Short-Term Outcomes in Planned Versus Unplanned Surgery for Spinal Metastases
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collected Variables
2.2. Endpoints
2.3. Statistical Analysis
3. Results
3.1. Failure to Rescue
3.2. Thirty-Day Major Complications
3.3. Thirty-Day Mortality
3.4. Length of Hospital Stay
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van den Brande, R.; Cornips, E.M.; Peeters, M.; Ost, P.; Billiet, C.; Van de Kelft, E. Epidemiology of Spinal Metastases, Metastatic Epidural Spinal Cord Compression and Pathologic Vertebral Compression Fractures in Patients with Solid Tumors: A Systematic Review. J. Bone Oncol. 2022, 35, 100446. [Google Scholar] [CrossRef] [PubMed]
- Litak, J.; Czyżewski, W.; Szymoniuk, M.; Sakwa, L.; Pasierb, B.; Litak, J.; Hoffman, Z.; Kamieniak, P.; Roliński, J. Biological and Clinical Aspects of Metastatic Spinal Tumors. Cancers 2022, 14, 4599. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, F.; Wang, W. Treatment Progress of Spinal Metastatic Cancer: A Powerful Tool for Improving the Quality of Life of the Patients. J. Orthop. Surg. 2023, 18, 563. [Google Scholar] [CrossRef] [PubMed]
- Schupper, A.J.; Patel, S.; Steinberger, J.M.; Germano, I.M. The Role of Minimally Invasive Surgery within a Multidisciplinary Approach for Patients with Metastatic Spine Disease over a Decade: A Systematic Review. Neuro-Oncology 2024, 26, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Zaveri, G.R.; Jain, R.; Mehta, N.; Garg, B. An Overview of Decision Making in the Management of Metastatic Spinal Tumors. Indian J. Orthop. 2021, 55, 799–814. [Google Scholar] [CrossRef] [PubMed]
- Faraj, C.A.; Snyder, R.I.; Tatsui, C.E.; McCutcheon, I.E. Neurosurgical Emergencies in Spinal Tumors: Pathophysiology and Clinical Management. Emerg. Cancer Care 2024, 3, 2. [Google Scholar] [CrossRef]
- Zheng, J.; Ding, X.; Wu, J.; Li, L.; Gao, X.; Huang, Q.; Sun, Z.; Ma, J.; Yin, M. Prognostic Factors and Outcomes of Surgical Intervention for Patients with Spinal Metastases Secondary to Lung Cancer: An Update Systematic Review and Meta Analysis. Eur. Spine J. 2023, 32, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Miranda, S.P.; Sullivan, P.Z.; Albayar, A.; Ramayya, A.G.; Blue, R.; Ali, Z.S.; Malhotra, N.; Marcotte, P.; Yoon, J.; Saifi, C.; et al. Preoperative Predictors of Survival in Patients With Spinal Metastatic Disease. Int. J. Spine Surg. 2023, 17, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.-Y.; Lu, J.-L.; Wu, M.-W.; Zhou, K.-Z.; Jin, L.-L. The Risk Factors Influencing Nonroutine Discharge in Surgical Patients with Spinal Metastases: A Scoping Review. Support. Care Cancer 2025, 33, 424. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y.; Kakutani, K.; Sakai, Y.; Yurube, T.; Takeoka, Y.; Miyazaki, K.; Ohnishi, H.; Matsuo, T.; Ryu, M.; Kumagai, N.; et al. Clinical Characteristics, Surgical Outcomes, and Risk Factors for Emergency Surgery in Patients With Spinal Metastases: A Prospective Cohort Study. Neurospine 2024, 21, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Zeoli, T.; Chanbour, H.; Ahluwalia, R.; Abtahi, A.M.; Stephens, B.F.; Zuckerman, S.L. Does Elective Admission vs. Emergency Department Presentation Affect Surgical Outcomes in Metastatic Spine Surgery? Diagnostics 2024, 14, 1058. [Google Scholar] [CrossRef] [PubMed]
- Linzey, J.R.; Kathawate, V.G.; Strong, M.J.; Roche, K.; Goethe, P.E.; Tudrick, L.R.; Lee, J.; Tripathy, A.; Koduri, S.; Ward, A.L.; et al. Patients with Progression of Spinal Metastases Who Present to the Clinic Have Better Outcomes Compared to Those Who Present to the Emergency Department. Cancer Med. 2023, 12, 20177–20187. [Google Scholar] [CrossRef] [PubMed]
- Shuman, W.H.; Chapman, E.K.; Gal, J.S.; Neifert, S.N.; Martini, M.L.; Schupper, A.J.; Lamb, C.D.; McNeill, I.T.; Gilligan, J.; Caridi, J.M. Surgery for Spinal Deformity: Non-Elective Admission Status Is Associated with Higher Cost of Care and Longer Length of Stay. Spine Deform. 2021, 9, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Dandurand, C.; Hindi, M.N.; Laghaei, P.F.; Mashayekhi, M.S.; Kwon, B.K.; Dea, N.; Fisher, C.G.; Charest-Morin, R.; Ailon, T.; Boyd, M.; et al. Degenerative Spinal Conditions Requiring Emergency Surgery: An Evolving Crisis in a Publicly Funded Health Care System. Can. J. Surg. J. Can. Chir. 2023, 66, E274–E281. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R.; Witiw, C.D.; Badhiwala, J.; Kwon, B.K.; Fehlings, M.G.; Harrop, J.S. Early Surgery for Traumatic Spinal Cord Injury: Where Are We Now? Glob. Spine J. 2020, 10, 84S–91S. [Google Scholar] [CrossRef] [PubMed]
- Rigney, G.H.; Massaad, E.; Kiapour, A.; Razak, S.S.; Duvall, J.B.; Burrows, A.; Khalid, S.I.; De La Garza Ramos, R.; Tobert, D.G.; Williamson, T.; et al. Implication of Nutritional Status for Adverse Outcomes after Surgery for Metastatic Spine Tumors. J. Neurosurg. Spine 2023, 39, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, M.G.; Odedosu, K.O.; Romito, B.T. Preoperative Optimization and Intraoperative Enhanced Recovery Principles for Patients Undergoing Spine Surgery. In Multidisciplinary Spine Care; Noe, C.E., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 355–379. ISBN 978-3-031-04990-3. [Google Scholar]
- MacLean, M.A.; Touchette, C.J.; Georgiopoulos, M.; Brunette-Clément, T.; Abduljabbar, F.H.; Ames, C.P.; Bettegowda, C.; Charest-Morin, R.; Dea, N.; Fehlings, M.G.; et al. Systemic Considerations for the Surgical Treatment of Spinal Metastatic Disease: A Scoping Literature Review. Lancet Oncol. 2022, 23, e321–e333. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.K.; Cheung, Z.B.; Vig, K.S.; Phan, K.; Lima, M.C.; Kim, J.S.; Di Capua, J.; Kaji, D.A.; Arvind, V.; Cho, S.K. Hypoalbuminemia as an Independent Risk Factor for Perioperative Complications Following Surgical Decompression of Spinal Metastases. Glob. Spine J. 2019, 9, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Gelebo, K.G.; Neme, D.; Destaw, B.; Aweke, Z.; Kasa, S.M. The Effect of Preoperative Anemia on Perioperative Outcomes among Patients Undergoing Emergency Surgery: A Multicenter Prospective Cohort Study. Heliyon 2023, 9, e17804. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, Y.; Tamai, K.; Oka, M.; Habibi, H.; Terai, H.; Hoshino, M.; Toyoda, H.; Suzuki, A.; Takahashi, S.; Nakamura, H. Prevalence, Risk Factors, and Potential Symptoms of Hyponatremia after Spinal Surgery in Elderly Patients. Sci. Rep. 2022, 12, 18622. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.; Heard, J.; Lee, Y.; McCurdy, M.; Narayanan, R.; Kolowrat, S.; Gibbons, L.; Hagan, T.; Canseco, J.A.; Hilibrand, A.S.; et al. The Prevalence of Depression and Anxiety in Patients with Metastatic Disease to the Spine. J. Craniovertebral Junction Spine 2024, 15, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Camino-Willhuber, G.; Oyadomari, S.; Ochoa, J.; Holc, F.; Guiroy, A.; Bow, H.; Hashmi, S.; Oh, M.; Bhatia, N.; Lee, Y.-P. The Impact of Stratified Hypoalbuminemia and Dialysis on Morbidity/Mortality after Posterior Spinal Fusion Surgery: An ACS-NSQIP Study. Surg. Neurol. Int. 2022, 13, 359. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Cheng, X.; Jia, L.; Tian, Y.; He, J.; He, M.; Chen, L.; Hao, P.; Li, T.; Chong, W.; et al. Preoperative Hematocrit Levels and Postoperative Mortality in Patients Undergoing Craniotomy for Brain Tumors. Front. Oncol. 2023, 13, 1246220. [Google Scholar] [CrossRef] [PubMed]
- Sletvold, T.P.; Boland, S.; Schipmann, S.; Mahesparan, R. Quality Indicators for Evaluating the 30-Day Postoperative Outcome in Pediatric Brain Tumor Surgery: A 10-Year Single-Center Study and Systematic Review of the Literature. J. Neurosurg. Pediatr. 2023, 31, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Prvulovic, S.T.; Roy, J.M.; Warrier, A.; Jagtiani, P.; Hirsch, J.; Covell, M.M.; Bowers, C.A. Frailty Predicts Failure to Rescue Following Malignant Brain Tumor Resection: A National Surgical Quality Improvement Program Analysis of 14,721 Patients/(2012–2020). World Neurosurg. 2025, 195, 123671. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.Y.; Choi, E.H.; Oh, M.Y.; Vadera, S.; Chen, J.W.; Golshani, K.; Wilson, W.C.; Hsu, F.P.K. Elective versus Nonelective Brain Tumor Resections: A 5-Year Propensity Score Matching Cost Comparison Analysis. J. Neurosurg. 2022, 136, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Velluto, C.; Smakaj, A.; Meluzio, M.C.; Borruto, M.I.; Vitiello, R.; Maccauro, G.; Franchini, A.; Gorgoglione, F.L.; Proietti, L. Epidemiology, Diagnosis, Management, and Prognosis of Spinal Metastasis: The State-of-the-Art. In Cancer Metastasis, Management and Complications: An Interdisciplinary Approach; Rezaei, N., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 125–161. ISBN 978-3-031-93546-6. [Google Scholar]
- Kurisunkal, V.; Gulia, A.; Gupta, S. Principles of Management of Spine Metastasis. Indian J. Orthop. 2020, 54, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K.; Uchino, K.; Watanabe, S.; Misaki, K.; Iba, H. Effect of Minimally Invasive Spine Stabilization in Metastatic Spinal Tumors. Med. Kaunas Lith. 2022, 58, 358. [Google Scholar] [CrossRef] [PubMed]
- Barzilai, O.; Bilsky, M.H.; Laufer, I. The Role of Minimal Access Surgery in the Treatment of Spinal Metastatic Tumors. Glob. Spine J. 2020, 10, 79S–87S. [Google Scholar] [CrossRef] [PubMed]
- Esperança-Martins, M.; Roque, D.; Barroso, T.; Abrunhosa-Branquinho, A.; Belo, D.; Simas, N.; Costa, L. Multidisciplinary Approach to Spinal Metastases and Metastatic Spinal Cord Compression-A New Integrative Flowchart for Patient Management. Cancers 2023, 15, 1796. [Google Scholar] [CrossRef] [PubMed]
- van Tol, F.R.; Versteeg, A.L.; Verkooijen, H.M.; Öner, F.C.; Verlaan, J.-J. Time to Surgical Treatment for Metastatic Spinal Disease: Identification of Delay Intervals. Glob. Spine J. 2023, 13, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Araghi, K.; Subramanian, T.; Haque, N.; Merrill, R.; Amen, T.B.; Shahi, P.; Singh, S.; Maayan, O.; Sheha, E.; Dowdell, J.; et al. Provider Referral Patterns and Surgical Utilization Among New Patients Seen in Spine Clinic. Spine 2023, 48, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Rispoli, R.; Giorgiutti, F.; Veltri, C.; Copetti, E.; Imbruce’, P.; Iacopino, G.; Cappelletto, B. The Efficacy of a Multidisciplinary Approach and Diagnostic-Therapeutic Algorithm for Vertebral Metastases with Spinal Cord Compression. Med. Kaunas Lith. 2024, 60, 1020. [Google Scholar] [CrossRef] [PubMed]
- Houston, R.; Desai, S.; Takayanagi, A.; Quynh Thu Tran, C.; Mortezaei, A.; Oladaskari, A.; Sourani, A.; Siddiqi, I.; Khodayari, B.; Ho, A.; et al. A Multidisciplinary Update on Treatment Modalities for Metastatic Spinal Tumors with a Surgical Emphasis: A Literature Review and Evaluation of the Role of Artificial Intelligence. Cancers 2024, 16, 2800. [Google Scholar] [CrossRef] [PubMed]
- van Tol, F.R.; Suijkerbuijk, K.P.M.; Choi, D.; Verkooijen, H.M.; Oner, F.C.; Verlaan, J.-J. The Importance of Timely Treatment for Quality of Life and Survival in Patients with Symptomatic Spinal Metastases. Eur. Spine J. 2020, 29, 3170–3178. [Google Scholar] [CrossRef] [PubMed]
- van Tol, F.R.; Choi, D.; Verkooijen, H.M.; Oner, F.C.; Verlaan, J.-J. Delayed Presentation to a Spine Surgeon Is the Strongest Predictor of Poor Postoperative Outcome in Patients Surgically Treated for Symptomatic Spinal Metastases. Spine J. 2019, 19, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
Parameters | Planned Surgery | Unplanned Surgery | p-Value |
---|---|---|---|
Number of patients | 1284 | 863 | |
Age (mean, SD) | 61.87, 12.3 | 62.81, 12.7 | 0.08 |
Male sex (%) | 747 (58.2%) | 540 (62.6%) | 0.042 * |
Preoperative functional health status | 0.265 | ||
Independent (%) | 1162 (90.5%) | 761 (88.2%) | |
Partially dependent (%) | 101 (7.9%) | 88 (10.2%) | |
Totally dependent (%) | 16 (1.2%) | 12 (1.4%) | |
Unknown status (%) | 5 (0.4%) | 2 (0.2%) | |
BMI (mean kg/m2, SD) | 27.46, 6.1 | 27.25, 6.4 | 0.46 |
History of COPD (%) | 50 (3.9%) | 41 (4.8%) | 0.33 |
History of congestive heart failure (%) | 27 (2.1%) | 24 (2.8%) | 0.31 |
History of a bleeding disorder (%) | 71 (5.5%) | 77 (8.9%) | 0.002 * |
Preoperative dialysis (%) | 4 (0.3%) | 4 (0.5%) | 0.57 |
mFI-5 (mean, SD) | 0.73, 0.8 | 0.79, 0.8 | 0.09 |
ASA (mean, SD) | 3.02, 0.5 | 3.2, 0.5 | <0.001 * |
ASA status | <0.001 * | ||
ASA Class 1 (%) | 1 (0.1%) | 4 (0.5%) | |
ASA Class 2 (%) | 169 (13.2%) | 48 (5.6%) | |
ASA Class 3 (%) | 912 (71%) | 533 (61.8%) | |
ASA Class 4 (%) | 200 (15.6%) | 278 (32.2%) | |
Unknown class (%) | 2 (0.2%) | 0 (0%) | |
Chronic steroid use (%) | 250 (19.5%) | 163 (18.9%) | 0.73 |
Preoperative albumin level (g/dL) (mean, SD) | 3.72, 0.6 | 3.55, 0.6 | <0.001 * |
Albumin status | <0.001 * | ||
Normoalbuminemia | 980 (76.3%) | 583 (67.6%) | |
Mild hypoalbuminemia | 265 (20.6%) | 226 (26.2%) | |
Severe hypoalbuminemia | 39 (3%) | 54 (6.3%) | |
Preoperative hematocrit level (%) (mean, SD) | 36.84, 5.7 | 36.01, 5.9 | 0.001 * |
Anemic status | 0.001 * | ||
Normal | 477 (37.1%) | 270 (31.3%) | |
Mild anemia | 354 (27.6%) | 221 (25.6%) | |
Moderate anemia | 280 (21.8%) | 211 (24.4%) | |
Severe anemia | 173 (13.5%) | 161 (18.7%) | |
Preoperative white cell count (× 109/L) (mean, SD) | 8.88, 4.5 | 9.39, 5 | 0.016 * |
Operative time (hours) (mean, SD) | 3.82, 2 | 3.23, 1.7 | <0.001 * |
Fusion procedure (%) | 874 (68.1%) | 494 (57.2%) | <0.001 * |
Corpectomy (%) | 483 (37.6%) | 218 (25.3%) | <0.001 * |
Multilevel corpectomy (%) | 54 (4.2%) | 18 (2.1%) | 0.007 * |
Perioperative transfusion (%) | 246 (19.2%) | 161 (18.7%) | 0.77 |
Parameters | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
Male sex | 1.39 | 0.8–2.4 | 0.23 |
Preoperative functional health status | |||
Independent | REFERENCE | ||
Partially dependent | 1.66 | 0.79–3.48 | 0.17 |
Totally dependent | 2.97 | 0.69–12.72 | 0.14 |
Unknown status | 11.65 | 1.14–118.13 | 0.038 ¶ |
History of congestive heart failure | 1.96 | 0.63–6.09 | 0.24 |
History of a bleeding disorder | 2.06 | 1.04–4.08 | 0.037 ¶ |
mFI-5 | 1.08 | 0.78–1.5 | 0.62 |
ASA | 1.39 | 0.87–2.23 | 0.16 |
Preoperative albumin level | 0.6 | 0.39–0.92 | <0.019 ¶ |
Preoperative hematocrit level | 0.94 | 0.9–0.99 | 0.029 ¶ |
Preoperative white cell count | 1.07 | 1.03–1.11 | <0.001 ¶ |
Unplanned surgery | 2.11 | 1.24–3.56 | 0.005 ¶ |
Perioperative transfusion | 1.4 | 0.78–2.5 | 0.24 |
Parameters | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
Preoperative functional health status | |||
Independent | REFERENCE | ||
Partially dependent | 0.89 | 0.58–1.38 | 0.62 |
Totally dependent | 1.2 | 0.43–3.31 | 0.72 |
Unknown status | 3.45 | 0.54–21.92 | 0.18 |
History of congestive heart failure | 1.58 | 0.78–3.18 | 0.2 |
mFI-5 | 1.29 | 1.09–1.52 | 0.002 ¶ |
ASA | 1.13 | 0.89–1.43 | 0.28 |
Preoperative albumin level | 0.65 | 0.53–0.81 | <0.001 ¶ |
Preoperative hematocrit level | 0.97 | 0.94–0.99 | 0.014 ¶ |
Preoperative white cell count | 1.02 | 1–1.05 | 0.018 ¶ |
Unplanned surgery | 1.09 | 0.84–1.41 | 0.49 |
Multilevel corpectomy | 1.9 | 1.06–3.42 | 0.03 ¶ |
Perioperative transfusion | 1.59 | 1.18–2.13 | 0.002 ¶ |
Parameters | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
Age | 1 | 0.98–1.02 | 0.56 |
Male sex | 1.34 | 0.9–2.01 | 0.14 |
Preoperative functional health status | |||
Independent | REFERENCE | ||
Partially dependent | 1.19 | 0.66–2.16 | 0.54 |
Totally dependent | 1.74 | 0.49–6.19 | 0.39 |
Unknown status | 4.03 | 0.37–43.46 | 0.25 |
History of congestive heart failure | 1.68 | 0.66–4.23 | 0.27 |
History of a bleeding disorder | 2.29 | 1.37–3.85 | 0.002 ¶ |
mFI-5 | 1.08 | 0.83–1.39 | 0.54 |
ASA | 1.07 | 0.75–1.52 | 0.68 |
Preoperative albumin level | 0.56 | 0.4–0.76 | <0.001 ¶ |
Preoperative hematocrit level | 0.95 | 0.92–0.99 | 0.022 ¶ |
Preoperative white cell count | 1.08 | 1.05–1.12 | <0.001 ¶ |
Unplanned surgery | 1.84 | 1.25–2.72 | 0.002 ¶ |
Operative time | 0.91 | 0.8–1.02 | 0.127 |
Fusion procedure | 0.64 | 0.42–0.99 | 0.046 ¶ |
Perioperative transfusion | 1.45 | 0.92–2.27 | 0.1 |
Parameters | β | 95% CI | p-Value |
---|---|---|---|
Preoperative functional health status | |||
Independent | REFERENCE | ||
Partially dependent | 1.01 | −0.29–2.31 | 0.12 |
Totally dependent | 3.57 | 0.1–7.04 | 0.044 ¶ |
Unknown status | 6.07 | −0.12–12.27 | 0.05 |
History of bleeding disorder | 0.56 | −0.76–1.89 | 0.4 |
Preoperative dialysis | 2.87 | −2.4–8.16 | 0.28 |
mFI-5 | 0.03 | −0.42–0.49 | 0.87 |
ASA | 0.81 | 0.17–1.45 | 0.013 ¶ |
Preoperative albumin level | −2.02 | −2.63–−1.41 | <0.001 ¶ |
Preoperative hematocrit level | −0.13 | −0.2–−0.07 | <0.001 ¶ |
Preoperative white cell count | 0.1 | 0.03–0.18 | 0.003 ¶ |
Unplanned surgery | 2.7 | 1.97–3.43 | <0.001 ¶ |
Operative time | 0.78 | 0.59–0.97 | <0.001 ¶ |
Fusion procedure | 0.21 | −0.55–0.98 | 0.58 |
Perioperative transfusion | 0.17 | −0.75–1.09 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangash, A.H.; Kirnaz, S.; Fluss, R.; Cao, V.; Alexandrov, A.; Belman, L.; Gelfand, Y.; Murthy, S.G.; Yassari, R.; De la Garza Ramos, R. Short-Term Outcomes in Planned Versus Unplanned Surgery for Spinal Metastases. Cancers 2025, 17, 2403. https://doi.org/10.3390/cancers17142403
Bangash AH, Kirnaz S, Fluss R, Cao V, Alexandrov A, Belman L, Gelfand Y, Murthy SG, Yassari R, De la Garza Ramos R. Short-Term Outcomes in Planned Versus Unplanned Surgery for Spinal Metastases. Cancers. 2025; 17(14):2403. https://doi.org/10.3390/cancers17142403
Chicago/Turabian StyleBangash, Ali Haider, Sertac Kirnaz, Rose Fluss, Victoria Cao, Alexander Alexandrov, Liza Belman, Yaroslav Gelfand, Saikiran G. Murthy, Reza Yassari, and Rafael De la Garza Ramos. 2025. "Short-Term Outcomes in Planned Versus Unplanned Surgery for Spinal Metastases" Cancers 17, no. 14: 2403. https://doi.org/10.3390/cancers17142403
APA StyleBangash, A. H., Kirnaz, S., Fluss, R., Cao, V., Alexandrov, A., Belman, L., Gelfand, Y., Murthy, S. G., Yassari, R., & De la Garza Ramos, R. (2025). Short-Term Outcomes in Planned Versus Unplanned Surgery for Spinal Metastases. Cancers, 17(14), 2403. https://doi.org/10.3390/cancers17142403