Small Renal Mass Cryoablation: Trifecta Outcomes of a Single-Institution Experience with a 20-Year Follow-Up
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Surgical Intervention and Follow-Up
2.3. Study Variables and Outcomes
2.4. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Adverse Events
3.3. Functional Outcomes
3.3.1. Non-SK Patients; 36-Month Follow-Up
3.3.2. SK Patients; 36-Month Follow-Up
3.3.3. Non-SK Patients; >36-Month Follow-Up
3.3.4. SK Patients; >36-Month Follow-Up
3.4. Oncological Outcomes (Only Biopsy-Proven RCC Cases)
3.5. Trifecta Achievement
3.6. Follow-Up
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SEER | Surveillance, Epidemiology, and End Results |
SRMs | Small Renal Masses |
PN | Partial Nephrectomy |
RCC | Renal Cell Carcinoma |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
SK | Solitary Kidney |
RFS | Recurrence-Free Survival |
MFS | Metastasis-Free Survival |
CSS | Cancer-Specific Survival |
OS | Overall Survival |
eGFR | Estimated Glomerular Filtration Rate |
MDRD | Modification of Diet in Renal Disease |
CKD | Chronic Kidney Disease |
IQR | Interquartile Range |
RN | Radical Nephrectomy |
Appendix A
Case | Complication Description | CDG |
#1 | Left renal cryoablation for a 2.8 cm enhancing left renal mass with subsequent left ureteral obstruction. A renal scan revealed a poorly functioning kidney even after a percutaneous nephrostomy placement. Subsequently underwent laparoscopic Radical Nephrectomy. Pathology showed no viable tumor cells. Died one month after nephrectomy due to suicide. | 4 |
#5 | Bilateral cryoablation was planned for bilateral RCC. After the first ablation of the right kidney, the patient developed pulmonary edema requiring reintubation and Lasix administration. The left-sided lesion was ablated five months later without complication. Loss to follow-up after four years of uncomplicated follow-up. | 4 |
#36 | Following left laparoscopic cryoablation, the patient developed intractable bleeding and later that evening underwent a completion nephrectomy. The biopsy was consistent with a clear cell RCC, and the nephrectomy showed no residual cancer. The patient was alive at last follow-up after 16 years with CKD stage II. | 3 |
#39 | After cryoablation in left kidney, the patient underwent workup for fever of unknown origin outside Duke. He underwent drainage of a healing cryoablation. Once came back to Duke for continuation of care, the reviewed outside hospital scans were consistent with hematoma and no evidence of abscess. Patient later underwent right Radical Nephrectomy (contralateral to cryoablation site) for synchronous RCC. Nephrectomy pathology report confirmed RCC. No recurrences in the left kidney which was treated by cryoablation. The patient was alive at 83 years of age after 17 years of follow-up. | 3 |
#41 | Following percutaneous ablation of left-sided renal mass in a case with longstanding history of diabetes, the patient developed left-sided crampy pain without fever or toxic appearance. Subsequent CT showed 10 ×10 cm perinephric abscess resulting in readmission and drainage by interventional radiologist colleagues. He remained disease-free nine years and died of intracranial hemorrhage at 81 years of age. | 3 |
#117 | Three months after left laparoscopic cryoablation in a SK patient, developed insidious onset of left pain and fever with subsequent creatinine increase to 7.5 mg/dL. Imaging confirmed ureteropelvic junction obstruction managed with percutaneous nephrostomy and following retrograde pyelography showed urothelial slough in the pelvis removed via ureteroscopy. | 3 |
12 Cases (side) | Port-site wound infection managed with antibiotics (#11, left; #71, right); flank pain, hematuria with clot passage managed by readmission (#27, left; #57, right); Intraoperative splenic injury and repair, post-ablation platelet transfusion (#33, left); retroperitoneal bleeding managed conservatively (#47, right; #76, left); sensory-neural hearing loss presumed to be secondary to intra-operative Gentamicin (#66, left); presumed post-operative transient ischemic attack (#67, right); Atrial fibrillation managed with fluids and medications (#86, left); hematocrit drop managed with transfusion (#94, left; #98, left). | 2 |
11 Cases | Flank pain (#13, #21, #43, #46, #80); dyspnea (#18 required furosemide for pulmonary effusion; #29 asthma exacerbation; #37 desaturation requiring BI-PAP; #90 atelectasis managed by incentive spirometry); hypokalemia managed by supplements (#8); fever with negative workup, self-limited (#69). | 1 |
Appendix B
Case(s) | Biopsy-Proven Cases | Case(s) | Without Biopsy at Cryoablation |
#21 #100 | Repeat ablation and remained recurrence-free after seven years of follow-up. | #43 #113 | Repeat ablations. |
#69 | Suspicious local enhancement was detected 30 months post-ablation, in the ablated zone. He underwent bilateral RN (one year on AS) outside of our center due to non-functioning kidneys, and the pathology confirmed RCC. He lived 8 years after RN and succumbed to septic shock at 72 years of age. | #3 | Left RN for multiple enhancing lesions in the tumor 50 months post-ablation; path: oncocytoma. |
#97 | One patient who had simultaneous Gleason grade 3 + 4 prostate cancer and RCC developed metastasis after nine months of cryoablation. Subsequently, fine-needle aspiration confirmed metastatic RCC, and he succumbed to it 15 months post-ablation. | #92 | PN; path: normal kidney tissue. |
#105 | One patient was treated with Partial Nephrectomy for ablation recurrence and later developed tumor extension to the pararenal fat and diaphragm. He was managed by excision of pararenal fat and parts of the diaphragm | #75 | Bilateral RN; non-functional kidneys path: non-diagnostic for malignancy. |
References
- National Cancer Institute. SEER Cancer Stat Facts: Kidney and Renal Pelvis Cancer. Bethesda, MD. Available online: https://seer.cancer.gov/statfacts/html/kidrp.html (accessed on 20 May 2025).
- Deivasigamani, S.; Adams, E.S.; Séguier, D.; Kotamarti, S.; Polascik, T.J. Cryoablation for the management of Small Renal Masses. Mini-Invasive Surg. 2023, 7, 9. [Google Scholar] [CrossRef]
- Bukavina, L.; Bensalah, K.; Bray, F.; Carlo, M.; Challacombe, B.; Karam, J.A.; Kassouf, W.; Mitchell, T.; Montironi, R.; O’Brien, T.; et al. Epidemiology of Renal Cell Carcinoma: 2022 Update. Eur. Urol. 2022, 82, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Tsivian, M.; Mouraviev, V.; Albala, D.M.; Caso, J.R.; Robertson, C.N.; Madden, J.F.; Polascik, T.J. Clinical predictors of renal mass pathological features. BJU Int. 2011, 107, 735–740. [Google Scholar] [CrossRef]
- Campbell, S.C.; Uzzo, R.G.; Karam, J.A.; Chang, S.S.; Clark, P.E.; Souter, L. Renal mass and localized renal cancer: Evaluation, management, and follow-up: AUA guideline: Part II. J. Urol. 2021, 206, 209–218. [Google Scholar] [CrossRef]
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bedke, J.; Capitanio, U.; Dabestani, S.; Fernández-Pello, S.; Giles, R.H.; Hofmann, F.; Hora, M. European Association of Urology guidelines on renal cell carcinoma: The 2022 update. Eur. Urol. 2022, 82, 399–410. [Google Scholar] [CrossRef]
- Motzer, R.J.; Jonasch, E.; Agarwal, N.; Alva, A.; Bagshaw, H.; Baine, M.; Beckermann, K.; Carlo, M.I.; Choueiri, T.K.; Costello, B.A.; et al. Kidney cancer, version 3.2025, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 71–90. [Google Scholar] [CrossRef]
- Campbell, S.C.; Clark, P.E.; Chang, S.S.; Karam, J.A.; Souter, L.; Uzzo, R.G. Renal mass and localized renal cancer: Evaluation, management, and follow-up: AUA guideline: Part I. J. Urol. 2021, 206, 199–208. [Google Scholar] [CrossRef]
- Rivero, J.R.; De La Cerda, J.; Wang, H.; Liss, M.A.; Farrell, A.M.; Rodriguez, R.; Suri, R.; Kaushik, D. Partial Nephrectomy versus Thermal Ablation for Clinical Stage T1 Renal Masses: Systematic Review and Meta-Analysis of More than 3900 Patients. J. Vasc. Interv. Radiol. 2018, 29, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Tsivian, M.; Lyne, J.C.; Mayes, J.M.; Mouraviev, V.; Kimura, M.; Polascik, T.J. Tumor size and endophytic growth pattern affect recurrence rates after laparoscopic renal cryoablation. Urology 2010, 75, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Tsivian, M.; Kim, C.Y.; Caso, J.R.; Rosenberg, M.D.; Nelson, R.C.; Polascik, T.J. Contrast enhancement on computed tomography after renal cryoablation: An evidence of treatment failure? J. Endourol. 2012, 26, 330–335. [Google Scholar] [CrossRef]
- Tsivian, M.; Caso, J.; Kimura, M.; Polascik, T.J. Renal function outcomes after laparoscopic renal cryoablation. J. Endourol. 2011, 25, 1287–1291. [Google Scholar] [CrossRef]
- Mitropoulos, D.; Artibani, W.; Graefen, M.; Remzi, M.; Rouprêt, M.; Truss, M. Reporting and Grading of Complications After Urologic Surgical Procedures: An ad hoc EAU Guidelines Panel Assessment and Recommendations. Eur. Urol. 2012, 61, 341–349. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Chlorogiannis, D.-D.; Chlorogiannis, A.; Filippiadis, D.K.; Kelekis, A.; Makris, G.C.; Georgiades, C. Impact of Percutaneous Cryoablation on Renal Function in Patients with Stage I Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. J. Vasc. Interv. Radiol. 2024, 35, 1278–1287.E3. [Google Scholar] [CrossRef] [PubMed]
- Pandolfo, S.D.; Loizzo, D.; Beksac, A.T.; Derweesh, I.; Celia, A.; Bianchi, L.; Elbich, J.; Costa, G.; Carbonara, U.; Lucarelli, G.; et al. Percutaneous thermal ablation for cT1 renal mass in solitary kidney: A multicenter trifecta comparative analysis versus robot-assisted partial nephrectomy. Eur. J. Surg. Oncol. 2023, 49, 486–490. [Google Scholar] [CrossRef]
- Hung, A.J.; Cai, J.; Simmons, M.N.; Gill, I.S. “Trifecta” in Partial Nephrectomy. J. Urol. 2013, 189, 36–42. [Google Scholar] [CrossRef]
- Waas, T.; Schulz, A.; Lotz, J.; Rossmann, H.; Pfeiffer, N.; Beutel, M.E.; Schmidtmann, I.; Münzel, T.; Wild, P.S.; Lackner, K.J. Distribution of estimated glomerular filtration rate and determinants of its age dependent loss in a German population-based study. Sci. Rep. 2021, 11, 10165. [Google Scholar] [CrossRef]
- Glassock, R.J.; Rule, A.D. Aging and the kidneys: Anatomy, physiology and consequences for defining chronic kidney disease. Nephron 2016, 134, 25–29. [Google Scholar] [CrossRef]
- Noronha, I.L.; Santa-Catharina, G.P.; Andrade, L.; Coelho, V.A.; Jacob-Filho, W.; Elias, R.M. Glomerular filtration in the aging population. Front. Med. 2022, 9, 769329. [Google Scholar] [CrossRef] [PubMed]
- Woldu, S.L.; Thoreson, G.R.; Okhunov, Z.; Ghandour, R.; Rothberg, M.B.; RoyChoudhury, A.; Kim, H.H.; Bozoghlanian, M.; Newhouse, J.H.; Helmy, M.A. Comparison of renal parenchymal volume preservation between partial nephrectomy, cryoablation, and radiofrequency ablation using 3D volume measurements. J. Endourol. 2015, 29, 948–955. [Google Scholar] [CrossRef]
- Beemster, P.W.; Barwari, K.; Mamoulakis, C.; Wijkstra, H.; de la Rosette, J.J.; Laguna, M.P. Laparoscopic renal cryoablation using ultrathin 17-gauge cryoprobes: Mid-term oncological and functional results. BJU Int.-Br. J. Urol. 2011, 108, 577. [Google Scholar] [CrossRef]
- Mason, R.J.; Atwell, T.D.; Lohse, C.; Bhindi, B.; Weisbrod, A.; Boorjian, S.A.; Leibovich, B.C.; Schmit, G.D.; Thompson, R.H. Renal functional outcomes in patients undergoing percutaneous cryoablation or partial nephrectomy for a solitary renal mass. BJU Int. 2017, 120, 544–549. [Google Scholar] [CrossRef]
- Britton, C.J.; Sharma, V.; Lohse, C.M.; Lieske, J.C.; Nichols, P.E.; Khanna, A.; Cheville, J.C.; Boorjian, S.A.; Leibovich, B.C.; Thompson, R.H.; et al. Progression of Chronic Kidney Disease Following Radical and Partial Nephrectomy. Urology 2022, 169, 125–133. [Google Scholar] [CrossRef]
- Stacul, F.; Sachs, C.; Giudici, F.; Bertolotto, M.; Rizzo, M.; Pavan, N.; Balestreri, L.; Lenardon, O.; Pinzani, A.; Pola, L.; et al. Cryoablation of renal tumors: Long-term follow-up from a multicenter experience. Abdom. Radiol. 2021, 46, 4476–4488. [Google Scholar] [CrossRef] [PubMed]
- Henderickx, M.; Sträter-Ruiter, A.E.C.; van der West, A.E.; Beerlage, H.P.; Zondervan, P.J.; Lagerveld, B.W. Laparoscopic cryoablation for small renal masses: Oncological outcomes at 5-year follow-up. Arab. J. Urol. 2020, 19, 159–165. [Google Scholar] [CrossRef]
- Dong, L.; Liang, W.Y.; Ya, L.; Yang, L.; Qiang, W. A Systematic Review and Meta-Analysis of Minimally Invasive Partial Nephrectomy Versus Focal Therapy for Small Renal Masses. Front. Oncol. 2022, 12, 732714. [Google Scholar] [CrossRef] [PubMed]
- Piasentin, A.; Claps, F.; Silvestri, T.; Rebez, G.; Traunero, F.; Mir, M.C.; Rizzo, M.; Celia, A.; Cicero, C.; Urbani, M.; et al. Assessing Trifecta Achievement after Percutaneous Cryoablation of Small Renal Masses: Results from a Multi-Institutional Collaboration. Medicina 2022, 58, 1041. [Google Scholar] [CrossRef]
- Lucignani, G.; Rizzo, M.; Ierardi, A.M.; Piasentin, A.; De Lorenzis, E.; Trombetta, C.; Liguori, G.; Bertolotto, M.; Carrafiello, G.; Montanari, E.; et al. A Trifecta-Based Evaluation of Patients Treated with Percutaneous Thermal Ablation of Small Renal Masses. J. Endourol. 2024, 39, 38–45. [Google Scholar] [CrossRef]
- Pandolfo, S.D.; Beksac, A.T.; Derweesh, I.; Celia, A.; Schiavina, R.; Bianchi, L.; Costa, G.; Carbonara, U.; Loizzo, D.; Lucarelli, G.; et al. Percutaneous Ablation vs Robot-Assisted Partial Nephrectomy for Completely Endophytic Renal Masses: A Multicenter Trifecta Analysis with a Minimum 3-Year Follow-Up. J. Endourol. 2023, 37, 279–285. [Google Scholar] [CrossRef] [PubMed]
Status | Overall (129, 100%) | RCC (62, 48%) | No Biopsy (43, 33%) | Benign Pathology (24, 19%) |
---|---|---|---|---|
Age (Years) | ||||
Median (IQR) | 67 (58–74) | 67 (59–72) | 68 (55–78) | 68 (59–73) |
Gender (%) | ||||
Female | 47 (36) | 20 (32) | 18 (42) | 9 (37) |
Male | 82 (64) | 42 (68) | 25 (58) | 15 (63) |
Race (%) | ||||
Black | 42 (33) | 18 (29) | 18 (42) | 6 (25) |
White | 83 (64) | 43 (69) | 22 (51) | 18 (75) |
Other | 4 (3) | 1 (2) | 3 (7) | None |
BMI | ||||
Median (IQR) | 28.1 (25–32) | 28.7 (25.7–32.6) | 27.70 (24.8–32.6) | 27.9 (25.4–30.8) |
Comorbidities (%) | ||||
CAD (%) | 23 (18) | 15 (24) | 4 (10) | 4 (17) |
DM (%) | 35 (27) | 16 (26) | 12 (29) | 7 (29) |
Hypertension (%) | 93 (72) | 42 (68) | 33 (79) | 18 (75) |
COPD (%) | 11 (9) | 6 (10) | 4 (10) | 1 (4) |
Dyslipidemia (%) | 47 (36) | 21 (34) | 14 (33) | 12 (50) |
PVD (%) | 14 (11) | 8 (13) | 2 (5) | 4 (17) |
Solitary Kidney (%) | 13 (10) | 7 (11) | 5 (12) | 1 (4) |
Renal Transplant (%) | 2 (2) | 0 (0) | 2 (5) | 0 (0) |
Smoking (%) | 63 (49) | 33 (53) | 17 (41) | 13 (54) |
Status |
Overall
(129 Patients) |
RCC
(62 Patients) |
No Biopsy
(43 Patients) |
Benign Pathology
(24 Patients) |
---|---|---|---|---|
Tumor Length (cm) | ||||
Median (IQR) | 2.0 (1.6–2.6) | 2.2 (1.6–2.6) | 2.1 (1.8–2.6) | 1.7 (1.6–1.9) |
Tumor Width (cm) | ||||
Median (IQR) | 1.7 (1.3–2.3) | 1.8 (1.5–2.3) | 1.7 (1.3–2.3) | 1.6 (1.3–1.9) |
Tumor volume * (cc) | ||||
Median (IQR) | 3.3 (1.6–6.6) | 3.7 (1.9–6.9) | 3.2 (1.6–6.6) | 2.4 (1.2–3.8) |
Number of Probes | ||||
Median (IQR) | 3 (2–4) | 4 (3–4) | 2 (2–3) | 3 (2–4) |
RENAL Nephrometry Scores | ||||
Median (IQR) | 6.0 (5–8) | 6 (6–7) | 7 (6–8) | 6.5 (5–7) |
Pole (%) | ||||
Lower | 45/127 (35) | 19/61 (31) | 18/44 (41) | 8/22 (36) |
Central | 54/127 (43) | 28/61 (46) | 15/44 (34) | 11/22 (50) |
Upper | 28/127 (22) | 14/61 (23) | 11/44 (25) | 3/22 (14) |
Location (%) | ||||
Anterior | 46/120 (38) | 27/61 (38) | 12/36 (33) | 7/23 (31) |
Posterior | 40/120 (33) | 17/61 (28) | 12/36 (33) | 11/23 (48) |
Lateral | 27/120 (23) | 14/61 (23) | 9/36 (25) | 4/23 (17) |
Medial | 7/120 (6) | 3/61 (5) | 3/36 (8) | 1/23 (4) |
Hilar (%) | 1/108 (1) | 1/57 (2) | 0/33 (0) | 0/18 (0) |
Laterality (%) | ||||
Left | 61/129 (47) | 36/62 (58) | 15/43 (35) | 10/24 (42) |
Right | 68/129 (53) | 26/62 (42) | 28/43 (65) | 14/24 (58) |
Polar Line Crossing | ||||
Entirely higher/Lower | 31/108 (29) | 15/57 (26) | 10/33 (31) | 6/18 (33) |
Cross <50% | 32/108 (30) | 17/57 (30) | 8/33 (23) | 7/18 (39) |
Cross ≥50% | 11/108 (10) | 7/57 (12) | 3/33 (9) | 1/18 (6) |
Between lines | 16/108 (15) | 9/57 (16) | 4/33 (11) | 3/18 (16) |
Cross axial midline | 18/108 (17) | 9/57 (16) | 8/33 (26) | 1/18 (6) |
Distance from Collecting system | ||||
≤4 mm | 38/108 (35) | 18/57 (31) | 15/33 (45) | 5/18 (28) |
4–7 mm | 23/108 (21) | 14/57 (25) | 3/33 (10) | 6/18 (33) |
≥7 mm | 47/108 (43) | 25/57 (44) | 15/33 (45) | 7/18 (39) |
Duration of Hospitalization for Initial Cryoablation (days) | ||||
Median (IQR) | 1.0 (0.0–1.0) | 1 (1.0–2.0) | 0.0 (0.0–0.0) | 1 (1.0–1.5) |
Time Point I | Time Point J |
Mean Creatinine
(SE) (mg/dL) | 95% CI | Pairwise Comparisons | Mean Difference [I-J] (SE) ** | p-Value * |
---|---|---|---|---|---|---|
Preoperative | 1.15 (0.07) | 1.01–1.28 | reference | reference | reference | |
0–3 months | 1.24 (0.07) | 1.10–1.38 | vs. preoperative | 0.09 (0.02) | <0.001 | |
3–12 months | 1.26 (0.09) | 1.08–1.44 | vs. preoperative | 0.11 (0.04) | 0.047 | |
12–24 months | 1.29 (0.09) | 1.12–1.46 | vs. preoperative | 0.15 (0.04) | 0.007 | |
24–36 months | 1.31 (0.09) | 1.14–1.48 | vs. preoperative | 0.16 (0.05) | 0.023 | |
24–36 months | - | - | vs. 0–3 months | 0.07 (0.05) | >0.99 | |
Time Point I | Time Point J | Mean eGFR (SE) (mL/min/1.73 m2) | 95% CI | Pairwise Comparisons | Mean Difference [I-J] (SE) ** | p-Value |
Preoperative | 71.9 (2.4) | 67.3–76.6 | reference | reference | reference | |
0–3 months | 67.4 (2.5) | 62.5–72.3 | vs. preoperative | −4.5 (1.5) | 0.021 | |
3–12 months | 67.6 (2.4) | 62.8–72.3 | vs. preoperative | −4.3 (1.8) | 0.186 | |
12–24 months | 64.8 (2.6) | 59.6–69.9 | vs. preoperative | −7.1 (2.3) | 0.021 | |
24–36 months | 65.8 (3.0) | 58.8–70.6 | vs. preoperative | −7.1 (2.9) | 0.13 | |
24–36 months | - | - | vs. 0–3 months | −2.6 (2.8) | >0.99 |
Variable | Unadjusted HR | p | n | Adjusted HR | p | n |
---|---|---|---|---|---|---|
Female Sex | 0.68 (0.07, 3.65) | 0.67 | 62 | |||
Black Race | 0.21 (0.00, 1.82) | 0.18 | 62 | |||
Age | 1.04 (0.96, 1.14) | 0.42 | 62 | |||
BMI | 0.98 (0.84, 1.13) | 0.82 | 61 | |||
Smoking | 1.32 (0.26, 7.96) | 0.73 | 62 | |||
Hypertension | 4.97 (0.56, 653.38) | 0.18 | 62 | |||
Diabetes | 0.24 (0.00, 2.13) | 0.24 | 62 | |||
Dyslipidemia | 4.55 (0.75–47.02) | 0.1 | 62 | |||
Coronary Arterial Disease | 2.42 (0.40, 12.52) | 0.31 | 62 | |||
COPD | 0.96 (0.01, 8.48) | 0.98 | 62 | |||
ASA Score | 0.47 (0.04, 4.91) | 0.52 | 40 | |||
History of Past Abdominal Surgery | 0.96 (0.19, 5.75) | 0.96 | 62 | |||
Distance from collecting system ≤7 mm | 1.74 (0.29, 18.01) | 0.56 | 57 | |||
Distance from collecting system ≤4 mm | 0.93 (0.09, 5.73) | 0.94 | 57 | |||
Exophytic Mass (Any) | 0.83 (0.09, 110.83) | 0.91 | 57 | |||
Exophytic Mass >50% | 0.54 (0.08, 3.50) | 0.5 | 57 | |||
Location to Polar Lines | 1.81 (0.92, 4.46) | 0.09 | 57 | |||
Preoperative Creatinine | 1.20 (0.06, 9.52) | 0.88 | 61 | |||
eGFR Pre-ablation | 0.99 (0.95, 1.03) | 0.57 | 61 | |||
eGFR Post-ablation | 0.98 (0.94, 1.02) | 0.36 | 39 | |||
Percutaneous vs. Laparoscopic | 5.99 (0.79, 65.58) | 0.08 | 60 | |||
Number of Ablation Probes | 1.13 (0.59, 2.11) | 0.71 | 62 | |||
Solitary Kidney at Ablation | 6.69 (1.11, 34.56) | 0.04 | 62 | 9.05 (0.52, 128) | 0.11 | 51 |
Clavien–Dindo Grade (1–4) | 0.77 (0.15, 1.75) | 0.59 | 62 | |||
Clavien–Dindo Grade > 2 | 1.25 (0.01, 11.08) | 0.88 | 62 | |||
Tumor Diameter | 2.30 (0.84, 6.21) | 0.1 | 62 | |||
Tumor Volume (L × W2 × 0.52) | 1.12 (1.02, 1.25) | 0.03 | 51 | 1.1 (1.00, 1.22) | 0.06 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mottaghi, M.; Ghoreifi, A.; Deivasigamani, S.; Balaji, S.; Adams, E.S.; Tsivian, M.; Kim, C.Y.; Polascik, T.J. Small Renal Mass Cryoablation: Trifecta Outcomes of a Single-Institution Experience with a 20-Year Follow-Up. Cancers 2025, 17, 2960. https://doi.org/10.3390/cancers17182960
Mottaghi M, Ghoreifi A, Deivasigamani S, Balaji S, Adams ES, Tsivian M, Kim CY, Polascik TJ. Small Renal Mass Cryoablation: Trifecta Outcomes of a Single-Institution Experience with a 20-Year Follow-Up. Cancers. 2025; 17(18):2960. https://doi.org/10.3390/cancers17182960
Chicago/Turabian StyleMottaghi, Mahdi, Alireza Ghoreifi, Sriram Deivasigamani, Sudharshanan Balaji, Eric S. Adams, Matvey Tsivian, Charles Y. Kim, and Thomas J. Polascik. 2025. "Small Renal Mass Cryoablation: Trifecta Outcomes of a Single-Institution Experience with a 20-Year Follow-Up" Cancers 17, no. 18: 2960. https://doi.org/10.3390/cancers17182960
APA StyleMottaghi, M., Ghoreifi, A., Deivasigamani, S., Balaji, S., Adams, E. S., Tsivian, M., Kim, C. Y., & Polascik, T. J. (2025). Small Renal Mass Cryoablation: Trifecta Outcomes of a Single-Institution Experience with a 20-Year Follow-Up. Cancers, 17(18), 2960. https://doi.org/10.3390/cancers17182960