasive Distal Pancreatectomy as the Standard of Care in the US: Are We There Yet? Cancers, 17(18), 3015. https://doi.org/10.3390/cancers17183015