Turning the Tide—Artificial Intelligence in the Evolving Landscape of Liver Cancer
Simple Summary
Abstract
1. Introduction
2. Methods
3. AI and the Journey of a Liver Cancer Patient
3.1. Role of AI in Early Detection of Liver Cancer
3.2. Role of AI in Diagnosis of Liver Cancer
AI Applications in Liver Cancer Pathology
3.3. AI for Staging and Prognosis of Liver Cancer
3.4. AI for Treatment Decision
3.5. AI in Monitoring, Recurrence Detection of Liver Cancer
4. Barriers to Implementation—Challenges and Future Directions
4.1. Liability
4.2. Education
4.3. Ethical Barriers
4.4. Integration into Clinical Workflow
4.5. Social Barriers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
DL | Deep Learning |
CNN | Convolutional Neural Network |
NLP | Natural Language Processing |
HCC | Hepatocellular Carcinoma |
CCA | Cholangiocarcinoma |
CEUS | Contrast-Enhanced Ultrasound |
US | Ultrasound |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
MVI | Microvascular Invasion |
OS | Overall Survival |
PFS | Progression-Free Survival |
TACE | Transarterial Chemoembolization |
RFA | Radiofrequency Ablation |
BCLC | Barcelona Clinic Liver Cancer |
AUC | Area Under the Curve |
AUROC | Area Under the Receiver Operating Characteristic Curve |
ROI | Region of Interest |
WSIs | Whole-Slide Images |
HE | Hematoxylin and Eosin |
DLRS | Deep Learning Radiomics Score |
SEER | Surveillance, Epidemiology, and End Results |
ANN | Artificial Neural Network |
GAN | Generative Adversarial Network |
RSF | Random Survival Forest |
NPV | Negative Predictive Value |
PPV | Positive Predictive Value |
DICOM | Digital Imaging and Communications in Medicine |
PACS | Picture Archiving and Communication System |
References
- Llovet, J.M.; Burroughs, A.; Bruix, J. Hepatocellular carcinoma. Lancet 2003, 362, 1907–1917. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Li, X.; Ramadori, P.; Pfister, D.; Seehawer, M.; Zender, L.; Heikenwalder, M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat. Rev. Cancer 2021, 21, 541–557. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Clin. Liver Dis. 2019, 13, 1. [Google Scholar] [CrossRef]
- Sangro, B.; Argemi, J.; Ronot, M.; Paradis, V.; Meyer, T.; Mazzaferro, V.; Jepsen, P.; Golfieri, R.; Galle, P.; Dawson, L.; et al. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J. Hepatol. 2024, 82, 315–374. [Google Scholar] [CrossRef]
- Chernyak, V.; Fowler, K.J.; Kamaya, A.; Kielar, A.Z.; Elsayes, K.M.; Bashir, M.R.; Kono, Y.; Do, R.K.; Mitchell, D.G.; Singal, A.G.; et al. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology 2018, 289, 816–830. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2021, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Gores, G.J. Pathogenesis, Diagnosis, and Management of Cholangiocarcinoma. Gastroenterology 2013, 145, 1215–1229. [Google Scholar] [CrossRef]
- Jhaveri, K.S.; Hosseini-Nik, H. MRI of cholangiocarcinoma. J. Magn. Reson. Imaging 2014, 42, 1165–1179. [Google Scholar] [CrossRef]
- Bakrania, A.; Joshi, N.; Zhao, X.; Zheng, G.; Bhat, M. Artificial intelligence in liver cancers: Decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases. Pharmacol. Res. 2023, 189, 106706. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, Z.; Khan, M.; Aijaz, M.; Thakur, S.; Kamboj, A. The Role of Artificial Intelligence in Diagnosing Malignant Tumors. Eurasian J. Med. Oncol. 2024, 8, 281–294. [Google Scholar] [CrossRef]
- Wang, M.; Yu, F.; Zhang, Y. Current status and prospects of artificial intelligence in liver cancer management. Intell. Oncol. 2025, 1, 216–232. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Darcy, A.M.; Louie, A.K.; Roberts, L.W. Machine Learning and the Profession of Medicine. JAMA 2016, 315, 551–552. [Google Scholar] [CrossRef]
- Wainberg, M.; Merico, D.; Delong, A.; Frey, B.J. Deep learning in biomedicine. Nat. Biotechnol. 2018, 36, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep Learning in Neural Networks. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Marafino, B.J.; Park, M.; Davies, J.M.; Thombley, R.; Luft, H.S.; Sing, D.C.; Kazi, D.S.; DeJong, C.; Boscardin, W.J.; Dean, M.L.; et al. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data. JAMA Netw. Open 2018, 1, e185097. [Google Scholar] [CrossRef]
- Al-Hasan, M.; Mehta, N.; Yang, J.D.; Singal, A.G. Role of biomarkers in the diagnosis and management of HCC. Liver Transplant. 2024, 31, 384–394. [Google Scholar] [CrossRef]
- Calderaro, J.; Seraphin, T.P.; Luedde, T.; Simon, T.G. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma. J. Hepatol. 2022, 76, 1348–1361. [Google Scholar] [CrossRef]
- Liang, C.-W.; Yang, H.-C.; Islam, M.; Nguyen, P.A.A.; Feng, Y.-T.; Hou, Z.Y.; Huang, C.-W.; Poly, T.N.; Li, Y.-C.J. Predicting Hepatocellular Carcinoma With Minimal Features From Electronic Health Records: Development of a Deep Learning Model. JMIR Cancer 2021, 7, e19812. [Google Scholar] [CrossRef]
- Singal, A.G.; Mukherjee, A.; Elmunzer, B.J.; Higgins, P.D.R.; Lok, A.S.; Zhu, J.; Marrero, J.A.; Waljee, A.K. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma. Am. J. Gastroenterol. 2013, 108, 1723–1730. [Google Scholar] [CrossRef]
- Konerman, M.A.; Zhang, Y.; Zhu, J.; Higgins, P.D.; Lok, A.S.; Waljee, A.K. Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data. Hepatology 2015, 61, 1832–1841. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Tang, W.; Beste, L.A.; Tincopa, M.A.; Su, G.L.; Van, T.; Tapper, E.B.; Singal, A.G.; Zhu, J.; Waljee, A.K. Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients With Hepatitis C Cirrhosis. JAMA Netw. Open 2020, 3, e2015626. [Google Scholar] [CrossRef] [PubMed]
- Dawuti, W.; Zheng, X.; Liu, H.; Zhao, H.; Dou, J.; Sun, L.; Chu, J.; Lin, R.; Lü, G. Urine surface-enhanced Raman spectroscopy combined with SVM algorithm for rapid diagnosis of liver cirrhosis and hepatocellular carcinoma. Photodiagnosis Photodyn. Ther. 2022, 38, 102811. [Google Scholar] [CrossRef] [PubMed]
- Tzartzeva, K.; Obi, J.; Rich, N.E.; Parikh, N.D.; Marrero, J.A.; Yopp, A.; Waljee, A.K.; Singal, A.G. Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology 2018, 154, 1706–1718.e1. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, L.; Wang, C.; Yu, X.; Chen, W.; Li, Y.; Li, W.; Yan, F.; Wang, H.; Li, R. Feasibility of automatic detection of small hepatocellular carcinoma (≤2 cm) in cirrhotic liver based on pattern matching and deep learning. Phys. Med. Biol. 2021, 66, 085014. [Google Scholar] [CrossRef]
- Yang, Q.; Wei, J.; Hao, X.; Kong, D.; Yu, X.; Jiang, T.; Xi, J.; Cai, W.; Luo, Y.; Jing, X.; et al. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study. EBioMedicine 2020, 56, 102777. [Google Scholar] [CrossRef]
- Chaiteerakij, R.; Ariyaskul, D.; Kulkraisri, K.; Apiparakoon, T.; Sukcharoen, S.; Chaichuen, O.; Pensuwan, P.; Tiyarattanachai, T.; Rerknimitr, R.; Marukatat, S. Artificial intelligence for ultrasonographic detection and diagnosis of hepatocellular carcinoma and cholangiocarcinoma. Sci. Rep. 2024, 14, 1–11. [Google Scholar] [CrossRef]
- Kudo, M.; Ueshima, K.; Osaki, Y.; Hirooka, M.; Imai, Y.; Aso, K.; Numata, K.; Kitano, M.; Kumada, T.; Izumi, N.; et al. B-Mode Ultrasonography versus Contrast-Enhanced Ultrasonography for Surveillance of Hepatocellular Carcinoma: A Prospective Multicenter Randomized Controlled Trial. Liver Cancer 2019, 8, 271–280. [Google Scholar] [CrossRef]
- Guo, L.-H.; Wang, D.; Qian, Y.-Y.; Zheng, X.; Zhao, C.-K.; Li, X.-L.; Bo, X.-W.; Yue, W.-W.; Zhang, Q.; Shi, J.; et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin. Hemorheol. Microcirc. 2018, 69, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Sparchez, Z.; Craciun, R.; Caraiani, C.; Horhat, A.; Nenu, I.; Procopet, B.; Sparchez, M.; Stefanescu, H.; Mocan, T. Ultrasound or Sectional Imaging Techniques as Screening Tools for Hepatocellular Carcinoma: Fall Forward or Move Forward? J. Clin. Med. 2021, 10, 903. [Google Scholar] [CrossRef] [PubMed]
- Poon, T.C.-W.; Chan, A.T.-C.; Zee, B.; Ho, S.K.-W.; Mok, T.S.-K.; Leung, T.W.-T.; Johnson, P.J. Application of Classification Tree and Neural Network Algorithms to the Identification of Serological Liver Marker Profiles for the Diagnosis of Hepatocellular Carcinoma. Oncology 2001, 61, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Morimoto, K.; Kajihara, S.; Tateishi, R.; Shiina, S.; Koike, K.; Yatomi, Y. Machine-learning Approach for the Development of a Novel Predictive Model for the Diagnosis of Hepatocellular Carcinoma. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- Książek, W.; Abdar, M.; Acharya, U.R.; Pławiak, P. A novel machine learning approach for early detection of hepatocellular carcinoma patients. Cogn. Syst. Res. 2019, 54, 116–127. [Google Scholar] [CrossRef]
- Spârchez, Z.; Crăciun, R.; Nenu, I.; Mocan, L.P.; Spârchez, M.; Mocan, T. Refining Liver Biopsy in Hepatocellular Carcinoma: An In-Depth Exploration of Shifting Diagnostic and Therapeutic Applications. Biomedicines 2023, 11, 2324. [Google Scholar] [CrossRef]
- Mokrane, F.-Z.; Lu, L.; Vavasseur, A.; Otal, P.; Peron, J.-M.; Luk, L.; Yang, H.; Ammari, S.; Saenger, Y.; Rousseau, H.; et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur. Radiol. 2019, 30, 558–570. [Google Scholar] [CrossRef]
- Yu, P.L.H.; Chiu, K.W.-H.; Lu, J.; Lui, G.C.; Zhou, J.; Cheng, H.-M.; Mao, X.; Wu, J.; Shen, X.-P.; Kwok, K.M.; et al. Application of a deep learning algorithm for the diagnosis of HCC. JHEP Rep. 2024, 7, 101219. [Google Scholar] [CrossRef]
- Hamm, C.A.; Wang, C.J.; Savic, L.J.; Ferrante, M.; Schobert, I.; Schlachter, T.; Lin, M.; Duncan, J.S.; Weinreb, J.C.; Chapiro, J.; et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI. Eur. Radiol. 2019, 29, 3338–3347. [Google Scholar] [CrossRef]
- Zhen, S.-H.; Cheng, M.; Tao, Y.-B.; Wang, Y.-F.; Juengpanich, S.; Jiang, Z.-Y.; Jiang, Y.-K.; Yan, Y.-Y.; Lu, W.; Lue, J.-M.; et al. Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data. Front. Oncol. 2020, 10, 680. [Google Scholar] [CrossRef]
- Beaufrère, A.; Ouzir, N.; Zafar, P.E.; Laurent-Bellue, A.; Albuquerque, M.; Lubuela, G.; Grégory, J.; Guettier, C.; Mondet, K.; Pesquet, J.-C.; et al. Primary liver cancer classification from routine tumour biopsy using weakly supervised deep learning. JHEP Rep. 2024, 6, 101008. [Google Scholar] [CrossRef] [PubMed]
- Calderaro, J.; Žigutytė, L.; Truhn, D.; Jaffe, A.; Kather, J.N. Artificial intelligence in liver cancer—New tools for research and patient management. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ma, M.; Ma, X.; Lv, X.; Dong, X.; Yan, Z.; Zhu, M.; Chen, J. Classification of multi-differentiated liver cancer pathological images based on deep learning attention mechanism. BMC Med Informatics Decis. Mak. 2022, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.; Uyumazturk, B.; Rajpurkar, P.; Wang, A.; Gao, R.; Jones, E.; Yu, Y.; Langlotz, C.P.; Ball, R.L.; Montine, T.J.; et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. npj Digit. Med. 2020, 3, 23. [Google Scholar] [CrossRef]
- Jang, H.-J.; Go, J.-H.; Kim, Y.; Lee, S.H. Deep Learning for the Pathologic Diagnosis of Hepatocellular Carcinoma, Cholangiocarcinoma, and Metastatic Colorectal Cancer. Cancers 2023, 15, 5389. [Google Scholar] [CrossRef]
- Mansur, A.; Vrionis, A.; Charles, J.P.; Hancel, K.; Panagides, J.C.; Moloudi, F.; Iqbal, S.; Daye, D. The Role of Artificial Intelligence in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities. Cancers 2023, 15, 2928. [Google Scholar] [CrossRef]
- Cifci, D.; Veldhuizen, G.P.; Foersch, S.; Kather, J.N. AI in Computational Pathology of Cancer: Improving Diagnostic Workflows and Clinical Outcomes? Annu. Rev. Cancer Biol. 2023, 7, 57–71. [Google Scholar] [CrossRef]
- Zhao, Z.; Tian, Y.; Yuan, Z.; Zhao, P.; Xia, F.; Yu, S. A machine learning method for improving liver cancer staging. J. Biomed. Informatics 2022, 137, 104266. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, J.; Wang, P.; Chen, L.; Ying, M.; Chai, S.; Ruan, S.; Tian, W.; Cheng, Y.; Zhang, H.; et al. Deep Learning Radiomics to Predict Regional Lymph Node Staging for Hilar Cholangiocarcinoma. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Guo, D.; Gu, D.; Wang, H.; Wei, J.; Wang, Z.; Hao, X.; Ji, Q.; Cao, S.; Song, Z.; Jiang, J.; et al. Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation. Eur. J. Radiol. 2019, 117, 33–40. [Google Scholar] [CrossRef]
- Wei, J.; Jiang, H.; Zeng, M.; Wang, M.; Niu, M.; Gu, D.; Chong, H.; Zhang, Y.; Fu, F.; Zhou, M.; et al. Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Deep Learning: A Multi-Center and Prospective Validation Study. Cancers 2021, 13, 2368. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Q.; Chen, Y.; Zhu, Y.; Zhang, Y.; Cao, D.; Zhou, W.; Liang, X.; Yang, Y.; Lin, L.; et al. A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma. Eur. J. Surg. Oncol. (EJSO) 2022, 49, 156–164. [Google Scholar] [CrossRef]
- Xia, T.-Y.; Zhou, Z.-H.; Meng, X.-P.; Zha, J.-H.; Yu, Q.; Wang, W.-L.; Song, Y.; Wang, Y.-C.; Tang, T.-Y.; Xu, J.; et al. Predicting Microvascular Invasion in Hepatocellular Carcinoma Using CT-based Radiomics Model. Radiology 2023, 307, 222729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guo, Q.; Zhu, Y.; Wang, M.; Zhang, T.; Cheng, G.; Zhang, Q.; Ding, H. Cross-institutional evaluation of deep learning and radiomics models in predicting microvascular invasion in hepatocellular carcinoma: Validity, robustness, and ultrasound modality efficacy comparison. Cancer Imaging 2024, 24, 1–10. [Google Scholar] [CrossRef]
- Dong, Y.; Zhou, L.; Xia, W.; Zhao, X.-Y.; Zhang, Q.; Jian, J.-M.; Gao, X.; Wang, W.-P. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Initial Application of a Radiomic Algorithm Based on Grayscale Ultrasound Images. Front. Oncol. 2020, 10, 353. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.-L.; Liu, Q.-P.; Sun, S.-W.; Zhang, J.; Zhu, F.-P.; Yang, G.; Yan, X.; Zhang, Y.-D.; Liu, X.-S. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J. Hepatol. 2019, 70, 1133–1144. [Google Scholar] [CrossRef]
- Ma, X.; Wei, J.; Gu, D.; Zhu, Y.; Feng, B.; Liang, M.; Wang, S.; Zhao, X.; Tian, J. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur. Radiol. 2019, 29, 3595–3605. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-P.; Xu, X.; Zhu, F.-P.; Zhang, Y.-D.; Liu, X.-S. Prediction of prognostic risk factors in hepatocellular carcinoma with transarterial chemoembolization using multi-modal multi-task deep learning. eClinicalMedicine 2020, 23, 100379. [Google Scholar] [CrossRef]
- Jiang, Y.-Q.; Cao, S.-E.; Cao, S.; Chen, J.-N.; Wang, G.-Y.; Shi, W.-Q.; Deng, Y.-N.; Cheng, N.; Ma, K.; Zeng, K.-N.; et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. J. Cancer Res. Clin. Oncol. 2020, 147, 821–833. [Google Scholar] [CrossRef]
- Song, D.; Wang, Y.; Wang, W.; Wang, Y.; Cai, J.; Zhu, K.; Lv, M.; Gao, Q.; Zhou, J.; Fan, J.; et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters. J. Cancer Res. Clin. Oncol. 2021, 147, 3757–3767. [Google Scholar] [CrossRef]
- Zhou, W.; Jian, W.; Cen, X.; Zhang, L.; Guo, H.; Liu, Z.; Liang, C.; Wang, G. Prediction of Microvascular Invasion of Hepatocellular Carcinoma Based on Contrast-Enhanced MR and 3D Convolutional Neural Networks. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, X.; Qiu, J.; Zhang, B.; Zhang, L.; Fang, J.; Li, M.; Chen, L.; Wang, F.; Liu, S.; et al. Deep Learning With 3D Convolutional Neural Network for Noninvasive Prediction of Microvascular Invasion in Hepatocellular Carcinoma. J. Magn. Reson. Imaging 2021, 54, 134–143. [Google Scholar] [CrossRef]
- Fu, S.; Lai, H.; Li, Q.; Liu, Y.; Zhang, J.; Huang, J.; Chen, X.; Duan, C.; Li, X.; Wang, T.; et al. Multi-task deep learning network to predict future macrovascular invasion in hepatocellular carcinoma. eClinicalMedicine 2021, 42, 101201. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Zhou, C.; Ma, X. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma. Eur. J. Surg. Oncol. (EJSO) 2022, 48, 1068–1077. [Google Scholar] [CrossRef]
- Zhou, Z.; Xia, T.; Zhang, T.; Du, M.; Zhong, J.; Huang, Y.; Xuan, K.; Xu, G.; Wan, Z.; Ju, S.; et al. Prediction of preoperative microvascular invasion by dynamic radiomic analysis based on contrast-enhanced computed tomography. Abdom. Imaging 2023, 49, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Z.; Yu, H.; Duan, C.; Feng, W.; Chang, L.; Yu, J.; Liu, F.; Gao, J.; Zang, Y.; et al. Prediction of microvascular invasion in hepatocellular carcinoma based on preoperative Gd-EOB-DTPA-enhanced MRI: Comparison of predictive performance among 2D, 2D-expansion and 3D deep learning models. Front. Oncol. 2023, 13, 987781. [Google Scholar] [CrossRef]
- Morshid, A.; Elsayes, K.M.; Khalaf, A.M.; Elmohr, M.M.; Yu, J.; Kaseb, A.O.; Hassan, M.; Mahvash, A.; Wang, Z.; Hazle, J.D.; et al. A Machine Learning Model to Predict Hepatocellular Carcinoma Response to Transcatheter Arterial Chemoembolization. Radiol. Artif. Intell. 2019, 1, e180021. [Google Scholar] [CrossRef]
- Shan, Q.-Y.; Hu, H.-T.; Feng, S.-T.; Peng, Z.-P.; Chen, S.-L.; Zhou, Q.; Li, X.; Xie, X.-Y.; Lu, M.-D.; Wang, W.; et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation. Cancer Imaging 2019, 19, 1–11. [Google Scholar] [CrossRef]
- Peng, J.; Huang, J.; Huang, G.; Zhang, J. Predicting the Initial Treatment Response to Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma by the Integration of Radiomics and Deep Learning. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Abajian, A.; Murali, N.; Savic, L.J.; Laage-Gaupp, F.M.; Nezami, N.; Duncan, J.S.; Schlachter, T.; Lin, M.; Geschwind, J.-F.; Chapiro, J. Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning—An Artificial Intelligence Concept. J. Vasc. Interv. Radiol. 2018, 29, 850–857.e1. [Google Scholar] [CrossRef]
- Oezdemir, I.; Wessner, C.E.; Shaw, C.; Eisenbrey, J.R.; Hoyt, K. Tumor Vascular Networks Depicted in Contrast-Enhanced Ultrasound Images as a Predictor for Transarterial Chemoembolization Treatment Response. Ultrasound Med. Biol. 2020, 46, 2276–2286. [Google Scholar] [CrossRef]
- Liu, D.; Liu, F.; Xie, X.; Su, L.; Liu, M.; Xie, X.; Kuang, M.; Huang, G.; Wang, Y.; Zhou, H.; et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound. Eur. Radiol. 2020, 30, 2365–2376. [Google Scholar] [CrossRef]
- Aujay, G.; Etchegaray, C.; Blanc, J.-F.; Lapuyade, B.; Papadopoulos, P.; Pey, M.-A.; Bordenave, L.; Trillaud, H.; Saut, O.; Pinaquy, J.-B. Comparison of MRI-based response criteria and radiomics for the prediction of early response to transarterial radioembolization in patients with hepatocellular carcinoma. Diagn. Interv. Imaging 2022, 103, 360–366. [Google Scholar] [CrossRef]
- Pino, C.; Vecchio, G.; Fronda, M.; Calandri, M.; Aldinucci, M.; Spampinato, C. TwinLiverNet: Predicting TACE Treatment Outcome from CT scans for Hepatocellular Carcinoma using Deep Capsule Networks. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5 November 2021; pp. 3039–3043. [Google Scholar]
- Chen, M.; Kong, C.; Qiao, E.; Chen, Y.; Chen, W.; Jiang, X.; Fang, S.; Zhang, D.; Chen, M.; Chen, W.; et al. Multi-algorithms analysis for pre-treatment prediction of response to transarterial chemoembolization in hepatocellular carcinoma on multiphase MRI. Insights Into Imaging 2023, 14, 1–12. [Google Scholar] [CrossRef]
- Alvaro, D.; Gores, G.J.; Walicki, J.; Hassan, C.; Sapisochin, G.; Komuta, M.; Forner, A.; Valle, J.W.; Laghi, A.; Ilyas, S.I.; et al. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma. J. Hepatol. 2023, 79, 181–208. [Google Scholar] [CrossRef]
- Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 34, 10–32. [Google Scholar] [CrossRef]
- Booth, A.; Clarke, M.; Ghersi, D.; Moher, D.; Petticrew, M.; Stewart, L. Comment An international registry of systematic-review protocols. Lancet 2011, 377, 108–109. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Liu, X.; Hou, Y.; Wang, X.; Yu, L.; Wang, X.; Jiang, L.; Yang, Z. Machine learning-based development and validation of a scoring system for progression-free survival in liver cancer. Hepatol. Int. 2020, 14, 567–576. [Google Scholar] [CrossRef]
- Li, X.; Bao, H.; Shi, Y.; Zhu, W.; Peng, Z.M.; Yan, L.; Chen, J.; Shu, X. Machine learning methods for accurately predicting survival and guiding treatment in stage I and II hepatocellular carcinoma. Medicine 2023, 102, e35892. [Google Scholar] [CrossRef]
- Schön, F.; Kieslich, A.; Nebelung, H.; Riediger, C.; Hoffmann, R.-T.; Zwanenburg, A.; Löck, S.; Kühn, J.-P. Comparative analysis of radiomics and deep-learning algorithms for survival prediction in hepatocellular carcinoma. Sci. Rep. 2024, 14, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, S.; Xu, Y.; Wu, J. Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 763842. [Google Scholar] [CrossRef]
- Xie, X.-Y.; Chen, R. Research progress of MRI-based radiomics in hepatocellular carcinoma. Front. Oncol. 2025, 15, 1420599. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Wang, X.; Zhang, W.; Chen, Y.; Lu, X.; Jin, C.; Tu, L.; Jiang, T.; Yang, Y.; et al. Precision Strike Strategy for Liver Diseases Trilogy with Xiao-Chai-Hu Decoction: A Meta-Analysis with Machine Learning. Phytomedicine 2025, 142, 156796. [Google Scholar] [CrossRef]
- Pinto-Marques, H.; Cardoso, J.; Silva, S.; Neto, J.L.; Gonçalves-Reis, M.M.; Proença, D.B.; Mesquita, M.; Manso, A.M.; Carapeta, S.M.; Sobral, M.; et al. A Gene Expression Signature to Select Hepatocellular Carcinoma Patients for Liver Transplantation. Ann. Surg. 2022, 276, 868–874. [Google Scholar] [CrossRef]
- Abdelhamed, W.; El-Kassas, M. Hepatocellular carcinoma recurrence: Predictors and management. Liver Res. 2023, 7, 321–332. [Google Scholar] [CrossRef]
- Alaimo, L.; Lima, H.A.; Moazzam, Z.; Endo, Y.; Yang, J.; Ruzzenente, A.; Guglielmi, A.; Aldrighetti, L.; Weiss, M.; Bauer, T.W.; et al. Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2023, 30, 5406–5415. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, H.; Chen, J.; Wei, Y.; Cao, L.; Ye, Z.; Li, X.; Ma, L.; Song, B. Hepatocellular carcinoma: Radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction. Cancer Imaging 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Hui, T.; Chuah, T.; Low, H.; Tan, C. Predicting early recurrence of hepatocellular carcinoma with texture analysis of preoperative MRI: A radiomics study. Clin. Radiol. 2018, 73, 1056.e11–1056.e16. [Google Scholar] [CrossRef]
- Kim, S.; Shin, J.; Kim, D.-Y.; Choi, G.H.; Kim, M.-J.; Choi, J.-Y. Radiomics on Gadoxetic Acid–Enhanced Magnetic Resonance Imaging for Prediction of Postoperative Early and Late Recurrence of Single Hepatocellular Carcinoma. Clin. Cancer Res. 2019, 25, 3847–3855. [Google Scholar] [CrossRef]
- Kucukkaya, A.S.; Zeevi, T.; Chai, N.X.; Raju, R.; Haider, S.P.; Elbanan, M.; Petukhova-Greenstein, A.; Lin, M.; Onofrey, J.; Nowak, M.; et al. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Sci. Rep. 2023, 13, 1–9. [Google Scholar] [CrossRef]
- Liu, F.; Liu, D.; Wang, K.; Xie, X.; Su, L.; Kuang, M.; Huang, G.; Peng, B.; Wang, Y.; Lin, M.; et al. Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Curative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients. Liver Cancer 2020, 9, 397–413. [Google Scholar] [CrossRef]
- Ji, G.-W.; Zhu, F.-P.; Xu, Q.; Wang, K.; Wu, M.-Y.; Tang, W.-W.; Li, X.-C.; Wang, X.-H. Radiomic Features at Contrast-enhanced CT Predict Recurrence in Early Stage Hepatocellular Carcinoma: A Multi-Institutional Study. Radiology 2020, 294, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Zhao, Z.; Yang, Y.; Long, D.; Luo, C. Radiomics-guided prognostic assessment of early-stage hepatocellular carcinoma recurrence post-radical resection. J. Cancer Res. Clin. Oncol. 2023, 149, 14983–14996. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, A.; Mori, M.; Calabrese, F.; Palumbo, D.; Ratti, F.; Palazzo, G.; Pellegrini, A.; Santangelo, D.; Ronzoni, M.; Spezi, E.; et al. Preoperative MRI radiomic analysis for predicting local tumor progression in colorectal liver metastases before microwave ablation. Int. J. Hyperth. 2024, 41, 2349059. [Google Scholar] [CrossRef]
- Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin. Cancer Res. 2018, 24, 1248–1259. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lai, Q.; Li, S.; Wu, S.; Li, Y.; Huang, J.; Zeng, Q.; Wei, D. Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: A systematic review and meta-analysis. BMC Med Imaging 2024, 24, 1–19. [Google Scholar] [CrossRef]
- Yamashita, R.; Long, J.; Saleem, A.; Rubin, D.L.; Shen, J. Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Lai, Q.; De Stefano, C.; Emond, J.; Bhangui, P.; Ikegami, T.; Schaefer, B.; Hoppe-Lotichius, M.; Mrzljak, A.; Ito, T.; Vivarelli, M.; et al. Development and validation of an artificial intelligence model for predicting post-transplant hepatocellular cancer recurrence. Cancer Commun. 2023, 43, 1381–1385. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Jin, Z.; Jiang, W.; Zhang, B.; Wang, C.; Wu, L.; Chen, L.; Chen, Q.; Liu, S.; et al. Real-time automatic prediction of treatment response to transcatheter arterial chemoembolization in patients with hepatocellular carcinoma using deep learning based on digital subtraction angiography videos. Cancer Imaging 2022, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zeng, J.; Lin, K.; Lin, H.; Wu, Q.; Guo, P.; Zhou, W.; Liu, J. Development of a machine learning model to predict early recurrence for hepatocellular carcinoma after curative resection. Hepatobiliary Surg Nutr. 2022, 11, 176–187. [Google Scholar] [CrossRef]
- Huang, H.; Ruan, S.-M.; Xian, M.-F.; Cheng, M.-Q.; Li, W.; Huang, Y.; Xie, X.-Y.; Lu, M.-D.; Kuang, M.; Wang, W.; et al. Contrast-enhanced ultrasound–based ultrasomics score: A potential biomarker for predicting early recurrence of hepatocellular carcinoma after resection or ablation. Br. J. Radiol. 2021, 95, 20210748. [Google Scholar] [CrossRef]
- Lv, C.; He, N.; Yang, J.J.; Xiao, J.J.; Zhang, Y.; Du, J.; Zuo, S.; Li, H.Y.; Gu, H. Prediction of 3-year recurrence rate of hepatocellular carcinoma after resection based on contrast-enhanced CT: A single-centre study. Br. J. Radiol. 2023, 96, 20220702. [Google Scholar] [CrossRef]
- Chicco, D.; Oneto, L. Computational intelligence identifies alkaline phosphatase (ALP), alpha-fetoprotein (AFP), and hemoglobin levels as most predictive survival factors for hepatocellular carcinoma. Heal. Informatics J. 2021, 27. [Google Scholar] [CrossRef]
- Wang, K.; Xiang, Y.; Yan, J.; Zhu, Y.; Chen, H.; Yu, H.; Cheng, Y.; Li, X.; Dong, W.; Ji, Y.; et al. A deep learning model with incorporation of microvascular invasion area as a factor in predicting prognosis of hepatocellular carcinoma after R0 hepatectomy. Hepatol. Int. 2022, 16, 1188–1198. [Google Scholar] [CrossRef]
- Zhou, Y.; He, L.; Huang, Y.; Chen, S.; Wu, P.; Ye, W.; Liu, Z.; Liang, C. CT-based radiomics signature: A potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom. Imaging 2017, 42, 1695–1704. [Google Scholar] [CrossRef]
- He, T.; Fong, J.N.; Moore, L.W.; Ezeana, C.F.; Victor, D.; Divatia, M.; Vasquez, M.; Ghobrial, R.M.; Wong, S.T. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer. Comput. Med Imaging Graph. 2021, 89, 101894. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Rudzicz, F.; Jamieson, T.; Goldfarb, A. Artificial Intelligence and the Implementation Challenge. J. Med. Internet Res. 2019, 21, e13659. [Google Scholar] [CrossRef] [PubMed]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Futur. Health J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Buch, V.H.; Ahmed, I.; Maruthappu, M. Artificial intelligence in medicine: Current trends and future possibilities. Br. J. Gen. Pr. 2018, 68, 143–144. [Google Scholar] [CrossRef]
- Chen, J.; See, K.C. Artificial Intelligence for COVID-19: Rapid Review. J. Med Internet Res. 2020, 22, e21476. [Google Scholar] [CrossRef]
- Žigutytė, L.; Sorz-Nechay, T.; Clusmann, J.; Kather, J.N. Use of artificial intelligence for liver diseases: A survey from the EASL congress 2024. JHEP Rep. 2024, 6, 101209. [Google Scholar] [CrossRef]
- Reddy, S.; Allan, S.; Coghlan, S.; Cooper, P. A governance model for the application of AI in health care. J. Am. Med. Inform. Assoc. 2019, 27, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 1–9. [Google Scholar] [CrossRef]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Marcu, L.G.; Boyd, C.; Bezak, E. Current issues regarding artificial intelligence in cancer and health care. Implications for medical physicists and biomedical engineers. Heal. Technol. 2019, 9, 375–381. [Google Scholar] [CrossRef]
- Panch, T.; Mattie, H.; Celi, L.A. The “inconvenient truth” about AI in healthcare. npj Digit. Med. 2019, 2, 1–3. [Google Scholar] [CrossRef]
- Ahn, J.C.; Connell, A.; Simonetto, D.A.; Hughes, C.; Shah, V.H. Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases. Hepatology 2020, 73, 2546–2563. [Google Scholar] [CrossRef]
- Griewing, S.; Gremke, N.; Wagner, U.; Lingenfelder, M.; Kuhn, S.; Boekhoff, J. Challenging ChatGPT 3.5 in Senology—An Assessment of Concordance with Breast Cancer Tumor Board Decision Making. J. Pers. Med. 2023, 13, 1502. [Google Scholar] [CrossRef] [PubMed]
- Bertolo, R.; De Bon, L.; Caudana, F.; Pettenuzzo, G.; Malandra, S.; Casolani, C.; Zivi, A.; Fantinel, E.; Borsato, A.; Negrelli, R.; et al. Role of large language models in the multidisciplinary decision-making process for patients with renal cell carcinoma: A pilot experience. npj Precis. Oncol. 2025, 9, 1–4. [Google Scholar] [CrossRef]
- Bin Kim, H.; Tan, H.Q.; Nei, W.L.; Tan, Y.C.R.S.; Cai, Y.; Wang, F. Impact of large language models and vision deep learning models in predicting neoadjuvant rectal score for rectal cancer treated with neoadjuvant chemoradiation. BMC Med. Imaging 2025, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sorin, V.; Klang, E.; Sklair-Levy, M.; Cohen, I.; Zippel, D.B.; Lahat, N.B.; Konen, E.; Barash, Y. Large language model (ChatGPT) as a support tool for breast tumor board. npj Breast Cancer 2023, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- McCradden, M.D.; Joshi, S.; Mazwi, M.; A Anderson, J. Ethical limitations of algorithmic fairness solutions in health care machine learning. Lancet Digit. Health 2020, 2, e221–e223. [Google Scholar] [CrossRef] [PubMed]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Briefings Bioinform. 2017, 19, 1236–1246. [Google Scholar] [CrossRef]
Author, Year (Ref) | AI Method | Number of Patients | Imaging Technique | Performance Metrics |
---|---|---|---|---|
Dong Y, 2020 [56] | radiomics | 322 | ultrasound (grayscale) | AUC 0.74 SEN 0.89 SPE 0.48 |
Xu X, 2019 [57] | radiomics | 495 | CT | AUC 0.88 SEN 0.88 SPE 0.76 |
Ma X, 2019 [58] | radiomics | 157 | CT | AUC 0.80 SEN 0.89 SPE 0.76 |
Liu Q-P, 2020 [59] | radiomics | 494 | CT | AUC 0.79 SEN N/A SPE N/A |
Jiang Y-Q, 2020 [60] | radiomics CNN | 405 | CT | AUC 0.85 SEN 0.93 SPE 0.75 |
Song D, 2021 [61] | CNN, radiomics | 601 | MRI | AUC 0.93 SEN 0.88 SPE 0.88 |
Wang G, 2021 [62] | CNN | 114 | MRI | AUC 0.92 SEN 0.86 SPE 0.88 |
Y Zhang, 2021 [63] | CNN | 237 | MRI | AUC 0.72 SEN 0.55 SPE 0.81 |
Fu S, 2021 [64] | multi-task deep learning | 366 | CT | AUC 0.83 SEN N/A SPE N/A |
Wei J, 2021 [52] | CNN | 750 | CT, MRI | MRI vs. CT AUC: 0.812 vs. 0.736 SEN 0.70 vs. 0.57 SPE 0.80 vs. 0.86 |
Yang Y, 2022 [65] | radiomics | 283 | CT | AUC 0.90 SEN 0.91 SPE 0.97 |
Wang F, 2023 [53] | CNN | 397 | CT + MRI | AUC 0.84 SEN 0.77 SPE 0.84 |
TY Xia, 2024 [54] | radiomics | 773 | CT | AUC 0.84 SEN 0.74 SPE 0.81 |
Z Zhou, 2023 [66] | DL, radiomics | 140 | CT | AUC 0.85 SEN 0.87 |
T Wang, 2023 [67] | DL | 233 | MRI | AUC 0.81 SEN 0.78 SPE 0.67 |
W Zhang, 2024 [55] | DL, radiomics | 576 | CEUS | AUC 0.73 SEN 0.60 SPE 0.76 |
Author, Year (Ref) | Aim | AI Method | Number of Patients | Imaging Technique | Performance Metrics |
---|---|---|---|---|---|
Morshid A, 2019 [68] | predict response to TACE | CNN | 105 | CT | Accuracy 0.74 SEN N/A SPE N/A |
Shan Q, 2019 [69] | predict recurrence after curative resection or ablation | radiomics | 156 | CT | AUC 0.79 SEN N/A SPE N/A |
Peng J, 2021 [70] | predict response to TACE | DL, radiomics | 310 | CT | AUC 0.99 SEN 0.93 SPE 0.94 |
Abajian A, 2018 [71] | predict response to TACE | machine learning | 36 | MRI | AUC 0.78 SEN 0.62 SPE 0.82 |
Oezdemir I, 2020 [72] | predict response to TACE | machine learning | 36 | CEUS | AUC 0.86 SEN 0.89 SPE 0.82 |
Liu D, 2020 [73] | predict response to TACE | DL, ML, radiomics | 130 | CEUS | AUC 0.93 SEN 0.89 SPE 0.92 |
Aujay G, 2022 [74] | predict response to TARE | radiomics | 22 | MRI | AUC 1 SEN 1 SPE 1 |
Pino C, 2021 [75] | predict response to TACE | DL | 126 | CT | AUC 0.81 SEN 0.83 SPE 0.82 |
Chen M, 2023 [76] | predict response to TACE | DL | 144 | MRI | AUC 0.79 SEN 0.71 SPE 0.85 |
Study | AI Method | Cancer Type | Perfomance Metrics |
---|---|---|---|
Huang et al. [104] | CEUS ultrasomics | HCC | AUC of 0.845 |
Lv et al. [105] | deep learning based radiomics | HCC | AUC of 0.98 in the training cohorts and 0.83 for the testing cohorts |
Yamashita et al. [100] | CNN | HCC | concordance indices of 0.724 on internal cohorts and 0.683 on external cohorts |
Peng et al. [70] | DL and random forest algorithm | HCC | AUC of 0.995 in the training cohort and of 0.994 in the validation cohort |
Chicco et al. [106] | Machine learning | HCC | predict recurrence using prognostic indicators (ALP; AFP; hemoglobin) |
Zhang L et al. [102] | Deep learning | HCC | predict recurrence after TACE with a 78.2 % accuracy for the internal cohort and 75.1% accuracy for the external cohort |
Wang et al. [107] | Deep learning | HCC | predict overall survival after hepatectomy with AUCs of 0.8065, 0.7404, and 0.7944 |
Zhou et al. [108] | Deep learning | HCC | predict early recurrence with AUCs of the clinical and combined models of 0.781 and 0.836 |
Zeng et al. [103] | Random survival forest | HCC | predict early recurrence with a concordance index value of 0.725, 0.762 and 0.747 for the training, internal and external cohorts |
Lai et al. [101] | Deep learning | HCC | predict post-transplant recurrence at 5 years with a concordance index of 0.78 |
He et al. [109] | Deep learning | HCC | predict post-transplant recurrence with an accuracy of 0.82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grapă, C.; Mocan, T.; Mocan, L.P.; Motofelea, A.; Stănciulescu, R.; Crăciun, R.; Vârciu, A.; Spârchez, Z.; Mocan, T. Turning the Tide—Artificial Intelligence in the Evolving Landscape of Liver Cancer. Cancers 2025, 17, 3003. https://doi.org/10.3390/cancers17183003
Grapă C, Mocan T, Mocan LP, Motofelea A, Stănciulescu R, Crăciun R, Vârciu A, Spârchez Z, Mocan T. Turning the Tide—Artificial Intelligence in the Evolving Landscape of Liver Cancer. Cancers. 2025; 17(18):3003. https://doi.org/10.3390/cancers17183003
Chicago/Turabian StyleGrapă, Cristiana, Tudor Mocan, Lavinia Patricia Mocan, Andrei Motofelea, Raluca Stănciulescu, Rareș Crăciun, Andrei Vârciu, Zeno Spârchez, and Teodora Mocan. 2025. "Turning the Tide—Artificial Intelligence in the Evolving Landscape of Liver Cancer" Cancers 17, no. 18: 3003. https://doi.org/10.3390/cancers17183003
APA StyleGrapă, C., Mocan, T., Mocan, L. P., Motofelea, A., Stănciulescu, R., Crăciun, R., Vârciu, A., Spârchez, Z., & Mocan, T. (2025). Turning the Tide—Artificial Intelligence in the Evolving Landscape of Liver Cancer. Cancers, 17(18), 3003. https://doi.org/10.3390/cancers17183003