The Role of Tumor-Infiltrating B Lymphocytes in Colorectal Cancer Patients: A Systematic Review of Immune Landscape Evolution
Simple Summary
Abstract
1. Introduction
1.1. Background
1.2. Study Rationale
2. Materials and Methods
2.1. Systematic Search Strategy
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
2.4. PICO Methodology
2.5. Assessment of Methodological Quality
3. Results
3.1. Study Selection and Characteristics
3.2. Risk of Bias Assessment
3.3. Subsets of Tumor-Infiltrating B Lymphocytes
3.3.1. Plasma Cells
3.3.2. Immature Plasma Cell Population Alpha (iMPA)
3.3.3. Memory B Cells
3.3.4. Class-Switched Memory B-Cells
3.3.5. Naïve B Cells
3.4. Identification Methods of Tumor-Infiltrating B Lymphocytes
3.5. The Prognostic Role of TIBLs on Colorectal Cancer Patients
3.6. Relationship Between TIBLs and Clinicopathological Parameters of Colorectal Cancer
3.7. Impact of TIBLs on Immunotherapy
3.8. Relationship Between B Cells with Other Immune or Non-Immune Cells of the Tumor Microenvironment or Tumoral Markers
3.9. Spatial Distribution of the TIBLs
3.10. Neoadjuvant Treatment and Its Influence on B Cells in the Immune Tumor Microenvironment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TIL | Tumor-infiltrating lymphocyte |
TIBL | Tumor-infiltrating B lymphocyte |
TME | Tumor microenvironment |
CAR-T | Chimeric antigen receptor T |
CD | Cluster of differentiation |
n.r. | Not reported |
Ns | Not statistically significant |
IHC | Immunohistochemistry |
RNA | Ribonucleic acid |
ATAC | Assay for Transposase-Accessible Chromatin |
TMA | Tissue microarrays |
IF | Immunofluorescence |
HE | Hematoxylin-eosin |
CRC | Colorectal cancer |
IGKC | Immunoglobulin Kappa constant |
TAL | Tumor associated lymphocyte |
TLS | Tertiary lymphoid structure |
MSI | Microsatellite instability |
OS | Overall survival |
DFS | Disease free survival |
CSS | Cancer-specific survival |
References
- Morgan:, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Finn, O.J. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer. Ann. Oncol. 2012, 23, VIII6–VIII9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, J.; Chen, D.; Shen, M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front. Med. 2022, 9, 869010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Locy, H.; Verhulst, S.; Cools, W.; Waelput, W.; Brock, S.; Cras, L.; Schiettecatte, A.; Jonckheere, J.; van Grunsven, L.A.; Vanhoeij, M.; et al. Assessing Tumor-Infiltrating Lymphocytes in Breast Cancer: A Proposal for Combining Immunohistochemistry and Gene Expression Analysis to Refine Scoring. Front. Immunol. 2022, 13, 794175. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dahlin, A.M.; Henriksson, M.L.; Van Guelpen, B.; Stenling, R.; Oberg, A.; Rutegård, J.; Palmqvist, R. Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor. Mod. Pathol. 2011, 24, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Zhou, Y.; Ye, Z.; Xiong, J.; Lan, H.; Wang, F. Tumor-Infiltrating Lymphocytes in Colorectal Cancer: The Fundamental Indication and Application on Immunotherapy. Front. Immunol. 2022, 12, 808964. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruni, D.; Angell, H.K.; Galon, J. The Immune Contexture and Immunoscore in Cancer Prognosis and Therapeutic Efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Al-Shibli, K.I.; Donnem, T.; Al-Saad, S.; Persson, M.; Bremnes, R.M.; Busund, L.T. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin. Cancer Res. 2008, 14, 5220–5227. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Liu, Y.; Liu, C.; Cui, A.; Liang, Z.; Wang, G.; Peng, H.; Cui, L.; Li, C. Tumour-infiltrating inflammation and prognosis in colorectal cancer: Systematic review and meta-analysis. Br. J. Cancer 2014, 110, 1595–1605. [Google Scholar] [CrossRef]
- Elomaa, H.; Ahtiainen, M.; Väyrynen, S.A.; Ogino, S.; Nowak, J.A.; Friman, M.; Helminen, O.; Wirta, E.V.; Seppälä, T.T.; Böhm, J.; et al. Prognostic significance of spatial and density analysis of T lymphocytes in colorectal cancer. Br. J. Cancer 2022, 127, 514–523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wagner, S.; Mullins, C.S.; Linnebacher, M. Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J. Gastroenterol. 2018, 24, 5418–5432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, K.T.; Chen, B.; Liu, Y.Y.; Lan, H.U.; Yan, J.P. Monoclonal antibodies and chimeric antigen receptor (CAR) T cells in the treatment of colorectal cancer. Cancer Cell Int. 2021, 21, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, J.; Shu, W.; Yao, Q. Research advances on TIL therapy for colorectal cancer. Clin. Transl. Oncol. 2024, 26, 2917–2923. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, H.C.; Gustavus, D.; Schwanemann, J.; Dammermann, W.; Lippek, F.; Weylandt, K.H.; Hoffmeister, H.; Gretschel, S. Generation of colon cancer-derived tumor-infiltrating T cells (TILs) for adoptive cell therapy. Cytotherapy 2023, 25, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Chuang, L.; Qifeng, J.; Shaolei, Y. The tumor immune microenvironment and T-cell-related immunotherapies in colorectal cancer. Discov. Oncol. 2024, 15, 244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meyiah, A.; Khan, F.I.; Alfaki, D.A.; Murshed, K.; Raza, A.; Elkord, E. The colorectal cancer microenvironment: Preclinical progress in identifying targets for cancer therapy. Transl. Oncol. 2025, 53, 102307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peddareddigari, V.G.; Wang, D.; Dubois, R.N. The tumor microenvironment in colorectal carcinogenesis. Cancer Microenviron. 2010, 3, 149–166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zafari, N.; Khosravi, F.; Rezaee, Z.; Esfandyari, S.; Bahiraei, M.; Bahramy, A.; Ferns, G.A.; Avan, A. The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches. J. Clin. Lab. Anal. 2022, 36, e24585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, Z.; Wieder, T.; Mauerer, B.; Schäfer, L.; Kesselring, R.; Braumüller, H. T Cells in Colorectal Cancer: Unravelling the Function of Different T Cell Subsets in the Tumor Microenvironment. Int. J. Mol. Sci. 2023, 24, 11673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alwers, E.; Kather, J.N.; Kloor, M.; Brobeil, A.; Tagscherer, K.E.; Roth, W.; Echle, A.; Amitay, E.L.; Chang-Claude, J.; Brenner, H.; et al. Validation of the prognostic value of CD3 and CD8 cell densities analogous to the Immunoscore® by stage and location of colorectal cancer: An independent patient cohort study. J. Pathol. Clin. Res. 2023, 9, 129–136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbosa, A.M.; Martinho, O.; Nogueira, R.; Campos, J.; Lobo, L.; Pinto, H.; Longatto-Filho, A.; Castro, A.G.; Martins, S.F.; Torrado, E. Increased CD3+, CD8+, or FoxP3+ T Lymphocyte Infiltrations Are Associated with the Pathogenesis of Colorectal Cancer but Not with the Overall Survival of Patients. Biology 2021, 10, 808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, M.; Grimmig, T.; Grimm, M.; Lazariotou, M.; Meier, E.; Rosenwald, A.; Tsaur, I.; Blaheta, R.; Heemann, U.; Germer, C.T.; et al. Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer. PLoS ONE 2013, 8, e53630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gulubova, M.V.; Valkanov, S.P.; Ignatova, M.M.K.; Minkov, G.A. Tertiary lymphoid structures in colorectal cancer—organization and immune cell interactions. Am. J. Clin. Exp. Immunol. 2024, 13, 236–245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, L.; Wang, C.; Qiu, X.; Pu, X.; Chang, P. Colorectal Cancer Immune Infiltrates: Significance in Patient Prognosis and Immunotherapeutic Efficacy. Front. Immunol. 2020, 11, 1052. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, M.; Jin, Y.; Pan, L.Y. Tertiary lymphoid structure and B-cell-related pathways: A potential target in tumor immunotherapy. Oncol. Lett. 2021, 22, 836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Syn. Meth. 2020, 12, 56–61. [Google Scholar] [CrossRef]
- Mei, Y.; Xiao, W.; Hu, H.; Lu, G.; Chen, L.; Sun, Z.; Lü, M.; Ma, W.; Jiang, T.; Gao, Y.; et al. Single-cell analyses reveal suppressive tumor microenvironment of human colorectal cancer. Clin. Transl. Med. 2021, 11, e422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.; Wei, Z.; Feng, M.; Zhu, D.; Mei, S.; Wu, Z.; Feng, Q.; Chang, W.; Ji, M.; Liu, C.; et al. Tumor-infiltrated activated B cells suppress liver metastasis of colorectal cancers. Cell. Rep. 2022, 40, 111295. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013, 39, 782–795. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Huang, Y.; Kong, D.; Ma, W.; Liu, J.; Zhang, H.; Cheng, S.; Feng, L. Spatial distribution pattern of immune cells is associated with patient prognosis in colorectal cancer. J. Transl. Med. 2024, 22, 606. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mao, Y.; Wang, X.; Xi, L.; Dong, M.; Song, P.; Miao, J.; Lu, C.; Sun, S.; Li, Q.; Yu, C.; et al. Prediction values of tertiary lymphoid structures in the prognosis of patients with left- and right-sided colon cancer: A multicenter propensity score-matched study. Int. J. Surg. 2023, 109, 2344–2358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ágoston, E.I.; Acs, B.; Herold, Z.; Fekete, K.; Kulka, J.; Nagy, A.; Mühl, D.; Mohacsi, R.; Dank, M.; Garay, T.; et al. Deconstructing Immune Cell Infiltration in Human Colorectal Cancer: A Systematic Spatiotemporal Evaluation. Genes 2022, 13, 589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Xu, F.; Zhang, J.; Wang, L.; Zheng, Y.; Wu, X.; Wang, J.; Huang, Q.; Lai, M. Tumor-associated macrophages remodeling EMT and predicting survival in colorectal carcinoma. Oncoimmunology 2017, 7, e1380765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hansen, F.J.; Wu, Z.; David, P.; Mittelstädt, A.; Jacobsen, A.; Podolska, M.J.; Ubieta, K.; Brunner, M.; Kouhestani, D.; Swierzy, I.; et al. Tumor Infiltration with CD20+CD73+ B Cells Correlates with Better Outcome in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 5163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhong, J.; Qin, Y.; Yu, P.; Xia, W.; Gu, B.; Qian, X.; Hu, Y.; Su, W.; Zhang, Z. The Landscape of the Tumor-Infiltrating Immune Cell and Prognostic Nomogram in Colorectal Cancer. Front. Genet. 2022, 13, 891270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petrov, E.A.; Malabuiok, D.M.; Zheng, H.; Mokrushina, Y.A.; Abrikosova, V.A.; Kuzmin, Y.B.; Tzarapaev, P.V.; Kochkina, S.O.; Eltsov, I.V.; Knorre, V.D.; et al. Abundance of Tumor-Infiltrating B Cells in Human Epithelial Malignancies. Acta Naturae 2024, 16, 67–73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, D.; Ding, Y.; Wang, T.; Cui, P.; Huang, L.; Min, Z.; Xu, M. Significance of Tumor-Infiltrating Immune Cells in the Prognosis of Colon Cancer. Onco. Targets Ther. 2020, 13, 4581–4589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shimabukuro-Vornhagen, A.; Schlößer, H.A.; Gryschok, L.; Malcher, J.; Wennhold, K.; Garcia-Marquez, M.; Herbold, T.; Neuhaus, L.S.; Becker, H.J.; Fiedler, A.; et al. Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget 2014, 5, 4651–4664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liao, Y.; Ou, J.; Deng, J.; Geng, P.; Zeng, R.; Tian, Y.; Liang, H.; Ni, B.; Ruan, Z. Clinical implications of the tumor-infiltrating lymphocyte subsets in colorectal cancer. Med. Oncol. 2013, 30, 727. [Google Scholar] [CrossRef] [PubMed]
- Berntsson, J.; Svensson, M.C.; Leandersson, K.; Nodin, B.; Micke, P.; Larsson, A.H.; Eberhard, J.; Jirström, K. The clinical impact of tumour-infiltrating lymphocytes in colorectal cancer differs by anatomical subsite: A cohort study. Int. J. Cancer 2017, 141, 1654–1666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karjalainen, H.; Sirniö, P.; Tuomisto, A.; Mäkinen, M.J.; Väyrynen, J.P. A prognostic score based on B cell and plasma cell densities compared to T cell densities in colorectal cancer. Int. J. Colorectal Dis. 2023, 38, 47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zinovkin, D.A.; Kose, S.Y.; Nadyrov, E.A.; Achinovich, S.L.; Los’, D.M.; Gavrilenko, T.E.; Gavrilenko, D.I.; Yuzugulen, J.; Pranjol, M.Z.I. Potential role of tumor-infiltrating T-, B-lymphocytes, tumor-associated macrophages and IgA-secreting plasma cells in long-term survival in the rectal adenocarcinoma patients. Life Sci. 2021, 286, 120052. [Google Scholar] [CrossRef] [PubMed]
- Edin, S.; Kaprio, T.; Hagström, J.; Larsson, P.; Mustonen, H.; Böckelman, C.; Strigård, K.; Gunnarsson, U.; Haglund, C.; Palmqvist, R. The Prognostic Importance of CD20+ B lymphocytes in Colorectal Cancer and the Relation to Other Immune Cell subsets. Sci. Rep. 2019, 9, 19997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, C.; Wang, S.K.; Teo, N.Z.; Wei, M.Y.; Hashida, H.; Yu, C.F.; Liu, Y.L.; Cui, B.B. Prognostic role of tertiary lymphatic structures and their modulation by adjuvant FOLFOX in stage III colon cancer: A retrospective cohort study. J. Gastrointest. Oncol. 2025, 16, 386–403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, Y.; Zhang, C.; Hou, Y.; Zhao, B.; Cui, B. Correlation analysis of tertiary lymphoid structure parameters with the prognosis of patients with locally advanced rectal cancer after neoadjuvant chemotherapy: A retrospective study. World J. Surg. Oncol. 2025, 23, 131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mori, N.; Dorjkhorloo, G.; Shiraishi, T.; Erkhem-Ochir, B.; Okami, H.; Yamaguchi, A.; Shioi, I.; Komine, C.; Endo, M.; Seki, T.; et al. A Mature Tertiary Lymphoid Structure with a Ki-67-Positive Proliferating Germinal Center Is Associated with a Good Prognosis and High Intratumoral Immune Cell Infiltration in Advanced Colorectal Cancer. Cancers 2024, 16, 2684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Q.; Shen, X.; An, R.; Bai, J.; Dong, J.; Cai, H.; Zhu, H.; Zhong, W.; Chen, W.; Liu, A.; et al. Peritumoral tertiary lymphoid structure and tumor stroma percentage predict the prognosis of patients with non-metastatic colorectal cancer. Front. Immunol. 2022, 13, 962056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xia, J.; Xie, Z.; Niu, G.; Lu, Z.; Wang, Z.; Xing, Y.; Ren, J.; Hu, Z.; Hong, R.; Cao, Z.; et al. Single-cell landscape and clinical outcomes of infiltrating B cells in colorectal cancer. Immunology 2023, 168, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Liu, X.; Yan, P.; He, S.; Lin, Y.; Huang, Z.; Zhang, S.; Xie, S.; Li, Y.; Lu, X.; et al. Analysis of Immune Landscape Reveals Prognostic Significance of Cytotoxic CD4+ T Cells in the Central Region of pMMR CRC. Front. Oncol. 2021, 11, 724232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Toor, S.M.; Sasidharan Nair, V.; Murshed, K.; Abu Nada, M.; Elkord, E. Tumor-Infiltrating Lymphoid Cells in Colorectal Cancer Patients with Varying Disease Stages and Microsatellite Instability-High/Stable Tumors. Vaccines 2021, 9, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nestarenkaite, A.; Fadhil, W.; Rasmusson, A.; Susanti, S.; Hadjimichael, E.; Laurinaviciene, A.; Ilyas, M.; Laurinavicius, A. Immuno-Interface Score to Predict Outcome in Colorectal Cancer Independent of Microsatellite Instability Status. Cancers 2020, 12, 2902. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berntsson, J.; Nodin, B.; Eberhard, J.; Micke, P.; Jirström, K. Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. Int. J. Cancer 2016, 139, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Trajkovski, G.; Ognjenovic, L.; Karadzov, Z.; Jota, G.; Hadzi-Manchev, D.; Kostovski, O.; Volcevski, G.; Trajkovska, V.; Nikolova, D.; Spasevska, L.; et al. Tertiary Lymphoid Structures in Colorectal Cancers and Their Prognostic Value. Open Access Maced. J. Med. Sci. 2018, 6, 1824–1828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trajkovski, G.; Ognjenovic, L.; Jota, G.; Hadzi-Manchev, D.; Trajkovska, V.; Volcevski, G.; Nikolova, D.; Petrushevska, G.; Janevska, V.; Janevski, V. Tumour Lymphocytic Infiltration, Its Structure and Influence in Colorectal Cancer Progression. Open Access Maced. J. Med. Sci. 2018, 6, 1003–1009. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braha, M.; Chikman, B.; Habler, L.; Shapira, Z.; Vasyanovich, S.; Tolstov, G.; Halevy, A.; Sandbank, J.; Lavy, R. Lymphocytic Infiltration as a Prognostic Factor in Patients with Colon Cancer. Int. J. Surg. Pathol. 2016, 24, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Fu, G.; Huang, M.; Kao, X.; Zhu, J.; Dai, Z.; Chen, Y.; Li, H.; Zhou, J.; Chu, X.; et al. scRNA-seq of colorectal cancer shows regional immune atlas with the function of CD20+ B cells. Cancer Lett. 2024, 584, 216664. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.R.; He, X.S.; Chen, Y.F.; Yuan, R.X.; Zeng, Y.; Lian, L.; Zou, Y.F.; Lan, N.; Wu, X.J.; Lan, P. High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. J. Surg. Oncol. 2012, 106, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Lian, W.; Jiang, D.; Lin, W.; Jiang, M.; Zhang, Y.; Wang, H.; Zhao, L. Dual role of CD73 as a signaling molecule and adenosine-generating enzyme in colorectal cancer progression and immune evasion. Int. J. Biol. Sci. 2024, 20, 137–151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Gao, P.; Hao, Z.; Chen, L.; Li, X.; Jiao, Y.; Liu, J.; Li, J.; Zhang, Y.; Peng, X.; et al. The effect of neoadjuvant chemotherapy on the tumor immune microenvironment in gastrointestinal tumors. Front. Oncol. 2022, 12, 1054598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahmoud, N.N. Colorectal Cancer: Preoperative Evaluation and Staging. Surg. Oncol. Clin. N. Am. 2022, 31, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Collins, G.; Wang, H.; Toh, J.W.T. Pathological Features and Prognostication in Colorectal Cancer. Curr. Oncol. 2021, 28, 5356–5383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Liu, Y.; Zhang, P.; Wang, M.; Sun, L. Cost-effectiveness analysis of tumor-infiltrating lymphocytes biomarkers guiding chemotherapy de-escalation in early triple-negative breast cancer. Cancer Med. 2023, 12, 21001–21012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whiteside, T.L. Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression. Exp. Suppl. 2022, 113, 89–106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Idos, G.E.; Kwok, J.; Bonthala, N.; Kysh, L.; Gruber, S.B.; Qu, C. The Prognostic Implications of Tumor Infiltrating Lymphocytes in Colorectal Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 3360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, H.; Zhang, Z.; Li, J.; Wang, K.; Zhu, W.; Zeng, Y. The Dual Role of B Cells in the Tumor Microenvironment: Implications for Cancer Immunology and Therapy. Int. J. Mol. Sci. 2024, 25, 11825. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rady, M.; Ashraf, A.; Abdelaziz, H.; El-Azizi, M. Adaptive immune changes in colorectal cancer: A focus on T and B cell activation genes. Discov. Oncol. 2025, 16, 1032. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanchez, E.; Smith, E.J.; Yashar, M.A.; Patil, S.; Li, M.; Porter, A.L.; Tanenbaum, E.J.; Schlossberg, R.E.; Soof, C.M.; Hekmati, T.; et al. The Role of B-Cell Maturation Antigen in the Biology and Management of, and as a Potential Therapeutic Target in, Multiple Myeloma. Target Oncol. 2018, 13, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Domingo, E.; Kelly, C.; Hay, J.; Sansom, O.; Maka, N.; Oien, K.; Iveson, T.; Saunders, M.; Kerr, R.; Tomlinson, I. Prognostic and Predictive Value of Immunoscore in Stage III Colorectal Cancer: Pooled Analysis of Cases from the SCOT and IDEA-HORG Studies. J. Clin. Oncol. 2024, 42, 2207–2218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, R.X.; Wen, C.; Ye, W.; Li, Y.; Chen, J.; Zhang, Q.; Li, W.; Liang, W.; Wei, L.; Zhang, J.; et al. Altered B cell immunoglobulin signature exhibits potential diagnostic values in human colorectal cancer. iScience 2023, 26, 106140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Study | Year of Publication | Sample Size | Tumor Location | Neoadjuvant Treatment | Detecting Method |
---|---|---|---|---|---|
Yan Mei et al. [28] | 2021 | 12 | Colon and rectum | No | Single-cell RNA-sequencing, single-cell ATAC-sequence |
Xu et al. [29] | 2022 | 401 | Colon and rectum | Mixed population (Yes and no) | TMA, single-cell RNA-sequencing, IHC, multiplexed IHC, IF staining, flow cytometry |
Bindea et al. [30] | 2013 | 105 | Colon and rectum | n.r. | Real-time PCR, TMA |
Shen et al. [31] | 2024 | 190 | Colon and rectum | No | Multiplex IHC, TMA |
Mao et al. [32] | 2023 | 128 | Colon | No | HE, IHC |
Agoston et al. [33] | 2022 | 137 | Colon and rectum | n.r. | IHC, TMA |
Li et al. [34] | 2017 | 419 | Colon and rectum | n.r. | IHC |
Hansen et al. [35] | 2022 | 62 | Colon and rectum | Yes | HE, IHC, multicolor flow cytometry |
Zhong et al. [36] | 2022 | 232 | Colon and rectum | n.r. | CIBERSORT, multiplex immunofluorescence staining |
Petrov et al. [37] | 2024 | 31 | Colon and rectum | No | IHC, flow cytofluorometry |
Wu et al. [38] | 2020 | 369 | Colon | n.r. | CIBERSORT |
Vornhagen et al. [39] | 2014 | 38 | Colon and rectum | n.r. | Flow cytometry, IHC |
Liao et al. [40] | 2013 | 67 | Colon and rectum | n.r. | IHC, TMA |
Berntsson et al. [41] | 2017 | 557 | Colon and rectum | n.r. | TMA, IHC, HE |
Karjalainen et al. [42] | 2023 | 221 | Colon and rectum | No | IHC, TMA |
Zinovkin et al. [43] | 2021 | 155 | Rectum | Yes | IHC |
Edin et al. [44] | 2019 | 275 | Colon and rectum | Yes | Multiplex IHC, TMA, multispectral imaging |
Zhang et al. [45] | 2025 | 374 | Colon | No | Multispectral IHC, flow cytometry |
Jiang et al. [46] | 2025 | 114 | Rectum | Yes | Multiplex IHC, Strataquest |
Mori et al. [47] | 2024 | 78 | Colon and rectum | No | IHC |
Wang et al. [48] | 2022 | 114 | Colon and rectum | No | HE, IHC |
Xia et al. [49] | 2023 | 14 | Colon and rectum | n.r. | Single-cell RNA-sequencing, multicolor immunofluorescence staining flow cytometry |
Qi et al. [50] | 2021 | 77 | Colon and rectum | Yes | Multiplex IHC staining |
Toor et al. [51] | 2021 | 50 | Colon and rectum | No | Flow cytometry |
Nestarenkaite et al. [52] | 2020 | 87 | Colon and rectum | n.r. | IHC |
Berntsson et al. [53] | 2016 | 626 | Colon and rectum | n.r. | IHC, TMA |
Trajkovski et al. [54] | 2018 | 103 | Colon and rectum | n.r. | IHC |
Trajkovski et al. [55] | 2018 | 103 | Colon and rectum | n.r. | IHC |
Braha et al. [56] | 2015 | 195 | Colon and rectum | n.r. | IHC |
Ji et al. [57] | 2024 | 209 | Colon and rectum | n.r. | Single-cell RNA-sequencing, IHC, immunofluorescence staining |
Wu et al. [58] | 2012 | 223 | Colon and rectum | n.r. | IHC, TMA, Western blot |
Lian et al. [59] | 2024 | n.r. | Colon and rectum | n.r. | IHC, immunofluorescence staining, Western blot, flow cytometry |
Study | B Cell Location | Investigated B Cell Subsets | Correlation with Other Immune Subsets | Correlation with OS | Correlation with DFS | Correlation with CSS | Prognostic Value of TIBLs |
---|---|---|---|---|---|---|---|
Yan Mei et al. [28] | adjacent to tumor, precancerous and tumoral tissue | B cells- CD 19+, CD20+, CD40+, CD27+, KLRB1+, CCL5+ and plasma cells- MZB1+, DUSP1+, CCL3+ | T cells, myeloid cells and non-immune cells | n.r. | n.r. | n.r. | n.r. |
Xu et al. [29] | n.r. | CD19+, CD69+ | n.r. | High CD19, CD69 = high OS | High CD19, CD69 = high DFS | High CD19, CD69 = high CSS | High level of CD19, CD69 = good prognosis in patients with liver metastasis |
Bindea et al. [30] | center of the tumor, invasive margin | CD20+ | Tfh, memory T cells | High CD20 = high OS | High CD20 = high DFS | High CD20 = high CSS | High level of CD20 = good prognosis |
Shen et al. [31] | TME compartment, epithelial compartment | CD20+ | TAM2, T cells | High CD20 = high OS | n.r. | n.r. | High level of CD20 = good prognosis |
Mao et al. [32] | center of the tumor, invasive margin | CD20+ | CD4 T, CD 8 T, CD45RO T, CD21 follicular dendritic, CD11 dendritic cell, CD15 granulocytes, CD68 macrophages, FOXP3 Treg cells, NCR1+ | High CD20 = high OS | n.r. | n.r. | High level of CD20 = good prognosis |
Agoston et al. [33] | main tumor mass, tumor normal interface, deepest infiltrative area | CD20+, CD23+ | n.r. | n.r. | n.r. | n.r. | n.r. |
Li et al. [34] | tumor center, tumor invasive margin | CD20+ | CD68 +macrophages | Low CD20 = low OS | n.r. | n.r. | High level of CD20 = good prognosis |
Hansen et al. [35] | tumor center, tumor invasive margin | CD73+(class-switched memory B cell, naive B-cells), CD45+, CD20+ | CD 73 | High CD 73 = high OS | High CD73 = high DFS | High CD73 = high CSS | High level of CD73 = good prognosis |
Zhong et al. [36] | tumor center, tumor invasive margin | Memory B cells, naïve B cells | n.r. | High naïve B cells = high OS | n.r. | n.r. | High naïve B cell count = good prognosis |
Petrov et al. [37] | tumor center, tumor invasive margin | CD19, CD45 | n.r. | n.r. | n.r. | n.r. | n.r. |
Wu et al. [38] | n.r. | Memory B cells, naïve B cells | n.r. | High B cell count = low OS | High B cell count = low DFS | High B cell count = low CSS | High B cell count = poor prognosis |
Vornhagen et al. [39] | tumor center, tumor invasive margin, peripheral blood, liver metastasis | CD19+, CD45+, CD20+, CD38+, CD27+ naïve and memory B cell | Ki67, T cells | n.r. | n.r. | n.r. | n.r. |
Liao et al. [40] | tumor center, tumor invasive margin | CD20+ | n.r. | n.r. | n.r. | n.r. | n.r. |
Berntsson et al. [41] | intratumoral, tumor-adjacent, distant stroma | CD20+, CD138+, IGKC+ | CD3+, CD8+ T cells, Foxp3, CD138+ | High B cell count = high OS | n.r. | n.r. | High B cell count = good prognosis |
Karjalainen et al. [42] | tumor center, tumor invasive margin | CD20+, CD138+ | CD3+, CD8+ T cells | ns | n.r. | High B cell count = high CSS | High B cell count = good prognosis |
Zinovkin et al. [43] | rectal cancer stroma | CD20+, CD 138+ (Ig A+ infiltrating plasma cells) | CD3+ T cells | High B cell count = high OS | High B cell count = high DFS | High B cell count = high CSS | High B cell count = good prognosis |
Edin et al. [44] | tumor center, tumor invasive margin | CD20+ | CD8+ T cells | n.r. | n.r. | High B cell count = high CSS | High B cell count = good prognosis |
Zhang et al. [45] | intratumoral, peritumoral | CD20+ | CD4+, CD8+ T cells | High B cell count = high OS | High B cell count = high DFS | High B cell count = high CSS | High B cell count = good prognosis |
Jiang et al. [46] | tumor, normal tissue | CD20+ | CD4+, CD8+, CD 21 +, CD23+ | High B cell count = high OS | n.r. | n.r. | High B cell count = good prognosis |
Mori et al. [47] | tumor center, tumor invasive margin | CD20+ | CD3+, FoxP3, CD8+ T cells and macrophages, Ki-67 | ns | ns | Mature TLS = high CSS | High B cell count = good prognosis |
Wang et al. [48] | peritumoral, intratumoral | CD20+ | CD4+, CD8+, CD45RO+, CD11c+, CD68+ | Low B cell count = low OS | Low B cell count = low DFS | n.r. | High B cell count = poor prognosis |
Xia et al. [49] | tumor center, tumor invasive margin | CD20+, CD138+, CD27+, CD38 | CD8+ T cells | n.r. | n.r. | n.r. | n.r. |
Qi et al. [50] | tumor center, tumor invasive margin | CD20+ | CD4+, CD8+ T cells, CD68+ macrophages, CD66b+ granulocytes | ns | ns | n.r. | Not statistically significant |
Toor et al. [51] | tumor tissue and corresponding non-tumoral tissue | CD19+ | CD4+, CD8+ | ns | ns | n.r. | Not statistically significant |
Nestarenkaite et al. [52] | intratumoral tissue, inside the interface zone (tumor, tumor edge, stroma) | CD20+ | CD8+ T cells, CD68+ macrophages | High B cell count = high OS | n.r. | n.r. | High B cell count = good prognosis |
Berntsson et al. [53] | intratumoral, within the adjacent stroma and within the distant stroma | CD20+, CD138+, IGKC+ | CD138+, IGKC | High B cell count = high OS | n.r. | n.r. | High B cell count = good prognosis |
Trajkovski et al. [54] | tumor center, tumor invasive margin | CD20+, CD21+ | CD4+, CD8 + T cells | n.r. | n.r. | n.r. | n.r. |
Trajkovski et al. [55] | tumor center, tumor invasive margin | CD20+ | CD8+, CD4+ T cells | n.r. | n.r. | n.r. | n.r. |
Braha et al. [56] | tumor center, tumor invasive margin | CD20+ | CD3+ T cells | ns | High B cell count = high DFS | n.r. | High B cell count = good prognosis |
Ji et al. [57] | tumor center, tumor invasive margin | CD20+ | Myeloid cells, CD3+ T cells | High B cell count = high OS | High B cell count = high DFS | High B cell count = high CSS | High B cell count = good prognosis |
Wu et al. [58] | tumor center, tumor invasive margin | CD73+ | n.r. | High B cell count = low OS | High B cell count = low DFS | High B cell count = low CSS | High B cell count = poor prognosis |
Lian et al. [59] | tumor center, tumor invasive margin | CD73+ | CD8+ T cells | High B cell count = low OS | n.r. | n.r. | High B cell count = poor prognosis |
Study | Correlation with T Stage | Correlation with N Stage | Correlation with M Stage | Correlation with V and Pn Stage | Prediction to Immunotherapy Response | Correlation with MSI Status |
---|---|---|---|---|---|---|
Yan Mei et al. [28] | n.r. | n.r. | n.r. | n.r. | B cell enriched tumors = good response to immunotherapy | n.r. |
Xu et al. [29] | High CD19, CD69 = low T stage | n.r. | Low B cell count in primary tumor = liver metastasis | n.r. | n.r. | n.r. |
Bindea et al. [30] | High B cell count = high T stage | n.r. | n.r. | n.r. | n.r. | n.r. |
Shen et al. [31] | High B cell count = low T stage | n.r. | n.r. | n.r. | n.r. | n.r. |
Mao et al. [32] | High B cell count = low T stage | high B cell lower positive lymph node rate | n.r. | High B cell count = low V stage | n.r. | n.r. |
Agoston et al. [33] | High CD45+ = high T stage | low B cell count high number of metastatic lymph node | High B cell count in liver and lymph node metastatic tumor | n.r. | n.r. | n.r. |
Li et al. [34] | Low CD20+ = high T stage | lob CD20+ B cell count high number of metastatic lymph node | Low CD20+ = distant metastasis | Low CD20+ B cell count = high V and Pn stage | n.r. | n.r. |
Hansen et al. [35] | Low CD73 = high T stage | No difference in LN+ and LH negative regarding the density of CD20+CD73+ | Low CD73 = liver metastasis | n.r. | n.r. | n.r. |
Zhong et al. [36] | ns | ns | ns | ns | n.r. | n.r. |
Petrov et al. [37] | ns | ns | ns | n.r. | n.r. | n.r. |
Wu et al. [38] | High B cell count = high T stage | High B cell high N stage | ns | n.r. | n.r. | n.r. |
Vornhagen et al. [39] | Low naïve B cell count = high T stage | low naïve B cell = high N stage | Low naïve B cell count = high M stage | n.r. | n.r. | n.r. |
Liao et al. [40] | High B cell count = low T stage | n.r. | n.r. | n.r. | n.r. | n.r. |
Berntsson et al. [41] | High B cell count = low T stage | High B cell low N stage | High B cell count in nonmetastatic patients | n.r. | n.r. | n.r. |
Karjalainen et al. [42] | ns | ns | ns | ns | n.r. | ns |
Zinovkin et al. [43] | ns | ns | ns | n.r. | B cell enriched tumors = good response to immunotherapy | n.r. |
Edin et al. [44] | High B cell count = low T stage | High B cells low stage | High B cell count = low M stage | n.r. | n.r. | n.r. |
Zhang et al. [45] | High B cell count = low T stage | n.r. | n.r. | n.r. | n.r. | n.r. |
Jiang et al. [46] | High B cell count = low T stage | High B cells low N stage | High B cell count in nonmetastatic patients | High B cell count = low V stage | n.r. | n.r. |
Mori et al. [47] | ns | ns | ns | n.r. | n.r. | Mature TLS = positive MSI status |
Wang et al. [48] | ns | ns | ns | High TLS count = low V stage | n.r. | High TLS = positive MSI status |
Xia et al. [49] | n.r. | n.r. | n.r. | n.r. | B cell enriched tumors = good response to immunotherapy | High B cell counts = positive MSI status |
Qi et al. [50] | ns | ns | ns | ns | n.r. | n.r. |
Toor et al. [51] | Low B cell count = high T stage | n.r. | n.r. | ns | B cell enriched tumors = good response to immunotherapy | ns |
Nestarenkaite et al. [52] | ns | n.r. | ns | ns | n.r. | High B cell counts = positive MSI status |
Berntsson et al. [53] | High B cell count = low T stage | ns | High B cell count = low M stage | ns | n.r. | High B cell counts = negative MSI status |
Trajkovski et al. [54] | High B cell count = low T stage | low TLS = high N stage | Low TLS count = high M stage | Low TLS count = high V stage | n.r. | n.r. |
Trajkovski et al. [55] | Low B cell count = high T stage | low TAL = high N stage | Low B cell count = distant metastasis | Low TAL count = high V stage | n.r. | n.r. |
Braha et al. [56] | Low B cell count = high T stage | Not statistically significant | Low B cell count = distant metastasis | Not statistically significant | n.r. | n.r. |
Ji et al. [57] | n.r. | n.r. | Low B cell count = liver metastasis | n.r. | n.r. | n.r. |
Wu et al. [58] | High B cell count = high T stage | High B cell high nodal status | High B cell count = high M stage | n.r. | n.r. | n.r. |
Lian et al. [59] | High B cell count = high T stage | n.r. | High B cell count = liver metastasis | n.r. | Low B cell count = good response to immunotherapy | High B cell count = positive MMRd status |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fagarasan, G.; Fagarasan, V.; Bintintan, V.V.; Dindelegan, G.C. The Role of Tumor-Infiltrating B Lymphocytes in Colorectal Cancer Patients: A Systematic Review of Immune Landscape Evolution. Cancers 2025, 17, 2996. https://doi.org/10.3390/cancers17182996
Fagarasan G, Fagarasan V, Bintintan VV, Dindelegan GC. The Role of Tumor-Infiltrating B Lymphocytes in Colorectal Cancer Patients: A Systematic Review of Immune Landscape Evolution. Cancers. 2025; 17(18):2996. https://doi.org/10.3390/cancers17182996
Chicago/Turabian StyleFagarasan, Giorgiana, Vlad Fagarasan, Vasile Virgil Bintintan, and George Calin Dindelegan. 2025. "The Role of Tumor-Infiltrating B Lymphocytes in Colorectal Cancer Patients: A Systematic Review of Immune Landscape Evolution" Cancers 17, no. 18: 2996. https://doi.org/10.3390/cancers17182996
APA StyleFagarasan, G., Fagarasan, V., Bintintan, V. V., & Dindelegan, G. C. (2025). The Role of Tumor-Infiltrating B Lymphocytes in Colorectal Cancer Patients: A Systematic Review of Immune Landscape Evolution. Cancers, 17(18), 2996. https://doi.org/10.3390/cancers17182996