Real-World Adoption of Adjuvant Therapies for Resected Stage IB–III Non-Small-Cell Lung Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Design
2.3. Statistical Analysis
3. Results
3.1. Study Cohort Characteristics
3.2. Use of Adjuvant Therapy
3.3. Multivariable Analysis of Factors Associated with Adjuvant Therapy Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NSCLC | Non-small-cell lung cancer |
IALT | International Adjuvant Lung Cancer Trial |
LACE | Lung Adjuvant Cisplatin Evaluation |
HR | Hazard ratio |
FDA | Federal Drug Administration |
AJCC | American Joint Committee on Cancer |
VHA | Veterans Health Administration |
VINCI | Veterans Affairs Informatics and Computing Infrastructure |
CDW | Corporate Data Warehouse |
ICD | International Classification of Diseases |
CPT | Current Procedural Terminology |
NCCN | National Comprehensive Cancer Network |
CCI | Charlson–Deyo Comorbidity Index |
VATS | Video-assisted thoracoscopic surgery |
SD | Standard deviation |
IQR | Interquartile range |
OR | Odds ratio |
CI | Confidence interval |
PORT | Post-operative radiation therapy |
References
- Arriagada, R.; Bergman, B.; Dunant, A.; Le Chevalier, T.; Pignon, J.P.; Vansteenkiste, J. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N. Engl. J. Med. 2004, 350, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Pignon, J.-P.; Tribodet, H.; Scagliotti, G.V.; Douillard, J.-Y.; Shepherd, F.A.; Stephens, R.J.; Dunant, A.; Torri, V.; Rosell, R.; Seymour, L.; et al. Lung Adjuvant Cisplatin Evaluation: A Pooled Analysis by the LACE Collaborative Group. J. Clin. Oncol. 2008, 26, 3552–3559. [Google Scholar] [CrossRef] [PubMed]
- Arriagada, R.; Auperin, A.; Burdett, S.; Higgins, J.P.; Johnson, D.H.; Le Chevalier, T.; Le Pechoux, C.; Parmar, M.K.; Pignon, J.P.; Souhami, R.L.; et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: Two meta-analyses of individual patient data. Lancet 2010, 375, 1267–1277. [Google Scholar] [CrossRef]
- Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet 2021, 398, 1344–1357. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.; Paz-Ares, L.; Marreaud, S.; Dafni, U.; Oselin, K.; Havel, L.; Esteban, E.; Isla, D.; Martinez-Marti, A.; Faehling, M.; et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB-IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): An interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 2022, 23, 1274–1286. [Google Scholar] [CrossRef]
- Wu, Y.L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.W.; Kato, T.; et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef]
- Kehl, K.L.; Zahrieh, D.; Yang, P.; Hillman, S.L.; Tan, A.D.; Sands, J.M.; Oxnard, G.R.; Gillaspie, E.A.; Wigle, D.; Malik, S.; et al. Rates of Guideline-Concordant Surgery and Adjuvant Chemotherapy Among Patients With Early-Stage Lung Cancer in the US ALCHEMIST Study (Alliance A151216). JAMA Oncol. 2022, 8, 717–728. [Google Scholar] [CrossRef]
- Wu, Y.L.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Kim, S.W.; Kato, T.; Laktionov, K.; Vu, H.V.; Wang, Z.; et al. Postoperative Chemotherapy Use and Outcomes From ADAURA: Osimertinib as Adjuvant Therapy for Resected EGFR-Mutated NSCLC. J. Thorac. Oncol. 2022, 17, 423–433. [Google Scholar] [CrossRef]
- Heiden, B.T.; Eaton, D.B., Jr.; Engelhardt, K.E.; Chang, S.H.; Yan, Y.; Patel, M.R.; Kreisel, D.; Nava, R.G.; Meyers, B.F.; Kozower, B.D.; et al. Analysis of Delayed Surgical Treatment and Oncologic Outcomes in Clinical Stage I Non-Small Cell Lung Cancer. JAMA Netw. Open 2021, 4, e2111613. [Google Scholar] [CrossRef]
- Amin, M.B.; American Joint Committee on Cancer; American Cancer Society. AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Edge, S.B., Greene, F.L., Byrd, D.R., Brookland, R.K., Washington, M.K., Gershenwald, J.E., Compton, C.C., Hess, K.R., Sullivan, D.C., et al., Eds.; American Joint Committee on Cancer: Chicago, IL, USA; Springer: Berlin/Heidelberg, Germany, 2017; p. xvii. 1024p. [Google Scholar]
- Ettinger, D.S.; Wood, D.E.; Riely, G.J.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; et al. Non-Small Cell Lung Cancer, Version 2.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 249–274. [Google Scholar]
- Tohmasi, S.; Eaton, D.B., Jr.; Heiden, B.T.; Rossetti, N.E.; Rasi, V.; Chang, S.H.; Yan, Y.; Gopukumar, D.; Patel, M.R.; Meyers, B.F.; et al. Inhaled medications for chronic obstructive pulmonary disease predict surgical complications and survival in stage I non-small cell lung cancer. J. Thorac. Dis. 2023, 15, 6544–6554. [Google Scholar] [CrossRef]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.-C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding Algorithms for Defining Comorbidities in ICD-9-CM and ICD-10 Administrative Data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef]
- Farrow, N.E.; An, S.J.; Speicher, P.J.; Harpole, D.H.; D’Amico, T.A.; Klapper, J.A.; Hartwig, M.G.; Tong, B.C. Disparities in guideline-concordant treatment for node-positive, non–small cell lung cancer following surgery. J. Thorac. Cardiovasc. Surg. 2020, 160, 261–271.e1. [Google Scholar] [CrossRef]
- Rodriguez-Quintero, J.H.; Kamel, M.K.; Jindani, R.; Zhu, R.; Friedmann, P.; Vimolratana, M.; Chudgar, N.P.; Stiles, B. Is underutilization of adjuvant therapy in resected non-small-cell lung cancer associated with socioeconomic disparities? Eur. J. Cardio-Thorac. Surg. 2023, 64, ezad383. [Google Scholar] [CrossRef] [PubMed]
- Toubat, O.; Atay, S.M.; Kim, A.W.; Ding, L.; Farias, A.J.; Ebner, P.J.; McFadden, P.M.; David, E.A. Disparities in Guideline-Concordant Treatment for Pathologic N1 Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2020, 109, 1512–1520. [Google Scholar] [CrossRef]
- Lim, E.; Batchelor, T.J.P.; Dunning, J.; Shackcloth, M.; Anikin, V.; Naidu, B.; Belcher, E.; Loubani, M.; Zamvar, V.; Harris, R.A.; et al. Video-Assisted Thoracoscopic or Open Lobectomy in Early-Stage Lung Cancer. NEJM Evid. 2022, 1, EVIDoa2100016. [Google Scholar] [CrossRef]
- Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251. [Google Scholar] [CrossRef]
- Blinman, P.; McLachlan, S.-A.; Nowak, A.K.; Duric, V.M.; Brown, C.; Wright, G.; Millward, M.; Fong, K.; Stockler, M.R. Lung cancer clinicians’ preferences for adjuvant chemotherapy in non-small-cell lung cancer: What makes it worthwhile? Lung Cancer 2011, 72, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Zubair, H.M.; Khan, M.A.; Gulzar, F.; Alkholief, M.; Malik, A.; Akhtar, S.; Sharif, A.; Akhtar, M.F.; Abbas, M. Patient Perspectives and Side-Effects Experience on Chemotherapy of Non-Small Cell Lung Cancer: A Qualitative Study. Cancer Manag. Res. 2023, 15, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Dziadziuszko, R.; Ahn, J.S.; Barlesi, F.; Nishio, M.; Lee, D.H.; Lee, J.-S.; Zhong, W.; Horinouchi, H.; Mao, W.; et al. Alectinib in Resected ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2024, 390, 1265–1276. [Google Scholar] [CrossRef]
- Desage, A.L.; Bouleftour, W.; Tiffet, O.; Fournel, P.; Tissot, C. Use of adjuvant chemotherapy in resected non-small cell lung cancer in real-life practice: A systematic review of literature. Transl. Lung Cancer Res. 2021, 10, 4643–4665. [Google Scholar] [CrossRef]
- Younis, T.; Al-Fayea, T.; Virik, K.; Morzycki, W.; Saint-Jacques, N. Adjuvant chemotherapy uptake in non-small cell lung cancer. J. Thorac. Oncol. 2008, 3, 1272–1278. [Google Scholar] [CrossRef]
- Winget, M.; Fleming, J.; Li, X.; Gao, Z.; Butts, C. Uptake and tolerance of adjuvant chemotherapy in early stage NSCLC patients in Alberta, Canada. Lung Cancer 2011, 72, 52–58. [Google Scholar] [CrossRef]
- Blasi, M.; Eichhorn, M.E.; Christopoulos, P.; Winter, H.; Heußel, C.P.; Herth, F.J.; El Shafie, R.; Kriegsmann, K.; Kriegsmann, M.; Stenzinger, A.; et al. Major clinical benefit from adjuvant chemotherapy for stage II-III non-small cell lung cancer patients aged 75 years or older: A propensity score-matched analysis. BMC Pulm. Med. 2022, 22, 255. [Google Scholar] [CrossRef]
- Kolek, V.; Losse, S.; Kultan, J.; Jakubec, P.; Jaromir, Z.; Sova, M.; Szkorupa, M.; Neoral, Č.; Škarda, J.; Tichý, T.; et al. Real life adjuvant chemotherapy uptake and survival in patients with non-small cell lung cancer after complete resection. Curr. Med. Res. Opin. 2018, 34, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Morris, Z.S.; Wooding, S.; Grant, J. The answer is 17 years, what is the question: Understanding time lags in translational research. J. R. Soc. Med. 2011, 104, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Abdelsattar, Z.M.; Allen, M.S.; Shen, K.R.; Cassivi, S.D.; Nichols, F.C.; Wigle, D.A.; Blackmon, S.H. Variation in Hospital Adoption Rates of Video-Assisted Thoracoscopic Lobectomy for Lung Cancer and the Effect on Outcomes. Ann. Thorac. Surg. 2017, 103, 454–460. [Google Scholar] [CrossRef]
- Jindani, R.; Rodriguez-Quintero, J.H.; Kamel, M.; Zhu, R.; Vimolratana, M.; Chudgar, N.; Stiles, B. Trends and Disparities in Robotic Surgery Utilization for Non–Small Cell Lung Cancer. J. Surg. Res. 2024, 302, 24–32. [Google Scholar] [CrossRef]
- Poon, C.; Wilsdon, T.; Sarwar, I.; Roediger, A.; Yuan, M. Why is the screening rate in lung cancer still low? A seven-country analysis of the factors affecting adoption. Front. Public Health 2023, 11, 1264342. [Google Scholar] [CrossRef]
- National Lung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Hiley, C.T.; Le Quesne, J.; Santis, G.; Sharpe, R.; de Castro, D.G.; Middleton, G.; Swanton, C. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet 2016, 388, 1002–1011. [Google Scholar] [CrossRef]
- Heiden, B.T.; Eaton, D.B., Jr.; Chang, S.-H.; Yan, Y.; Baumann, A.A.; Schoen, M.W.; Tohmasi, S.; Rossetti, N.E.; Patel, M.R.; Kreisel, D.; et al. Association Between Surgical Quality Metric Adherence and Overall Survival Among US Veterans With Early-Stage Non–Small Cell Lung Cancer. JAMA Surg. 2023, 158, 293–301. [Google Scholar] [CrossRef]
- Le Pechoux, C.; Pourel, N.; Barlesi, F.; Lerouge, D.; Antoni, D.; Lamezec, B.; Nestle, U.; Boisselier, P.; Dansin, E.; Paumier, A.; et al. Postoperative radiotherapy versus no postoperative radiotherapy in patients with completely resected non-small-cell lung cancer and proven mediastinal N2 involvement (Lung ART): An open-label, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Zullig, L.L.; Williams, C.D.; Fortune-Britt, A.G. Lung and colorectal cancer treatment and outcomes in the Veterans Affairs health care system. Cancer Manag. Res. 2015, 7, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Heiden, B.T.; Eaton, D.B., Jr.; Chang, S.H.; Yan, Y.; Schoen, M.W.; Patel, M.R.; Kreisel, D.; Nava, R.G.; Meyers, B.F.; Kozower, B.D.; et al. Comparison Between Veteran and Non-Veteran Populations With Clinical Stage I Non-small Cell Lung Cancer Undergoing Surgery. Ann. Surg. 2023, 277, e664–e669. [Google Scholar] [CrossRef] [PubMed]
Total Cohort (N = 1980) | |
---|---|
Age (years), mean (SD) | 69.9 (6.8) |
Female, n (%) | 68 (3.4%) |
Race, n (%) | |
White | 1595 (80.6%) |
Black | 323 (16.3%) |
Other | 27 (1.4%) |
Unknown | 35 (1.8%) |
Charlson–Deyo comorbidity index, mean (SD) | 2.4 (1.9) |
ZIP-code-level high school failure rate, n (%) | |
<7% | 344 (17.7%) |
7−12.9% | 624 (32.1%) |
13−20.9% | 607 (31.2%) |
≥21% | 372 (19.1%) |
ZIP-code-level median income, n (%) | |
<USD 38,000 | 456 (23.4%) |
USD 38,000−USD 47,999 | 511 (26.3%) |
USD 48,000−USD 62,999 | 531 (27.3%) |
≥USD 63,000 | 449 (23.1%) |
Tumor location, n (%) | |
Right upper lobe | 601 (30.4%) |
Right middle lobe | 78 (4.0%) |
Right lower lobe | 429 (21.7%) |
Left upper lobe | 491 (24.8%) |
Left lower lobe | 321 (16.2%) |
Paired | 1 (0.1%) |
Unknown | 59 (3.0%) |
Tumor histology, n (%) | |
Adenocarcinoma | 850 (45.9%) |
Squamous | 750 (40.5%) |
Other | 253 (13.7%) |
Tumor size (cm), n (%) | |
≤1.0 | 4 (2.2%) |
1.1−2.0 | 182 (9.2%) |
2.1−3.0 | 146 (7.4%) |
3.1−4.0 | 755 (38.1%) |
4.1−5.0 | 385 (19.4%) |
5.1−6.0 | 197 (10.0%) |
6.1−7.0 | 127 (6.4%) |
>7.0 | 117 (5.9%) |
Unknown | 27 (1.4%) |
Surgery type, n (%) | |
Lobectomy | 1393 (70.4%) |
Pneumonectomy | 50 (2.5%) |
Segmentectomy | 99 (5.0%) |
Wedge resection | 438 (22.1%) |
Surgical approach, n (%) | |
Open | 759 (38.6%) |
Thoracoscopic (VATS) | 1210 (61.5%) |
Lymph nodes evaluated, median (IQR) | 11 (6, 17) |
Clinical stage, n (%) | |
I | 640 (32.3%) |
II | 1024 (51.7%) |
III | 316 (16.0%) |
Pathologic stage, n (%) | |
0 | 6 (0.3%) |
I | 658 (33.2%) |
II | 832 (42.0%) |
III | 391 (19.8%) |
Unknown | 93 (4.7%) |
Total Cohort (N = 1980) | |
---|---|
Adjuvant Chemotherapy, n (%) | 824 (41.6%) |
Adjuvant Immunotherapy, n (%) | 129 (6.5%) |
Atezolizumab, n (%) | 33 (25.6%) 1 |
Durvalumab, n (%) | 27 (20.9%) 1 |
Nivolumab, n (%) | 8 (6.2%) 1 |
Pembrolizumab, n (%) | 56 (43.4%) 1 |
Adjuvant Targeted Therapy, n (%) | 5 (0.3%) |
Osimertinib, n (%) | 5 (100.0%) 2 |
Odds Ratio (OR) | 95% CI | p | |
---|---|---|---|
Age (per year) | 0.95 | 0.93, 0.97 | <0.001 |
Female vs. male | 0.97 | 0.53, 1.76 | 0.91 |
Race (ref = White) | 0.19 | ||
Black | 1.39 | 1.00, 1.92 | |
Other | 1.27 | 0.46, 3.50 | |
Unknown | 1.58 | 0.65, 3.83 | |
Charlson–Deyo comorbidity index (per point) | 0.91 | 0.85, 0.96 | 0.002 |
ZIP-code-level high school failure rate (ref = <7%) | 0.24 | ||
7−12.9% | 0.76 | 0.54, 1.09 | |
13−20.9% | 0.69 | 0.46, 1.03 | |
≥21% | 0.63 | 0.39, 1.01 | |
ZIP-code-level median income (ref = <USD 38,000) | 0.60 | ||
USD 38,000−USD 47,999 | 0.83 | 0.59, 1.17 | |
USD 48,000−USD 62,999 | 0.92 | 0.64, 1.33 | |
USD 63,000+ | 0.79 | 0.52, 1.22 | |
Tumor location (ref = right upper lobe) | 0.51 | ||
Right middle lobe | 0.81 | 0.45, 1.45 | |
Right lower lobe | 0.85 | 0.62, 1.17 | |
Left upper lobe | 1.18 | 0.86, 1.60 | |
Left lower lobe | 1.13 | 0.80, 1.59 | |
Paired | N/A | N/A | |
Unknown | 0.81 | 0.42, 1.59 | |
Tumor histology (ref = Adenocarcinoma) | 0.11 | ||
Squamous | 0.93 | 0.72, 1.19 | |
Other | 1.34 | 0.95, 1.90 | |
Tumor size (cm) (ref = ≤1.0) | 0.064 | ||
1.1−2.0 | 2.42 | 1.00, 5.86 | |
2.1−3.0 | 1.52 | 0.62, 3.73 | |
3.1−4.0 | 1.88 | 0.82, 4.33 | |
4.1−5.0 | 1.32 | 0.58, 3.02 | |
5.1−6.0 | 1.80 | 0.76, 4.24 | |
6.1−7.0 | 1.75 | 0.71, 4.23 | |
>7.0 | 1.00 | 0.41, 2.45 | |
Unknown | 1.35 | 0.38, 4.77 | |
Surgery type (ref = lobectomy) | 0.051 | ||
Pneumonectomy | 0.91 | 0.46, 1.82 | |
Segmentectomy | 0.51 | 0.29, 0.92 | |
Wedge resection | 0.75 | 0.56, 1.00 | |
Thoracoscopic (VATS) vs. open | 1.34 | 1.06, 1.70 | 0.016 |
Lymph nodes evaluated (per node) | 1.00 | 0.99, 1.01 | 0.69 |
Pathologic stage (ref = I) | <0.001 | ||
0 | 3.35 | 0.54, 20.97 | |
II | 8.16 | 5.58, 11.93 | |
III | 24.93 | 16.10, 38.59 | |
Unknown | 15.45 | 8.29, 28.93 | |
Year of surgery (per year) | 1.08 | 1.01, 1.15 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Tohmasi, S.; Eaton, D.B., Jr.; Seyoum, N.; Brandt, W.S.; Thomas, T.S.; Schoen, M.W.; Rossetti, N.E.; Chang, S.-H.; Yan, Y.; et al. Real-World Adoption of Adjuvant Therapies for Resected Stage IB–III Non-Small-Cell Lung Cancer. Cancers 2025, 17, 2961. https://doi.org/10.3390/cancers17182961
Kumar A, Tohmasi S, Eaton DB Jr., Seyoum N, Brandt WS, Thomas TS, Schoen MW, Rossetti NE, Chang S-H, Yan Y, et al. Real-World Adoption of Adjuvant Therapies for Resected Stage IB–III Non-Small-Cell Lung Cancer. Cancers. 2025; 17(18):2961. https://doi.org/10.3390/cancers17182961
Chicago/Turabian StyleKumar, Arvind, Steven Tohmasi, Daniel B. Eaton, Jr., Nahom Seyoum, Whitney S. Brandt, Theodore S. Thomas, Martin W. Schoen, Nikki E. Rossetti, Su-Hsin Chang, Yan Yan, and et al. 2025. "Real-World Adoption of Adjuvant Therapies for Resected Stage IB–III Non-Small-Cell Lung Cancer" Cancers 17, no. 18: 2961. https://doi.org/10.3390/cancers17182961
APA StyleKumar, A., Tohmasi, S., Eaton, D. B., Jr., Seyoum, N., Brandt, W. S., Thomas, T. S., Schoen, M. W., Rossetti, N. E., Chang, S.-H., Yan, Y., Patel, M. R., Malone, S., Tokaz, M. C., Meyers, B. F., Kozower, B. D., Puri, V., & Heiden, B. T. (2025). Real-World Adoption of Adjuvant Therapies for Resected Stage IB–III Non-Small-Cell Lung Cancer. Cancers, 17(18), 2961. https://doi.org/10.3390/cancers17182961