Drug Repurposing for Targeting Cancer Stem-like Cells in Glioblastoma
Simple Summary
Abstract
1. Introduction
2. Drug Repurposing in Glioblastoma
2.1. Soft Repurposing in Glioblastoma
2.2. Hard Repurposing in Glioblastoma
2.3. Glioblastoma Models for Drug Testing
3. Specific Targeting of Glioblastoma Stem-like Cells with Repurposed Drugs
3.1. Search Strategy and Selection of Studies
3.2. Identification of Repurposed Drugs Targeting Glioma Stem-like Cells
3.2.1. Repurposed Drugs Used in Patients with Diabetes
3.2.2. Repurposed Drugs Used in Patients with Hypertension
3.2.3. Antimicrobial Repurposed Drugs
Antibiotics and Semi-Synthetic Derivatives
Anthelmintics
Antifungals
Antimycobacterials
3.2.4. Repurposed Drugs Used in Patients with Central Nervous System Diseases
Antipsychotics
Other CNS Drugs
3.2.5. Other Repurposed Drugs and Broader Therapeutic Strategies for Hard Repurposing in GSCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro Oncol. 2023, 25, iv1–iv99. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Stupp, R.; Taillibert, S.; Kanner, A.A.; Kesari, S.; Steinberg, D.M.; Toms, S.A.; Taylor, L.P.; Lieberman, F.; Silvani, A.; Fink, K.L.; et al. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. JAMA 2015, 314, 2535–2543. [Google Scholar] [CrossRef]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-Y.; Paek, S.H.; Nam, D.-H.; Chang, J.-H.; Hong, Y.-K.; Kim, J.H.; Kim, O.L.; Kim, S.-H. Tumor Treating Fields plus Temozolomide for Newly Diagnosed Glioblastoma: A Sub-Group Analysis of Korean Patients in the EF-14 Phase 3 Trial. J. Neurooncol. 2020, 146, 399–406. [Google Scholar] [CrossRef]
- Khagi, S.; Kotecha, R.; Gatson, N.T.N.; Jeyapalan, S.; Abdullah, H.I.; Avgeropoulos, N.G.; Batzianouli, E.T.; Giladi, M.; Lustgarten, L.; Goldlust, S.A. Recent Advances in Tumor Treating Fields (TTFields) Therapy for Glioblastoma. Oncologist 2025, 30, oyae227. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, F.; Ali, H.; Lathia, J.D.; Chen, P. Immunotherapy for Glioblastoma: Current State, Challenges, and Future Perspectives. Cell Mol. Immunol. 2024, 21, 1354–1375. [Google Scholar] [CrossRef]
- Ng, A.T.; Steve, T.; Jamouss, K.T.; Arham, A.; Kawtharani, S.; Assi, H.I. The Challenges and Clinical Landscape of Glioblastoma Immunotherapy. CNS Oncol. 2024, 13, 2415878. [Google Scholar] [CrossRef] [PubMed]
- Oraee-Yazdani, S.; Tavanaei, R.; Rostami, F.; Hajarizadeh, A.; Mehrabadi, M.; Akhlaghpasand, M.; Tamaddon, M.; Khannejad, S.; Yazdani, K.O.; Zali, A. Suicide Gene Therapy Using Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cell Gene Delivery Vehicles in Recurrent Glioblastoma Multiforme: A First-in-Human, Dose-Escalation, Phase I Clinical Trial. J. Transl. Med. 2023, 21, 350. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Gumin, J.; Gao, F.; Hossain, A.; Shpall, E.J.; Kondo, A.; Parker Kerrigan, B.C.; Yang, J.; Ledbetter, D.; Fueyo, J.; et al. Characterization of Patient-Derived Bone Marrow Human Mesenchymal Stem Cells as Oncolytic Virus Carriers for the Treatment of Glioblastoma. J. Neurosurg. 2022, 136, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.R.; Chen, M.M.; Ene, C.; Lang, F.F.; Kan, P. Perfusion-Guided Endovascular Super-Selective Intra-Arterial Infusion for Treatment of Malignant Brain Tumors. J. Neurointerv Surg. 2022, 14, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Portnow, J.; Synold, T.W.; Badie, B.; Tirughana, R.; Lacey, S.F.; D’Apuzzo, M.; Metz, M.Z.; Najbauer, J.; Bedell, V.; Vo, T.; et al. Neural Stem Cell-Based Anticancer Gene Therapy: A First-in-Human Study in Recurrent High-Grade Glioma Patients. Clin. Cancer Res. 2017, 23, 2951–2960. [Google Scholar] [CrossRef]
- Portnow, J.; Badie, B.; Suzette Blanchard, M.; Kilpatrick, J.; Tirughana, R.; Metz, M.; Mi, S.; Tran, V.; Ressler, J.; D’Apuzzo, M.; et al. Feasibility of Intracerebrally Administering Multiple Doses of Genetically Modified Neural Stem Cells to Locally Produce Chemotherapy in Glioma Patients. Cancer Gene Ther. 2021, 28, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Liou, K.-C.; Thakur, A.; Nepali, K.; Liou, J.-P. Advancing Glioblastoma Therapy: Learning from the Past and Innovations for the Future. Cancer Lett. 2025, 617, 217601. [Google Scholar] [CrossRef]
- Singh, S.; Dey, D.; Barik, D.; Mohapatra, I.; Kim, S.; Sharma, M.; Prasad, S.; Wang, P.; Singh, A.; Singh, G. Glioblastoma at the Crossroads: Current Understanding and Future Therapeutic Horizons. Signal Transduct. Target. Ther. 2025, 10, 213. [Google Scholar] [CrossRef]
- Ben-Porath, I.; Thomson, M.W.; Carey, V.J.; Ge, R.; Bell, G.W.; Regev, A.; Weinberg, R.A. An Embryonic Stem Cell-like Gene Expression Signature in Poorly Differentiated Aggressive Human Tumors. Nat. Genet. 2008, 40, 499–507. [Google Scholar] [CrossRef]
- Singh, S.K.; Hawkins, C.; Clarke, I.D.; Squire, J.A.; Bayani, J.; Hide, T.; Henkelman, R.M.; Cusimano, M.D.; Dirks, P.B. Identification of Human Brain Tumour Initiating Cells. Nature 2004, 432, 396–401. [Google Scholar] [CrossRef]
- Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma Stem Cells Promote Radioresistance by Preferential Activation of the DNA Damage Response. Nature 2006, 444, 756–760. [Google Scholar] [CrossRef]
- Kanabur, P.; Guo, S.; Simonds, G.R.; Kelly, D.F.; Gourdie, R.G.; Verbridge, S.S.; Sheng, Z. Patient-Derived Glioblastoma Stem Cells Respond Differentially to Targeted Therapies. Oncotarget 2016, 7, 86406–86419. [Google Scholar] [CrossRef]
- Tang, J.; Amin, M.A.; Campian, J.L. Glioblastoma Stem Cells at the Nexus of Tumor Heterogeneity, Immune Evasion, and Therapeutic Resistance. Cells 2025, 14, 562. [Google Scholar] [CrossRef] [PubMed]
- Gimple, R.C.; Bhargava, S.; Dixit, D.; Rich, J.N. Glioblastoma Stem Cells: Lessons from the Tumor Hierarchy in a Lethal Cancer. Genes. Dev. 2019, 33, 591–609. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.P.; Tirosh, I.; Trombetta, J.J.; Shalek, A.K.; Gillespie, S.M.; Wakimoto, H.; Cahill, D.P.; Nahed, B.V.; Curry, W.T.; Martuza, R.L.; et al. Single-Cell RNA-Seq Highlights Intratumoral Heterogeneity in Primary Glioblastoma. Science 2014, 344, 1396–1401. [Google Scholar] [CrossRef]
- Sloan, A.R.; Silver, D.J.; Kint, S.; Gallo, M.; Lathia, J.D. Cancer Stem Cell Hypothesis 2.0 in Glioblastoma: Where Are We Now and Where Are We Going? Neuro Oncol. 2024, 26, 785–795. [Google Scholar] [CrossRef]
- Suvà, M.L.; Rheinbay, E.; Gillespie, S.M.; Patel, A.P.; Wakimoto, H.; Rabkin, S.D.; Riggi, N.; Chi, A.S.; Cahill, D.P.; Nahed, B.V.; et al. Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells. Cell 2014, 157, 580–594. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Z.; Zhao, M.; Deng, Y.; Yang, M.; Su, G.; Yang, K.; Qian, C.; Hu, X.; Liu, Y.; et al. Single-Cell Transcriptomics Revealed Subtype-Specific Tumor Immune Microenvironments in Human Glioblastomas. Front. Immunol. 2022, 13, 914236. [Google Scholar] [CrossRef]
- Bhaduri, A.; Di Lullo, E.; Jung, D.; Müller, S.; Crouch, E.E.; Espinosa, C.S.; Ozawa, T.; Alvarado, B.; Spatazza, J.; Cadwell, C.R.; et al. Outer Radial Glia-like Cancer Stem Cells Contribute to Heterogeneity of Glioblastoma. Cell Stem Cell 2020, 26, 48–63.e6. [Google Scholar] [CrossRef]
- Pichol-Thievend, C.; Anezo, O.; Pettiwala, A.M.; Bourmeau, G.; Montagne, R.; Lyne, A.-M.; Guichet, P.-O.; Deshors, P.; Ballestín, A.; Blanchard, B.; et al. VC-Resist Glioblastoma Cell State: Vessel Co-Option as a Key Driver of Chemoradiation Resistance. Nat. Commun. 2024, 15, 3602. [Google Scholar] [CrossRef]
- Chen, R.; Nishimura, M.C.; Bumbaca, S.M.; Kharbanda, S.; Forrest, W.F.; Kasman, I.M.; Greve, J.M.; Soriano, R.H.; Gilmour, L.L.; Rivers, C.S.; et al. A Hierarchy of Self-Renewing Tumor-Initiating Cell Types in Glioblastoma. Cancer Cell 2010, 17, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Reinartz, R.; Wang, S.; Kebir, S.; Silver, D.J.; Wieland, A.; Zheng, T.; Küpper, M.; Rauschenbach, L.; Fimmers, R.; Shepherd, T.M.; et al. Functional Subclone Profiling for Prediction of Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma. Clin. Cancer Res. 2017, 23, 562–574. [Google Scholar] [CrossRef]
- Calabrese, C.; Poppleton, H.; Kocak, M.; Hogg, T.L.; Fuller, C.; Hamner, B.; Oh, E.Y.; Gaber, M.W.; Finklestein, D.; Allen, M.; et al. A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell 2007, 11, 69–82. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; et al. The Drug Repurposing Hub: A next-Generation Drug Library and Information Resource. Nat. Med. 2017, 23, 405–408. [Google Scholar] [CrossRef]
- Repurposing of Medicines—The Underrated Champion of Sustainable Innovation: Policy Brief. Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2021-2807-42565-59178 (accessed on 31 July 2025).
- You, F.; Zhang, C.; Liu, X.; Ji, D.; Zhang, T.; Yu, R.; Gao, S. Drug Repositioning: Using Psychotropic Drugs for the Treatment of Glioma. Cancer Lett. 2022, 527, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Weyerhäuser, P.; Kantelhardt, S.R.; Kim, E.L. Re-Purposing Chloroquine for Glioblastoma: Potential Merits and Confounding Variables. Front. Oncol. 2018, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, Y.; Biswas, A.; Kumar, U.; Banerjee, I.; Das, S.; Maji, S.; Das, S.K.; Emdad, L.; Cavenee, W.K.; Mandal, M.; et al. Lumefantrine, an Antimalarial Drug, Reverses Radiation and Temozolomide Resistance in Glioblastoma. Proc. Natl. Acad. Sci. USA 2020, 117, 12324–12331. [Google Scholar] [CrossRef]
- Afshari, A.R.; Mollazadeh, H.; Sahebkar, A. Minocycline in Treating Glioblastoma Multiforme: Far beyond a Conventional Antibiotic. J. Oncol. 2020, 2020, 8659802. [Google Scholar] [CrossRef]
- Sotgia, F.; Ozsvari, B.; Fiorillo, M.; De Francesco, E.M.; Bonuccelli, G.; Lisanti, M.P. A Mitochondrial Based Oncology Platform for Targeting Cancer Stem Cells (CSCs): MITO-ONC-RX. Cell Cycle 2018, 17, 2091–2100. [Google Scholar] [CrossRef]
- Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The Blood-Brain Barrier and Blood-Tumour Barrier in Brain Tumours and Metastases. Nat. Rev. Cancer 2020, 20, 26–41. [Google Scholar] [CrossRef]
- Harder, B.G.; Blomquist, M.R.; Wang, J.; Kim, A.J.; Woodworth, G.F.; Winkles, J.A.; Loftus, J.C.; Tran, N.L. Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma. Front. Oncol. 2018, 8, 462. [Google Scholar] [CrossRef]
- Lee, S.; Weiss, T.; Bühler, M.; Mena, J.; Lottenbach, Z.; Wegmann, R.; Sun, M.; Bihl, M.; Augustynek, B.; Baumann, S.P.; et al. High-Throughput Identification of Repurposable Neuroactive Drugs with Potent Anti-Glioblastoma Activity. Nat. Med. 2024, 30, 3196–3208. [Google Scholar] [CrossRef] [PubMed]
- Biserova, K.; Jakovlevs, A.; Uljanovs, R.; Strumfa, I. Cancer Stem Cells: Significance in Origin, Pathogenesis and Treatment of Glioblastoma. Cells 2021, 10, 621. [Google Scholar] [CrossRef]
- Garofano, L.; Migliozzi, S.; Oh, Y.T.; D’Angelo, F.; Najac, R.D.; Ko, A.; Frangaj, B.; Caruso, F.P.; Yu, K.; Yuan, J.; et al. Pathway-Based Classification of Glioblastoma Uncovers a Mitochondrial Subtype with Therapeutic Vulnerabilities. Nat. Cancer 2021, 2, 141–156. [Google Scholar] [CrossRef]
- Johnson, K.C.; Anderson, K.J.; Courtois, E.T.; Gujar, A.D.; Barthel, F.P.; Varn, F.S.; Luo, D.; Seignon, M.; Yi, E.; Kim, H.; et al. Single-Cell Multimodal Glioma Analyses Identify Epigenetic Regulators of Cellular Plasticity and Environmental Stress Response. Nat. Genet. 2021, 53, 1456–1468. [Google Scholar] [CrossRef]
- Nikolic, A.; Maule, F.; Bobyn, A.; Ellestad, K.; Paik, S.; Marhon, S.A.; Mehdipour, P.; Lun, X.; Chen, H.-M.; Mallard, C.; et al. macroH2A2 Antagonizes Epigenetic Programs of Stemness in Glioblastoma. Nat. Commun. 2023, 14, 3062. [Google Scholar] [CrossRef]
- Green, S.B.; Byar, D.P.; Walker, M.D.; Pistenmaa, D.A.; Alexander, E.; Batzdorf, U.; Brooks, W.H.; Hunt, W.E.; Mealey, J.; Odom, G.L.; et al. Comparisons of Carmustine, Procarbazine, and High-Dose Methylprednisolone as Additions to Surgery and Radiotherapy for the Treatment of Malignant Glioma. Cancer Treat. Rep. 1983, 67, 121–132. [Google Scholar]
- Shapiro, W.R.; Green, S.B.; Burger, P.C.; Mahaley, M.S.; Selker, R.G.; VanGilder, J.C.; Robertson, J.T.; Ransohoff, J.; Mealey, J.; Strike, T.A. Randomized Trial of Three Chemotherapy Regimens and Two Radiotherapy Regimens and Two Radiotherapy Regimens in Postoperative Treatment of Malignant Glioma. Brain Tumor Cooperative Group Trial 8001. J. Neurosurg. 1989, 71, 1–9. [Google Scholar] [CrossRef]
- Medical Research Council Brain Tumor Working Party. Randomized Trial of Procarbazine, Lomustine, and Vincristine in the Adjuvant Treatment of High-Grade Astrocytoma: A Medical Research Council Trial. J. Clin. Oncol. 2001, 19, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Ntafoulis, I.; Koolen, S.L.W.; Leenstra, S.; Lamfers, M.L.M. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers 2022, 14, 3705. [Google Scholar] [CrossRef]
- Jones, D.; Whitehead, C.A.; Dinevska, M.; Widodo, S.S.; Furst, L.M.; Morokoff, A.P.; Kaye, A.H.; Drummond, K.J.; Mantamadiotis, T.; Stylli, S.S. Repurposing FDA-Approved Drugs as Inhibitors of Therapy-Induced Invadopodia Activity in Glioblastoma Cells. Mol. Cell Biochem. 2023, 478, 1251–1267. [Google Scholar] [CrossRef] [PubMed]
- Lyne, S.B.; Yamini, B. An Alternative Pipeline for Glioblastoma Therapeutics: A Systematic Review of Drug Repurposing in Glioblastoma. Cancers 2021, 13, 1953. [Google Scholar] [CrossRef]
- Alomari, S.; Zhang, I.; Hernandez, A.; Kraft, C.Y.; Raj, D.; Kedda, J.; Tyler, B. Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery-A Comprehensive Review of the Literature. Biomolecules 2021, 11, 1870. [Google Scholar] [CrossRef] [PubMed]
- Pollard, S.M.; Yoshikawa, K.; Clarke, I.D.; Danovi, D.; Stricker, S.; Russell, R.; Bayani, J.; Head, R.; Lee, M.; Bernstein, M.; et al. Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell 2009, 4, 568–580. [Google Scholar] [CrossRef]
- Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.; Zhang, W.; et al. Tumor Stem Cells Derived from Glioblastomas Cultured in bFGF and EGF More Closely Mirror the Phenotype and Genotype of Primary Tumors than Do Serum-Cultured Cell Lines. Cancer Cell 2006, 9, 391–403. [Google Scholar] [CrossRef]
- Galli, R.; Binda, E.; Orfanelli, U.; Cipelletti, B.; Gritti, A.; De Vitis, S.; Fiocco, R.; Foroni, C.; Dimeco, F.; Vescovi, A. Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma. Cancer Res. 2004, 64, 7011–7021. [Google Scholar] [CrossRef]
- Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.L.; Rich, J.N. Cancer Stem Cells in Glioblastoma. Genes. Dev. 2015, 29, 1203–1217. [Google Scholar] [CrossRef]
- Kucinska, M.; Pospieszna, J.; Tang, J.; Lisiak, N.; Toton, E.; Rubis, B.; Murias, M. The Combination Therapy Using Tyrosine Kinase Receptors Inhibitors and Repurposed Drugs to Target Patient-Derived Glioblastoma Stem Cells. Biomed. Pharmacother. 2024, 176, 116892. [Google Scholar] [CrossRef]
- Yin, J.; Ge, X.; Ding, F.; He, L.; Song, K.; Shi, Z.; Ge, Z.; Zhang, J.; Ji, J.; Wang, X.; et al. Reactivating PTEN to Impair Glioma Stem Cells by Inhibiting Cytosolic Iron-Sulfur Assembly. Sci. Transl. Med. 2024, 16, eadg5553. [Google Scholar] [CrossRef] [PubMed]
- Teng, W.; Ling, Y.; Long, N.; Cen, W.; Zhang, H.; Jiang, L.; Liu, J.; Zhou, X.; Chu, L. Repurposing Flubendazole for Glioblastoma Ferroptosis by Affecting xCT and TFRC Proteins. J. Cell Mol. Med. 2024, 28, e70188. [Google Scholar] [CrossRef]
- Jamali, F.; Lan, K.; Daniel, P.; Petrecca, K.; Sabri, S.; Abdulkarim, B. Synergistic Dual Targeting of Thioredoxin and Glutathione Systems Irrespective of P53 in Glioblastoma Stem Cells. Antioxidants 2024, 13, 1201. [Google Scholar] [CrossRef] [PubMed]
- Dogra, N.; Singh, P.; Kumar, A. A Multistep In Silico Approach Identifies Potential Glioblastoma Drug Candidates via Inclusive Molecular Targeting of Glioblastoma Stem Cells. Mol. Neurobiol. 2024, 61, 9253–9271. [Google Scholar] [CrossRef]
- You, F.; Li, C.; Zhang, S.; Zhang, Q.; Hu, Z.; Wang, Y.; Zhang, T.; Meng, Q.; Yu, R.; Gao, S. Sitagliptin Inhibits the Survival, Stemness and Autophagy of Glioma Cells, and Enhances Temozolomide Cytotoxicity. Biomed. Pharmacother. 2023, 162, 114555. [Google Scholar] [CrossRef] [PubMed]
- Roddy, A.C.; McInerney, C.E.; Flannery, T.; Healy, E.G.; Stewart, J.P.; Spence, V.J.; Walsh, J.; Salto-Tellez, M.; McArt, D.G.; Prise, K.M. Transcriptional Profiling of a Patient-Matched Cohort of Glioblastoma (IDH-Wildtype) for Therapeutic Target and Repurposing Drug Identification. Biomedicines 2023, 11, 1219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, Z.; Tang, Q.; Wang, Z.; Lu, J.; You, Y.; Wang, H. USP21 Promotes Self-Renewal and Tumorigenicity of Mesenchymal Glioblastoma Stem Cells by Deubiquitinating and Stabilizing FOXD1. Cell Death Dis. 2022, 13, 712. [Google Scholar] [CrossRef]
- Matteoni, S.; Matarrese, P.; Ascione, B.; Buccarelli, M.; Ricci-Vitiani, L.; Pallini, R.; Villani, V.; Pace, A.; Paggi, M.G.; Abbruzzese, C. Anticancer Properties of the Antipsychotic Drug Chlorpromazine and Its Synergism With Temozolomide in Restraining Human Glioblastoma Proliferation In Vitro. Front. Oncol. 2021, 11, 635472. [Google Scholar] [CrossRef] [PubMed]
- Sighel, D.; Notarangelo, M.; Aibara, S.; Re, A.; Ricci, G.; Guida, M.; Soldano, A.; Adami, V.; Ambrosini, C.; Broso, F.; et al. Inhibition of Mitochondrial Translation Suppresses Glioblastoma Stem Cell Growth. Cell Rep. 2021, 35, 109024. [Google Scholar] [CrossRef]
- Shi, J.; Dong, X.; Li, H.; Wang, H.; Jiang, Q.; Liu, L.; Wang, L.; Dong, J. Nicardipine Sensitizes Temozolomide by Inhibiting Autophagy and Promoting Cell Apoptosis in Glioma Stem Cells. Aging 2021, 13, 6820–6831. [Google Scholar] [CrossRef]
- Zirjacks, L.; Stransky, N.; Klumpp, L.; Prause, L.; Eckert, F.; Zips, D.; Schleicher, S.; Handgretinger, R.; Huber, S.M.; Ganser, K. Repurposing Disulfiram for Targeting of Glioblastoma Stem Cells: An In Vitro Study. Biomolecules 2021, 11, 1561. [Google Scholar] [CrossRef]
- Datta, S.; Sears, T.; Cortopassi, G.; Woolard, K.; Angelastro, J.M. Repurposing FDA Approved Drugs Inhibiting Mitochondrial Function for Targeting Glioma-Stem like Cells. Biomed. Pharmacother. 2021, 133, 111058. [Google Scholar] [CrossRef]
- Suzuki, S.; Yamamoto, M.; Sanomachi, T.; Togashi, K.; Sugai, A.; Seino, S.; Okada, M.; Yoshioka, T.; Kitanaka, C. Doxazosin, a Classic Alpha 1-Adrenoceptor Antagonist, Overcomes Osimertinib Resistance in Cancer Cells via the Upregulation of Autophagy as Drug Repurposing. Biomedicines 2020, 8, 273. [Google Scholar] [CrossRef]
- Vargas-Toscano, A.; Khan, D.; Nickel, A.-C.; Hewera, M.; Kamp, M.A.; Fischer, I.; Steiger, H.-J.; Zhang, W.; Muhammad, S.; Hänggi, D.; et al. Robot Technology Identifies a Parkinsonian Therapeutics Repurpose to Target Stem Cells of Glioblastoma. CNS Oncol. 2020, 9, CNS58. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Yamamoto, M.; Togashi, K.; Sanomachi, T.; Sugai, A.; Seino, S.; Yoshioka, T.; Kitanaka, C.; Okada, M. In Vitro and in Vivo Anti-Tumor Effects of Brexpiprazole, a Newly-Developed Serotonin-Dopamine Activity Modulator with an Improved Safety Profile. Oncotarget 2019, 10, 3547–3558. [Google Scholar] [CrossRef]
- Skaga, E.; Skaga, I.Ø.; Grieg, Z.; Sandberg, C.J.; Langmoen, I.A.; Vik-Mo, E.O. The Efficacy of a Coordinated Pharmacological Blockade in Glioblastoma Stem Cells with Nine Repurposed Drugs Using the CUSP9 Strategy. J. Cancer Res. Clin. Oncol. 2019, 145, 1495–1507. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mansouri, S.; Burrell, K.; Li, M.; Mamatjan, Y.; Liu, J.; Nejad, R.; Kumar, S.; Jalali, S.; Singh, S.K.; et al. Ketoconazole and Posaconazole Selectively Target HK2-Expressing Glioblastoma Cells. Clin. Cancer Res. 2019, 25, 844–855. [Google Scholar] [CrossRef]
- Mulkearns-Hubert, E.E.; Torre-Healy, L.A.; Silver, D.J.; Eurich, J.T.; Bayik, D.; Serbinowski, E.; Hitomi, M.; Zhou, J.; Przychodzen, B.; Zhang, R.; et al. Development of a Cx46 Targeting Strategy for Cancer Stem Cells. Cell Rep. 2019, 27, 1062–1072.e5. [Google Scholar] [CrossRef]
- Dong, Y.; Furuta, T.; Sabit, H.; Kitabayashi, T.; Jiapaer, S.; Kobayashi, M.; Ino, Y.; Todo, T.; Teng, L.; Hirao, A.; et al. Identification of Antipsychotic Drug Fluspirilene as a Potential Anti-Glioma Stem Cell Drug. Oncotarget 2017, 8, 111728–111741. [Google Scholar] [CrossRef]
- Oliva, C.R.; Zhang, W.; Langford, C.; Suto, M.J.; Griguer, C.E. Repositioning Chlorpromazine for Treating Chemoresistant Glioma through the Inhibition of Cytochrome c Oxidase Bearing the COX4-1 Regulatory Subunit. Oncotarget 2017, 8, 37568–37583. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, N.; Li, H.; Liu, S.; Chen, X.; Yu, S.; Wu, N.; Bian, X.-W.; Shen, H.-Y.; Li, C.; et al. Promoting Oligodendroglial-Oriented Differentiation of Glioma Stem Cell: A Repurposing of Quetiapine for the Treatment of Malignant Glioma. Oncotarget 2017, 8, 37511–37524. [Google Scholar] [CrossRef]
- Jiang, W.; Finniss, S.; Cazacu, S.; Xiang, C.; Brodie, Z.; Mikkelsen, T.; Poisson, L.; Shackelford, D.B.; Brodie, C. Repurposing Phenformin for the Targeting of Glioma Stem Cells and the Treatment of Glioblastoma. Oncotarget 2016, 7, 56456–56470. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Michiue, H.; Yamada, H.; Takata, K.; Nakayama, H.; Wei, F.-Y.; Fujimura, A.; Tazawa, H.; Asai, A.; Ogo, N.; et al. Fluvoxamine, an Anti-Depressant, Inhibits Human Glioblastoma Invasion by Disrupting Actin Polymerization. Sci. Rep. 2016, 6, 23372. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Okada, M.; Kuramoto, K.; Takeda, H.; Sakaki, H.; Watarai, H.; Sanomachi, T.; Seino, S.; Yoshioka, T.; Kitanaka, C. Aripiprazole, an Antipsychotic and Partial Dopamine Agonist, Inhibits Cancer Stem Cells and Reverses Chemoresistance. Anticancer. Res. 2016, 36, 5153–5161. [Google Scholar] [CrossRef] [PubMed]
- Assad Kahn, S.; Costa, S.L.; Gholamin, S.; Nitta, R.T.; Dubois, L.G.; Fève, M.; Zeniou, M.; Coelho, P.L.C.; El-Habr, E.; Cadusseau, J.; et al. The Anti-Hypertensive Drug Prazosin Inhibits Glioblastoma Growth via the PKCδ-Dependent Inhibition of the AKT Pathway. EMBO Mol. Med. 2016, 8, 511–526. [Google Scholar] [CrossRef]
- Lamb, R.; Ozsvari, B.; Lisanti, C.L.; Tanowitz, H.B.; Howell, A.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Antibiotics That Target Mitochondria Effectively Eradicate Cancer Stem Cells, across Multiple Tumor Types: Treating Cancer like an Infectious Disease. Oncotarget 2015, 6, 4569–4584. [Google Scholar] [CrossRef]
- Gritti, M.; Würth, R.; Angelini, M.; Barbieri, F.; Peretti, M.; Pizzi, E.; Pattarozzi, A.; Carra, E.; Sirito, R.; Daga, A.; et al. Metformin Repositioning as Antitumoral Agent: Selective Antiproliferative Effects in Human Glioblastoma Stem Cells, via Inhibition of CLIC1-Mediated Ion Current. Oncotarget 2014, 5, 11252–11268. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J. Metformin: Therapeutic Profile in the Treatment of Type 2 Diabetes. Diabetes Obes. Metab. 2024, 26 (Suppl. S3), 3–19. [Google Scholar] [CrossRef]
- Setti, M.; Savalli, N.; Osti, D.; Richichi, C.; Angelini, M.; Brescia, P.; Fornasari, L.; Carro, M.S.; Mazzanti, M.; Pelicci, G. Functional Role of CLIC1 Ion Channel in Glioblastoma-Derived Stem/Progenitor Cells. J. Natl. Cancer Inst. 2013, 105, 1644–1655. [Google Scholar] [CrossRef]
- Würth, R.; Pattarozzi, A.; Gatti, M.; Bajetto, A.; Corsaro, A.; Parodi, A.; Sirito, R.; Massollo, M.; Marini, C.; Zona, G.; et al. Metformin Selectively Affects Human Glioblastoma Tumor-Initiating Cell Viability: A Role for Metformin-Induced Inhibition of Akt. Cell Cycle 2013, 12, 145–156. [Google Scholar] [CrossRef]
- Sato, A.; Sunayama, J.; Okada, M.; Watanabe, E.; Seino, S.; Shibuya, K.; Suzuki, K.; Narita, Y.; Shibui, S.; Kayama, T.; et al. Glioma-Initiating Cell Elimination by Metformin Activation of FOXO3 via AMPK. Stem Cells Transl. Med. 2012, 1, 811–824. [Google Scholar] [CrossRef]
- Barbieri, F.; Würth, R.; Pattarozzi, A.; Verduci, I.; Mazzola, C.; Cattaneo, M.G.; Tonelli, M.; Solari, A.; Bajetto, A.; Daga, A.; et al. Inhibition of Chloride Intracellular Channel 1 (CLIC1) as Biguanide Class-Effect to Impair Human Glioblastoma Stem Cell Viability. Front. Pharmacol. 2018, 9, 899. [Google Scholar] [CrossRef]
- Yoon, W.-S.; Chang, J.H.; Kim, J.H.; Kim, Y.J.; Jung, T.-Y.; Yoo, H.; Kim, S.-H.; Ko, Y.-C.; Nam, D.-H.; Kim, T.M.; et al. Efficacy and Safety of Metformin plus Low-Dose Temozolomide in Patients with Recurrent or Refractory Glioblastoma: A Randomized, Prospective, Multicenter, Double-Blind, Controlled, Phase 2 Trial (KNOG-1501 Study). Discov. Oncol. 2023, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Karasik, A.; Aschner, P.; Katzeff, H.; Davies, M.J.; Stein, P.P. Sitagliptin, a DPP-4 Inhibitor for the Treatment of Patients with Type 2 Diabetes: A Review of Recent Clinical Trials. Curr. Med. Res. Opin. 2008, 24, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.E.; Bellamy, M.C. Antihypertensive Drugs. BJA Educ. 2015, 15, 280–285. [Google Scholar] [CrossRef]
- Pepine, C. Nicardipine, a New Calcium Channel Blocker: Role for Vascular Selectivity. Clin. Cardiol. 1989, 12, 240–246. [Google Scholar] [CrossRef]
- Li, H.; Xu, T.-Y.; Li, Y.; Chia, Y.-C.; Buranakitjaroen, P.; Cheng, H.-M.; Van Huynh, M.; Sogunuru, G.P.; Tay, J.C.; Wang, T.-D.; et al. Role of A1-Blockers in the Current Management of Hypertension. J. Clin. Hypertens. 2022, 24, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, I.; Jehle, J.; Staudacher, K.; Pledl, H.-W.; Lemke, D.; Schweizer, P.A.; Becker, R.; Katus, H.A.; Thomas, D. HERG K+ Channel-Dependent Apoptosis and Cell Cycle Arrest in Human Glioblastoma Cells. PLoS ONE 2014, 9, e88164. [Google Scholar] [CrossRef] [PubMed]
- Porporato, P.E.; Filigheddu, N.; Pedro, J.M.B.-S.; Kroemer, G.; Galluzzi, L. Mitochondrial Metabolism and Cancer. Cell Res. 2018, 28, 265–280. [Google Scholar] [CrossRef]
- Fontaine, E. Metformin-Induced Mitochondrial Complex I Inhibition: Facts, Uncertainties, and Consequences. Front. Endocrinol. 2018, 9, 753. [Google Scholar] [CrossRef]
- Marziali, G.; Signore, M.; Buccarelli, M.; Grande, S.; Palma, A.; Biffoni, M.; Rosi, A.; D’Alessandris, Q.G.; Martini, M.; Larocca, L.M.; et al. Metabolic/Proteomic Signature Defines Two Glioblastoma Subtypes With Different Clinical Outcome. Sci. Rep. 2016, 6, 21557. [Google Scholar] [CrossRef]
- Jaruratanasirikul, S.; Hortiwakul, R.; Tantisarasart, T.; Phuenpathom, N.; Tussanasunthornwong, S. Distribution of Azithromycin into Brain Tissue, Cerebrospinal Fluid, and Aqueous Humor of the Eye. Antimicrob. Agents Chemother. 1996, 40, 825–826. [Google Scholar] [CrossRef]
- Dotevall, L.; Hagberg, L. Penetration of Doxycycline into Cerebrospinal Fluid in Patients Treated for Suspected Lyme Neuroborreliosis. Antimicrob. Agents Chemother. 1989, 33, 1078–1080. [Google Scholar] [CrossRef]
- Kumar, R.; Basu, A.; Sinha, S.; Das, M.; Tripathi, P.; Jain, A.; Kumar, C.; Atam, V.; Khan, S.; Singh, A.S. Role of Oral Minocycline in Acute Encephalitis Syndrome in India-a Randomized Controlled Trial. BMC Infect. Dis. 2016, 16, 67. [Google Scholar] [CrossRef]
- Schultz, C.W.; Nevler, A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines 2022, 10, 3249. [Google Scholar] [CrossRef]
- Téllez-Girón, E.; Ramos, M.C.; Dufour, L.; Montante, M.; Tellez, E.; Rodríguez, J.; Gómez Méndez, F.; Mireles, E. Treatment of Neurocysticercosis with Flubendazole. Am. J. Trop. Med. Hyg. 1984, 33, 627–631. [Google Scholar] [CrossRef]
- Nixon, G.L.; McEntee, L.; Johnson, A.; Farrington, N.; Whalley, S.; Livermore, J.; Natal, C.; Washbourn, G.; Bibby, J.; Berry, N.; et al. Repurposing and Reformulation of the Antiparasitic Agent Flubendazole for Treatment of Cryptococcal Meningoencephalitis, a Neglected Fungal Disease. Antimicrob. Agents Chemother. 2018, 62, e01909-17. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Arbiser, J.L.; Moschella, S.L. Clofazimine: A Review of Its Medical Uses and Mechanisms of Action. J. Am. Acad. Dermatol. 1995, 32, 241–247. [Google Scholar] [CrossRef]
- Liang, Z.; Liao, W.; Chen, Q.; Li, H.; Ye, M.; Zou, J.; Deng, G.; Zhang, P. Pharmacokinetics of Antituberculosis Drugs in Plasma and Cerebrospinal Fluid in a Patient with Pre-Extensive Drug Resistant Tuberculosis Meningitis. Infect. Drug Resist. 2023, 16, 1669–1676. [Google Scholar] [CrossRef]
- Chu, S.H.; Lee, Y.J.; Lee, E.S.; Geng, Y.; Wang, X.S.; Cleeland, C.S. Current Use of Drugs Affecting the Central Nervous System for Chemotherapy-Induced Peripheral Neuropathy in Cancer Patients: A Systematic Review. Support. Care Cancer 2015, 23, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, Y.; Liu, X.; Wang, Z.; Zhang, C.; Wu, F.; Jiang, H.; Zhang, W.; Bao, Z.; Wang, Y.; et al. ALDH1A3 Induces Mesenchymal Differentiation and Serves as a Predictor for Survival in Glioblastoma. Cell Death Dis. 2018, 9, 1190. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, C.J.; Altschuler, G.; Jeong, J.; Strømme, K.K.; Stangeland, B.; Murrell, W.; Grasmo-Wendler, U.-H.; Myklebost, O.; Helseth, E.; Vik-Mo, E.O.; et al. Comparison of Glioma Stem Cells to Neural Stem Cells from the Adult Human Brain Identifies Dysregulated Wnt- Signaling and a Fingerprint Associated with Clinical Outcome. Exp. Cell Res. 2013, 319, 2230–2243. [Google Scholar] [CrossRef]
- Muench, J.; Hamer, A.M. Adverse Effects of Antipsychotic Medications. Am. Fam. Physician 2010, 81, 617–622. [Google Scholar]
- Leucht, S.; Corves, C.; Arbter, D.; Engel, R.R.; Li, C.; Davis, J.M. Second-Generation versus First-Generation Antipsychotic Drugs for Schizophrenia: A Meta-Analysis. Lancet 2009, 373, 31–41. [Google Scholar] [CrossRef]
- Kapur, S.; Zipursky, R.; Jones, C.; Remington, G.; Houle, S. Relationship between Dopamine D(2) Occupancy, Clinical Response, and Side Effects: A Double-Blind PET Study of First-Episode Schizophrenia. Am. J. Psychiatry 2000, 157, 514–520. [Google Scholar] [CrossRef]
- Kearns, B.; Cooper, K.; Cantrell, A.; Thomas, C. Schizophrenia Treatment with Second-Generation Antipsychotics: A Multi-Country Comparison of the Costs of Cardiovascular and Metabolic Adverse Events and Weight Gain. Neuropsychiatr. Dis. Treat. 2021, 17, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Maeda, K.; Suzuki, M.; Hirose, T.; Futamura, T.; McQuade, R.D. Discovery Research and Development History of the Dopamine D2 Receptor Partial Agonists, Aripiprazole and Brexpiprazole. Neuropsychopharmacol. Rep. 2021, 41, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Dodds, M.G.; Doyle, E.B.; Reiersen, A.M.; Brown, F.; Rayner, C.R. Fluvoxamine for the Treatment of COVID-19. Lancet Glob. Health 2022, 10, e332. [Google Scholar] [CrossRef]
- Wright, C.; Moore, R.D. Disulfiram Treatment of Alcoholism. Am. J. Med. 1990, 88, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A Novel Repurposed Drug for Cancer Therapy. Cancer Chemother. Pharmacol. 2021, 87, 159–172. [Google Scholar] [CrossRef]
- Zeng, M.; Wu, B.; Wei, W.; Jiang, Z.; Li, P.; Quan, Y.; Hu, X. Disulfiram: A Novel Repurposed Drug for Cancer Therapy. Chin. Med. J. 2024, 137, 1389–1398. [Google Scholar] [CrossRef]
- Triscott, J.; Lee, C.; Hu, K.; Fotovati, A.; Berns, R.; Pambid, M.; Luk, M.; Kast, R.E.; Kong, E.; Toyota, E.; et al. Disulfiram, a Drug Widely Used to Control Alcoholism, Suppresses the Self-Renewal of Glioblastoma and over-Rides Resistance to Temozolomide. Oncotarget 2012, 3, 1112–1123. [Google Scholar] [CrossRef]
- Huang, J.; Campian, J.L.; Gujar, A.D.; Tran, D.D.; Lockhart, A.C.; DeWees, T.A.; Tsien, C.I.; Kim, A.H. A Phase I Study to Repurpose Disulfiram in Combination with Temozolomide to Treat Newly Diagnosed Glioblastoma after Chemoradiotherapy. J. Neurooncol. 2016, 128, 259–266. [Google Scholar] [CrossRef]
- Huang, J.; Campian, J.L.; Gujar, A.D.; Tsien, C.; Ansstas, G.; Tran, D.D.; DeWees, T.A.; Lockhart, A.C.; Kim, A.H. Final Results of a Phase I Dose-Escalation, Dose-Expansion Study of Adding Disulfiram with or without Copper to Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J. Neurooncol. 2018, 138, 105–111. [Google Scholar] [CrossRef]
- Huang, J.; Chaudhary, R.; Cohen, A.L.; Fink, K.; Goldlust, S.; Boockvar, J.; Chinnaiyan, P.; Wan, L.; Marcus, S.; Campian, J.L. A Multicenter Phase II Study of Temozolomide plus Disulfiram and Copper for Recurrent Temozolomide-Resistant Glioblastoma. J. Neurooncol. 2019, 142, 537–544. [Google Scholar] [CrossRef]
- Skrott, Z.; Majera, D.; Gursky, J.; Buchtova, T.; Hajduch, M.; Mistrik, M.; Bartek, J. Disulfiram’s Anti-Cancer Activity Reflects Targeting NPL4, Not Inhibition of Aldehyde Dehydrogenase. Oncogene 2019, 38, 6711–6722. [Google Scholar] [CrossRef] [PubMed]
- Lun, X.; Wells, J.C.; Grinshtein, N.; King, J.C.; Hao, X.; Dang, N.-H.; Wang, X.; Aman, A.; Uehling, D.; Datti, A.; et al. Disulfiram When Combined with Copper Enhances the Therapeutic Effects of Temozolomide for the Treatment of Glioblastoma. Clin. Cancer Res. 2016, 22, 3860–3875. [Google Scholar] [CrossRef]
- Liu, C.-C.; Wu, C.-L.; Lin, M.-X.; Sze, C.-I.; Gean, P.-W. Disulfiram Sensitizes a Therapeutic-Resistant Glioblastoma to the TGF-β Receptor Inhibitor. Int. J. Mol. Sci. 2021, 22, 10496. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Campian, J.L.; DeWees, T.A.; Skrott, Z.; Mistrik, M.; Johanns, T.M.; Ansstas, G.; Butt, O.; Leuthardt, E.; Dunn, G.P.; et al. A Phase 1/2 Study of Disulfiram and Copper With Concurrent Radiation Therapy and Temozolomide for Patients With Newly Diagnosed Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Werlenius, K.; Kinhult, S.; Solheim, T.S.; Magelssen, H.; Löfgren, D.; Mudaisi, M.; Hylin, S.; Bartek, J.; Strandéus, M.; Lindskog, M.; et al. Effect of Disulfiram and Copper Plus Chemotherapy vs Chemotherapy Alone on Survival in Patients With Recurrent Glioblastoma: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e234149. [Google Scholar] [CrossRef]
- By the 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults. J. Am. Geriatr. Soc. 2019, 67, 674–694. [Google Scholar] [CrossRef]
- Yahia, Z.; Yahia, A.; Abdelaziz, T. N-Acetylcysteine Clinical Applications. Cureus 2024, 16, e72252. [Google Scholar] [CrossRef]
- Chaffman, M.; Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Auranofin. A Preliminary Review of Its Pharmacological Properties and Therapeutic Use in Rheumatoid Arthritis. Drugs 1984, 27, 378–424. [Google Scholar] [CrossRef]
- Kast, R.E.; Boockvar, J.A.; Brüning, A.; Cappello, F.; Chang, W.-W.; Cvek, B.; Dou, Q.P.; Duenas-Gonzalez, A.; Efferth, T.; Focosi, D.; et al. A Conceptually New Treatment Approach for Relapsed Glioblastoma: Coordinated Undermining of Survival Paths with Nine Repurposed Drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget 2013, 4, 502–530. [Google Scholar] [CrossRef]
- Kast, R.E.; Karpel-Massler, G.; Halatsch, M.-E. CUSP9* Treatment Protocol for Recurrent Glioblastoma: Aprepitant, Artesunate, Auranofin, Captopril, Celecoxib, Disulfiram, Itraconazole, Ritonavir, Sertraline Augmenting Continuous Low Dose Temozolomide. Oncotarget 2014, 5, 8052–8082. [Google Scholar] [CrossRef] [PubMed]
- Halatsch, M.-E.; Kast, R.E.; Karpel-Massler, G.; Mayer, B.; Zolk, O.; Schmitz, B.; Scheuerle, A.; Maier, L.; Bullinger, L.; Mayer-Steinacker, R.; et al. A Phase Ib/IIa Trial of 9 Repurposed Drugs Combined with Temozolomide for the Treatment of Recurrent Glioblastoma: CUSP9v3. Neurooncol. Adv. 2021, 3, vdab075. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Li, X.; Zhang, X. Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers. Int. J. Mol. Sci. 2024, 25, 3040. [Google Scholar] [CrossRef] [PubMed]
- Anwer, M.S.; Abdel-Rasol, M.A.; El-Sayed, W.M. Emerging Therapeutic Strategies in Glioblastsoma: Drug Repurposing, Mechanisms of Resistance, Precision Medicine, and Technological Innovations. Clin. Exp. Med. 2025, 25, 117. [Google Scholar] [CrossRef]
- Correia, C.D.; Calado, S.M.; Matos, A.; Esteves, F.; De Sousa-Coelho, A.L.; Campinho, M.A.; Fernandes, M.T. Advancing Glioblastoma Research with Innovative Brain Organoid-Based Models. Cells 2025, 14, 292. [Google Scholar] [CrossRef]
- Fawal, M.-A.; Jungas, T.; Davy, A. Inhibition of DHFR Targets the Self-Renewing Potential of Brain Tumor Initiating Cells. Cancer Lett. 2021, 503, 129–137. [Google Scholar] [CrossRef]
Cancer | Treatment | Targeted Cells |
---|---|---|
Glioblastoma | Drug | Cancer stem cells |
Glioma | Repurposing or repurposed | Glioma stem cells |
GBM | Repositioning or repositioned | CSC or GSC |
Author, Year [Ref] | Repurposed Drug(s) | Main Molecular Target(s) Identified | Model(s) Used for Drug Testing |
---|---|---|---|
Kucinska, 2024 [58] | Metformin, Minocycline, Chlorpromazine 1, Disulfiram | MT-CO1 1 | GBM patient-derived cell line U3042 |
Yin, 2024 [59] | N-acetylcysteine | PTEN | GBM patient-derived cell lines; MGG8 and T3264 GBM cells transplanted intracranially into mice |
Teng, 2024 [60] | Flubendazole | p53, TFRC, DMT1, xCT, FHC, GPX4 | GBM U251 and LN229 cell lines |
Jamali, 2024 [61] | Auranofin | TrxR1, AKT, p53, p21, PARP1 | GBM patient-derived cell lines (OPK161, OPK257, and OPK49) |
Dogra, 2024 [62] | Drospirenone, Eltrombopag | RPA3, BLVRA, PSMA2, PSMC2, HUS1 | In silico screening |
You, 2023 [63] | Sitagliptin | AMPK-ULK1-Beclin1 signaling pathway | Established GBM cell lines (U87, U251, T98G, A172, and LN229); GBM patient-derived cell lines (GBM−19, −23, GSC-G, -F, -Y, and -Z); U87- and patient-derived GBM cells xenografted intracranially in mice |
Roddy, 2023 [64] | Rosiglitazone, Nizatidine, Pantoprazole, Tolmetin | - | Bioinformatics-based approach |
Zhang, 2022 [65] | Disulfiram | USP21, FOXD1 | GBM cells isolated from primary tumors or patient-derived GBM xenografts; GBM patient-derived cells implanted intracranially in mice |
Matteoni, 2021 [66] | Chlorpromazine | ALDH1A3 | GBM patient-derived cell lines (TS#1, TS#83, and TS#163) |
Sighel, 2021 [67] | Quinupristin/Dalfopristin | OXPHOS | GBM patient-derived cell lines |
Shi, 2021 [68] | Nicardipine | LC3, p62, mTOR | GBM patient-derived cell lines (SU4 and SU5); orthotopically xenografted mice |
Zirjacks, 2021 [69] | Disulfiram | - | GBM patient-derived cell lines (LK7 and LK17) |
Datta, 2021 [70] | Trifluoperazine, Pyrvinium pamoate | - | GBM patient-derived cell lines (0827 and 0923) |
Suzuki, 2020 [71] | Doxazosin | LC3, p62 | GBM patient-derived cell line (GS-Y01) |
Vargas-Toscano, 2020 [72] | Trihexyphenidyl | - | GBM cell line HSR-GBM1 (GBM1) |
Suzuki, 2019 [73] | Brexpiprazole | - | GBM patient-derived cell line (GSY03) |
Skaga, 2019 [74] | Aprepitant, Auranofin, Captopril, Celecoxib, Disulfiram, Itraconazole, Minocycline, Quetiapine, Sertraline | Wnt activity | GBM patient-derived cell lines |
Agnihotri, 2019 [75] | Ketoconazole, Posaconazole | HK2 | GBM patient-derived cell lines (GSC8–18, GSC7–2, GBM8, and GSC30); mice intracranially transplanted with GSCs |
Mulkearns-Hubert, 2019 [76] | Clofazimine | Cx46 | Established GBM xenografts T4121, T3691, and T387; mice transplanted subcutaneously with GBM cells |
Dong, 2017 [77] | Fluspirilene | STAT3 | GBM patient-derived cell lines (TGS01, TGS04, and KGS01); intracranial transplantation of TGS04 cells in mice |
Oliva, 2017 [78] | Chlorpromazine | MT-COX activity | TMZ-sensitive U251 cells and TMZ-resistant cells derived from U251 cells (UTMZ); patient-derived GBM xenograft cell lines (J × 12, J × 39) |
Wang, 2017 [79] | Quetiapine | Wnt/β-catenin signaling pathway | Murine GBM cell line GL261; GL261 cells transplanted subcutaneously into mice and in orthotopic xenografts |
Jiang, 2016 [80] | Phenformin | HMGA2 | GBM patient-derived cell lines (HF2414, HF2355, HF2354, and HF2587); mice orthotopically transplanted with GBM cells |
Hayashi, 2016 [81] | Fluvoxamine | FAK and AKT/mTOR signaling | GBM patient-derived cell lines; orthotopically xenografted mice |
Suzuki, 2016 [82] | Aripiprazole | - | GBM patient-derived cell line (GS-Y03) |
Assad Kahn, 2016 [83] | Prazosin | AKT pathway | GBM patient-derived cell lines (TG1, TG16, GBM5, and GBM44) |
Lamb, 2015 [84] | Doxycycline, Azithromycin, Tigecycline, Pyrvinium pamoate | - | GBM cell line U87 |
Gritti, 2014 [85] | Metformin | CLIC1 | GBM patient-derived cells |
Drug | ATC Code 1 |
---|---|
A—Alimentary tract and metabolism | |
Aprepitant | A04AD12 |
Metformin | A10BA02 |
Nizatidine | A02BA04 |
Pantoprazole | A02BC02 |
Phenformin | A10BA01 |
Rosiglitazone | A10BD04 |
Sitagliptin | A10BH01 |
B—Blood and Blood-Forming Organs | |
Eltrombopag | B02BX05 |
C—Cardiovascular system | |
Captopril | C09AA01 |
Doxazosin | C02CA04 |
Nicardipine | C08CA04 |
Prazosin | C02CA01 |
G—Genito-urinary system and sex hormones | |
Drospirenone | G03AA12 |
J—Anti-infective for systemic use | |
Azithromycin | J01FA10 |
Clofazimine | J04BA01 |
Doxycycline | J01AA02 |
Itraconazole | J02AC02 |
Ketoconazole | J02AB02 |
Minocycline | J01AA08 |
Posaconazole | J02AC04 |
Quinupristin/Dalfopristin | J01FG02 |
Tigecycline | J01AA12 |
M—Musculo-skeletal system | |
Auranofin | M01CB03 |
Celecoxib | M01AH01 |
Tolmetin | M01AB03 |
N—Nervous system | |
Aripiprazole | N05AX12 |
Brexpiprazole | N05AX16 |
Chlorpromazine | N05AA01 |
Disulfiram | N07BB01 |
Fluspirilene | N05AG01 |
Fluvoxamine | N06AB08 |
Quetiapine | N05AH04 |
Sertraline | N06AB06 |
Trifluoperazine | N05AB06 |
Trihexyphenidyl | N04AA01 |
P—Antiparasitic products, insecticides, and repellents | |
Flubendazole | P02CA05 |
Pyrvinium pamoate | P02CX01 |
R—Respiratory system | |
Acetylcysteine | R05CB01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Sousa-Coelho, A.L.; Solaković, B.; Bento, A.D.; Fernandes, M.T. Drug Repurposing for Targeting Cancer Stem-like Cells in Glioblastoma. Cancers 2025, 17, 2999. https://doi.org/10.3390/cancers17182999
De Sousa-Coelho AL, Solaković B, Bento AD, Fernandes MT. Drug Repurposing for Targeting Cancer Stem-like Cells in Glioblastoma. Cancers. 2025; 17(18):2999. https://doi.org/10.3390/cancers17182999
Chicago/Turabian StyleDe Sousa-Coelho, Ana Luísa, Brigita Solaković, Alexandra Diogo Bento, and Mónica Teotónio Fernandes. 2025. "Drug Repurposing for Targeting Cancer Stem-like Cells in Glioblastoma" Cancers 17, no. 18: 2999. https://doi.org/10.3390/cancers17182999
APA StyleDe Sousa-Coelho, A. L., Solaković, B., Bento, A. D., & Fernandes, M. T. (2025). Drug Repurposing for Targeting Cancer Stem-like Cells in Glioblastoma. Cancers, 17(18), 2999. https://doi.org/10.3390/cancers17182999