Impact of Intraoperative Lidocaine During Oncologic Lung Resection on Long-Term Outcomes in Primary Lung Cancer: A Post Hoc Analysis of a Randomized Controlled Trial
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- IV-LIDO: IV lidocaine (1.5 mg/kg/h) + PV saline;
- PV-LIDO: PV lidocaine 2% (0.1 mL/kg/h) + IV saline;
- REMI: IV: remifentanil (0.1 mcg/kg/min) + PV saline.
Statistical Analysis
3. Results
3.1. Study Population
3.2. OS and Death Causes
3.3. DFS and Recurrence Origin
3.4. DFS Limited to Recurrences of Malignancies Present at the Time of Surgery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARISCAT | Assess Respiratory Risk in Surgical Patients in Catalonia |
ASA | American Society of Anesthesiologists Physical Status Classification System |
BAL | Bronchoalveolar Lavage Fluid |
BMI | Body Mass Index |
CD | Clavien Dindo classification |
CI | Confidence Interval |
CT | Chemotherapy |
DFS | Disease-Free Survival |
ERAS | Enhance Recovery After Surgery program |
HR | Hazard Rate |
ICU | Intensive Care Unit |
IT | Immunotherapy |
IV | Intravenous |
LA | Local Anesthetic |
LIDO | Lidocaine |
LRS | Lung Resection Surgery |
NOS | Not Otherwise Specified Lung Cancer |
NSAID | Nonsteroidal Anti-Inflammatory Drugs |
NSCLC | Non-Small Cell Lung Cancer |
OLV | One-Lung Ventilation |
OS | Overall Survival |
PEEP | Positive End Expiration Pressure |
PMN | Polymorphonuclear Lymphocytes |
PV | Paravertebral |
RCT | Randomized Controlled Trial |
REMI | Remifentanil |
RIOT | Return to Intended Oncologic Therapy |
RT | Radiotherapy |
Src | Src Family of Protein Tyrosine Kinases |
SSR | Surgical Stress Response |
Th | T helper cell type |
TLV | Two-Lung Ventilation |
TNF | Tumor Necrosis Factor |
VATS | Video-Assisted Thoracoscopy |
VGSC | Voltage-Gated Sodium Channels |
References
- Li, S.; Zhou, K.; Che, G.; Yang, M.; Su, J.; Shen, C.; Yu, P. Enhanced recovery programs in lung cancer surgery: Systematic review and meta-analysis of randomized controlled trials. Cancer Manag. Res. 2017, 9, 657–670. [Google Scholar] [CrossRef]
- Bezu, L.; Öksüz, D.A.; Bell, M.; Buggy, D.; Diaz-Cambronero, O.; Enlund, M.; Forget, P.; Gupta, A.; Hollmann, M.W.; Ionescu, D.; et al. Perioperative Immunosuppressive Factors during Cancer Surgery: An Updated Review. Cancers 2024, 16, 2304. [Google Scholar] [CrossRef]
- Hiller, J.G.; Perry, N.J.; Poulogiannis, G.; Riedel, B.; Sloan, E.K. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 2018, 15, 205–218. [Google Scholar] [CrossRef]
- Cusack, B.; Buggy, D. Anaesthesia, analgesia, and the surgical stress response. BJA Educ. 2020, 20, 321–328. [Google Scholar] [CrossRef]
- Sakamoto, K.; Arakawa, H.; Mita, S.; Ishiko, T.; Ikei, S.; Egami, H.; Hisano, S.; Ogawa, M. Elevation of circulating interleukin 6 after surgery: Factors influencing the serum level. Cytokine 1994, 6, 181–186. [Google Scholar] [CrossRef]
- Hollmann, M.W.; Durieux, M.E.; Fisher, D.M. Local Anesthetics and the Inflammatory Response. Anesthesiology 2000, 93, 858–875. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Sun, Y. Lidocaine inhibits proliferation and metastasis of lung cancer cell via regulation of miR-539/EGFR axis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2866–2874. [Google Scholar] [CrossRef] [PubMed]
- I Sessler, D.; Pei, L.; Huang, Y.; Fleischmann, E.; Marhofer, P.; Kurz, A.; Mayers, D.B.; A Meyer-Treschan, T.; Grady, M.; Tan, E.Y.; et al. Recurrence of breast cancer after regional or general anaesthesia: A randomised controlled trial. Lancet 2019, 394, 1807–1815. [Google Scholar] [CrossRef]
- Xu, Z.-Z.; Li, H.-J.; Li, M.-H.; Huang, S.-M.; Liu, Q.-H.; Li, J.; Li, X.-Y.; Wang, D.-X.; Sessler, D.I. Epidural Anesthesia–Analgesia and Recurrence-free Survival after Lung Cancer Surgery: A Randomized Trial. Anesthesiology 2021, 135, 419–432. [Google Scholar] [CrossRef]
- Cata, J.P.; Sessler, D.I. Lost in Translation: Failure of Preclinical Studies to Accurately Predict the Effect of Regional Analgesia on Cancer Recurrence. Anesthesiology 2024, 140, 361–374. [Google Scholar] [CrossRef]
- Le Provost, K.C.; Kepp, O.; Kroemer, G.; Bezu, L. Trial watch: Local anesthetics in cancer therapy. OncoImmunology 2024, 13, 2308940. [Google Scholar] [CrossRef]
- De la Gala, F.; Piñeiro, P.; Reyes, A.; Simón, C.; Vara, E.; Rancan, L.; Huerta, L.J.; Gonzalez, G.; Benito, C.; Muñoz, M.; et al. Effect of intraoperative paravertebral or intravenous lidocaine versus control during lung resection surgery on postoperative complications: A randomized controlled trial. Trials 2019, 20, 622. [Google Scholar] [CrossRef]
- De la Gala, F.; De la Fuente, E.; Piñeiro, P.; Reyes, A.; Duque, P.; Sánchez-Pedrosa, G.; Martínez-Gascueña, D.; Vara, E.; Rancan, L.; Simón, C.; et al. Effect of intraoperative paravertebral or intravenous lidocaine infusion on postoperative complications and inflammation after lung resection surgery: A randomised controlled trial. Br. J. Anaesth. 2025; in press. [Google Scholar] [CrossRef]
- Garutti, I.; Cabañero, A.; Vicente, R.; Sánchez, D.; Granell, M.; Fraile, C.; Navacerrada, M.R.; Novoa, N.; Sanchez-Pedrosa, G.; Congregado, M.; et al. Recommendations of the Society of Thoracic Surgery and the Section of Cardiothoracic and Vascular Surgery of the Spanish Society of Anesthesia, Resuscitation and Pain Therapy, for patients undergoing lung surgery included in an intensified recovery program. Rev. Española De Anestesiol. Y Reanim. (Engl. Ed.) 2022, 69, 208–241. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Canet, J.; Gallart, L.; Gomar, C.; Paluzie, G.; Vallès, J.; Castillo, J.; Sabaté, S.; Mazo, V.; Briones, Z.; Sanchis, J. Prediction of Postoperative Pulmonary Complications in a Population-based Surgical Cohort. Anesthesiology 2010, 113, 1338–1350. [Google Scholar] [CrossRef]
- Detterbeck, F.C.; Boffa, D.J.; Kim, A.W.; Tanoue, L.T. The Eighth Edition Lung Cancer Stage Classification. Chest 2017, 151, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, S.; Mazo, V.; Canet, J. Predicting postoperative pulmonary complications. Curr. Opin. Anaesthesiol. 2014, 27, 201–209. [Google Scholar] [CrossRef]
- Garutti, I.; De la Gala, F.; Piñeiro, P.; Rancan, L.; Vara, E.; Reyes, A.; Puente-Maestu, L.; Bellón, J.M.; Simón, C. Usefulness of combining clinical and biochemical parameters for prediction of postoperative pulmonary complications after lung resection surgery. J. Clin. Monit. Comput. 2019, 33, 1043–1054. [Google Scholar] [CrossRef]
- Booth, C.M.; Shepherd, F.A.; Peng, Y.; Darling, G.; Li, G.; Kong, W.; Biagi, J.J.; Mackillop, W.J. Time to adjuvant chemotherapy and survival in non–small cell lung cancer. Cancer 2012, 119, 1243–1250. [Google Scholar] [CrossRef]
- Ripollés-Melchor, J.; Abad-Motos, A.; Zorrilla-Vaca, A. Enhanced Recovery After Surgery (ERAS) in Surgical Oncology. Curr. Oncol. Rep. 2022, 24, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.B.; Mehran, R.J.; Mitchell, K.G.; Correa, A.M.; Sepesi, B.; Antonoff, M.B.; Rice, D.C. Enhanced recovery after thoracic surgery is associated with improved adjuvant chemotherapy completion for non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2019, 158, 279–286.e1. [Google Scholar] [CrossRef]
- Xu, D.; Luo, W.; Pandurangan, A. Effect of Ropivacaine Combined with Small Doses of Triamcinolone and Continuous Nerve Block of Unilateral Paravertebral Canal Guided by Ultrasound on Metastasis after Radical Treatment of Lung Cancer. J. Oncol. 2022, 2022, 310081. [Google Scholar] [CrossRef]
- Cata, J.P.; Gottumukkala, V.; Thakar, D.; Keerty, D.; Gebhardt, R.; Liu, D.D. Effects of postoperative epidural analgesia on recurrence-free and overall survival in patients with nonsmall cell lung cancer. J. Clin. Anesthesia 2014, 26, 3–17. [Google Scholar] [CrossRef]
- Wu, H.-L.; Tai, Y.-H.; Chan, M.-Y.; Tsou, M.-Y.; Chen, H.-H.; Chang, K.-Y. Effects of epidural analgesia on cancer recurrence and long-term mortality in patients after non-small-cell lung cancer resection: A propensity score-matched study. BMJ Open 2019, 9, e027618. [Google Scholar] [CrossRef]
- Badwe, R.A.; Parmar, V.; Nair, N.; Joshi, S.; Hawaldar, R.; Pawar, S.; Kadayaprath, G.; Borthakur, B.B.; Thammineedi, S.R.; Pandya, S.; et al. Effect of Peritumoral Infiltration of Local Anesthetic Before Surgery on Survival in Early Breast Cancer. J. Clin. Oncol. 2023, 41, 3318–3328. [Google Scholar] [CrossRef]
- Hollmann, M.W.; Durieux, M.E.; Graf, B.M. Novel local anaesthetics and novel indications for local anaesthetics. Curr. Opin. Anaesthesiol. 2001, 14, 741–749. [Google Scholar] [CrossRef]
- Sanchez-Sandoval, A.L.; Hernández-Plata, E.; Gomora, J.C. Voltage-gated sodium channels: From roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front. Pharmacol. 2023, 14, 1206136. [Google Scholar] [CrossRef]
- Piegeler, T.; Votta-Velis, E.G.; Liu, G.; Place, A.T.; Schwartz, D.E.; Beck-Schimmer, B.; Minshall, R.D.; Borgeat, A. Antimetastatic Potential of Amide-linked Local Anesthetics. Anesthesiology 2012, 117, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Bezu, L.; Chuang, A.W.; Sauvat, A.; Humeau, J.; Xie, W.; Cerrato, G.; Liu, P.; Zhao, L.; Zhang, S.; Le Naour, J.; et al. Local anesthetics elicit immune-dependent anticancer effects. J. Immunother. Cancer 2022, 10, e004151. [Google Scholar] [CrossRef]
- Martini, N.; Melamed, M.R. Multiple primary lung cancers. J. Thorac. Cardiovasc. Surg. 1975, 70, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Romaszko, A.M.; Doboszyńska, A. Multiple primary lung cancer: A literature review. Adv. Clin. Exp. Med. 2018, 27, 725–730. [Google Scholar] [CrossRef] [PubMed]
IV-LIDO (n = 36) | PV-LIDO (n = 30) | Lidocaine (IV + PV) (n = 66) | Remifentanil (n = 31) | |
---|---|---|---|---|
Demographics | ||||
Sex (Female) | 16 (44.4%) | 12 (40.0%) | 28 (42.4%) | 16 (51.6%) |
Age (years) | 67 (60–77) | 65 (59–75) | 67 (60–75) | 69 (61–75) |
Age > 80 years (vs. ≤80) | 5 (13.9%) | 5 (16.7%) | 10 (15.2%) | 0 (0.0%) |
BMI (kg/m2) | 27.6 (24.0–31.6) | 26.9 (24.4–30.7) | 27.5 (24.2–31.3) | 28.1 (22.1–32.0) |
Comorbidities | ||||
ASA classification: | ||||
| 1 (2.8%) | 0 (0.0%) | 1 (1.5%) | 1 (3.2%) |
| 17 (47.2%) | 8 (26.7%) | 25 (37.9%) | 13 (41.9%) |
| 18 (50.0%) | 21 (70.0%) | 39 (59.1%) | 16 (51.6%) |
| 0 (0.0%) | 1 (3.3%) | 1 (1.5%) | 1 (3.2%) |
| 18 (50.0%) | 22 (73.3%) | 40 (60.6%) | 17 (54.8%) |
ARISCAT high risk score (vs. intermediate) | 30 (83.3%) | 24 (80.0%) | 54 (81.8%) | 27 (87.1%) |
Smoker or ex-smoker (vs. non-smoker) | 27 (75.0%) | 27 (90.0%) | 54 (81.8%) | 24 (77.4%) |
Alcohol abuse | 1 (2.8%) | 0 (0.0%) | 1 (1.5%) | 1 (3.2%) |
Hypertension | 17 (47.2%) | 19 (63.3%) | 36 (54.5%) | 18 (58.1%) |
Diabetes | 8 (22.2%) | 3 (10.0%) | 11 (16.7%) | 11 (35.5%) |
Dyslipidemia | 12 (33.3%) | 14 (46.7%) | 26 (39.4%) | 15 (48.4%) |
Surgery characteristics | ||||
Lobectomy (vs. segmentectomy) | 27 (75.0%) | 22 (73.3%) | 49 (74.2%) | 28 (90.3%) |
Surgery duration (min) | 240 (200–275) | 240 (180–290) | 240 (195–285) | 240 (200–290) |
Surgery > 180 min (vs. ≤180 min) | 29 (80.6%) | 22 (73.3%) | 51 (77.3%) | 25 (80.6%) |
Thoracotomy conversion | 3 (8.3%) | 3 (10.0%) | 6 (9.1%) | 3 (9.7%) |
Intraoperative blood product transfusion | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
1st month postoperative course | ||||
Any complication | 16 (44.4%) | 15 (50.0%) | 31 (47.0%) | 20 (64.5%) |
Major complication (CD classification) | 2 (5.6%) | 1 (3.3%) | 3 (4.5%) | 6 (19.4%) * |
Pulmonary complication | 9 (25.0%) | 9 (30.0%) | 18 (27.3%) | 16 (51.6%) * |
Cardiac complication | 1 (2.8%) | 2 (6.7%) | 3 (4.5%) | 2 (6.5%) * |
Postoperative blood product transfusion | 2 (5.6%) | 1 (3.3%) | 3 (4.5%) | 0 (0.0%) |
1st month mortality | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Oncologic characteristics | ||||
Adjuvant treatments: | ||||
| 0 | 0 | 0 | 1 (3.2%) |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 (3.2%) |
| 7 (19.4%) | 3 (10.0%) | 10 (15.2%) | 8 (25.8%) |
| 3 (8.3%) | 0 (0.0%) | 3 (4.5%) | 2 (6.5%) |
| 0 | 0 | 0 | 1 (3.2%) |
Type of lung cancer: | ||||
| 21 (58.3%) | 24 (80.0%) | 45 (68.2%) | 19 (61.3%) |
| 8 (22.2%) | 2 (6.7%) | 10 (15.2%) | 7 (22.6%) |
| 3 (8.3%) | 1 (3.3%) | 4 (6.1%) | 1 (3.2%) |
| 3 (8.3%) | 3 (10.0%) | 6 (9.1%) | 2 (6.5%) |
| 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 2 (6.5%) |
| 1 (2.8%) | 0 (0.0%) | 1 (1.5%) | 0 (0.0%) |
Lung cancer stage: | ||||
| 17 (47.2%) | 22 (73.3%) | 39 (59.1%) | 15 (48.4%) |
| 10 (27.8%) | 5 (16.7%) | 15 (22.7%) | 5 (16.1%) |
| 1 (2.8%) | 0 (0.0%) | 1 (1.5%) | 4 (12.9%) |
| 2 (5.6%) | 2 (6.7%) | 4 (6.1%) | 2 (6.5%) |
| 5 (13.9%) | 1 (3.3%) | 6 (9.1%) | 5 (16.1%) |
| 1 (2.8%) | 0 (0.0%) | 1 (1.5%) | 0 (0.0%) |
| 9 (25.0%) | 3 (10.0%) | 12 (18.2.8%) | 11 (35.5%) |
Stage T: | ||||
| 2 (5.6%) | 3 (10.0%) | 5 (7.6%) | 0 (0.0%) |
| 17 (47.2%) | 19 (63.3%) | 36 (54.5%) | 17 (54.8%) |
| 15 (41.7%) | 5 (16.7%) | 20 (30.3%) | 11 (35.5%) |
| 2 (5.6%) | 3 (10.0%) | 5 (7.6%) | 2 (6.5%) |
| 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (3.2%) |
| 17 (47.2%) | 8 (26.7%) | 25 (37.9%) | 14 (45.2%) |
Stage N: | ||||
| 29 (80.6%) | 29 (96.7%) | 58 (87.9%) | 27 (87.1%) |
| 1 (2.8%) | 1 (3.3%) | 2 (3.0%) | 0 (0.0%) |
| 6 (16.7%) | 0 (0.0%) | 6 (9.1%) | 4 (12.9%) |
| 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
| 7 (19.4%) | 1 (3.3%) | 8 (12.1%) | 4 (12.9%) |
Variable | Univariate | Multivariate A | Multivariate B | |||
---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
LIDO_REMI (Remi vs. Lido) | 2.62 (1.12–6.12) | 0.026 | 2.59 (1.13–5.96) | 0.025 | 5.41 (1.86–15.72) | 0.002 |
Age > 80 years (vs. ≤ 80) | 3.12 (1.20–8.10) | 0.019 | - | - | 8.30 (2.20–31.27) | 0.002 |
ASA > II (III–IV vs. I–II) | 3.36 (1.13–10.04) | 0.030 | 2.75 (0.92–8.19) | 0.070 | 2.70 (0.89–8.23) | 0.081 |
Duration >180 min (vs. ≤180 min) | 0.50 (0.20–1.22) | 0.128 | 0.48 (0.20–1.12) | 0.091 | - | - |
Lung cancer stage > I (vs. I) | 2.97 (1.25–7.05) | 0.014 | 2.30 (0.96–5.50) | 0.061 | - | - |
Stage N > 0 (vs. 0) | 3.15 (1.09–9.08) | 0.034 | - | - | 4.51 (1.52–13.40) | 0.007 |
Time Interval | Cause of Death | Lidocaine (n = 66) | Remifentanil (n = 31) |
---|---|---|---|
1st-Year Deaths | Cancer progression—lung | 2 | 2 |
Cancer progression—other | 0 | 1 (previous prostate) | |
Non-cancer cause | 0 | 1 (pneumonia) | |
Total events | 2 | 4 | |
Deaths Between 1 and 3 Years | Cancer progression—lung | 2 | 0 |
Cancer progression—other | 0 | 1 (previous ovarian) | |
Non-cancer cause | 1 (pneumonia) | 1 (stroke) | |
Total events | 3 | 2 | |
Deaths After 3 Years | Cancer progression—lung | 2 | 2 |
Cancer progression—other | 1 (new bladder) | 0 | |
Non-cancer cause | 2 (renal insufficiency, cerebellar hemorrhage) | 3 (pneumonia, pancreatitis, Alzheimer’s disease) | |
Total events | 5 | 5 |
Variable | Univariate | Multivariate A | Multivariate B | |||
---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
LIDO_REMI (Remi vs. Lido) | 1.40 (0.75–2.60) | 0.292 | 1.29 (0.69–2.39) | 0.428 | 1.49 (0.78–2.84) | 0.225 |
ASA > II (III–IV vs. I–II) | 1.05 (0.59–1.88) | 0.866 | 0.93 (4.98–1.74) | 0.829 | - | - |
Lobectomy (vs. Segmentectomy) | 0.57 (0.29–1.10) | 0.096 | - | - | 0.47 (0.23–0.94) | 0.033 |
Duration > 180 min (vs. ≤180 min) | 0.92 (0.47–1.79) | 0.796 | 0.89 (0.43–1.85) | 0.756 | - | - |
Lung cancer stage > I (vs. I) | 1.78 (0.95–3.36) | 0.074 | 1.74 (0.90–3.36) | 0.101 | 1.83 (0.96–3.51) | 0.069 |
Time Interval | Type of Recurrence | Lidocaine (n = 66) | Remifentanil (n = 31) |
---|---|---|---|
1st-Year Recurrences | Same lung cancer | 5 | 4 |
Other previous cancer | 0 | 1 | |
Second primary lung cancer | 2 | 1 | |
Second primary non-lung cancer | 0 | 0 | |
Total events | 7 | 6 | |
Recurrences Between 1 and 3 Years | Same lung cancer | 5 | 3 |
Other previous cancer | 2 | 1 | |
Second primary lung cancer | 3 | 1 | |
Second primary non-lung cancer | 4 | 1 | |
Total events | 14 | 6 | |
Recurrences After 3 Years | Same lung cancer | 1 (1 after >54 months) | 0 |
Other previous cancer | 0 | 2 | |
Second primary lung cancer | 5 (3 after >54 months) | 0 | |
Second primary non-lung cancer | 2 (2 after >54 months) | 1 (1 after >54 months) | |
Total events | 8 | 3 |
Variable | Univariate | Multivariate A | Multivariate B | |||
---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
LIDO_REMI (Remi vs. Lido) | 2.02 (0.91–4.48) | 0.083 | 1.67 (0.75–3.73) | 0.211 | 2.10 (0.89–4.97) | 0.091 |
ASA > II (III–IV vs. I–II) | 0.77 (0.35–1.69) | 0.511 | 0.52 (0.22–1.24) | 0.141 | ||
Lobectomy (vs. Segmentectomy) | 0.44 (0.19–1.03) | 0.058 | - | - | 0.26 (0.11–0.65) | 0.004 |
Duration > 180 min (vs. ≤180 min) | 0.69 (0.29–1.61) | 0.390 | 0.55 (0.21–1.43) | 0.217 | ||
Postoperative transfusion | 3.69 (0.85–16.08) | 0.082 | - | - | ||
Postoperative CT | 2.97 (1.29–6.83) | 0.011 | - | - | 2.47 (0.78–7.88) | 0.126 |
Postoperative RT | 2.90 (0.90–9.38) | 0.076 | - | - | ||
Lung cancer stage > I (vs. I) | 2.80 (1.24–6.32) | 0.014 | 3.08 (1.38–6.87) | 0.006 | 1.76 (0.57–5.36) | 0.326 |
Stage N > 0 (vs. N0) | 2.56 (1.04–6.30) | 0.040 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Fuente, E.; de la Gala, F.; Hortal, J.; Simón, C.; Reyes, A.; Rancan, L.; Calvo, A.; Puig, A.; Vara, E.; Bellón, J.M.; et al. Impact of Intraoperative Lidocaine During Oncologic Lung Resection on Long-Term Outcomes in Primary Lung Cancer: A Post Hoc Analysis of a Randomized Controlled Trial. Cancers 2025, 17, 2923. https://doi.org/10.3390/cancers17172923
de la Fuente E, de la Gala F, Hortal J, Simón C, Reyes A, Rancan L, Calvo A, Puig A, Vara E, Bellón JM, et al. Impact of Intraoperative Lidocaine During Oncologic Lung Resection on Long-Term Outcomes in Primary Lung Cancer: A Post Hoc Analysis of a Randomized Controlled Trial. Cancers. 2025; 17(17):2923. https://doi.org/10.3390/cancers17172923
Chicago/Turabian Stylede la Fuente, Elena, Francisco de la Gala, Javier Hortal, Carlos Simón, Almudena Reyes, Lisa Rancan, Alberto Calvo, Angela Puig, Elena Vara, José María Bellón, and et al. 2025. "Impact of Intraoperative Lidocaine During Oncologic Lung Resection on Long-Term Outcomes in Primary Lung Cancer: A Post Hoc Analysis of a Randomized Controlled Trial" Cancers 17, no. 17: 2923. https://doi.org/10.3390/cancers17172923
APA Stylede la Fuente, E., de la Gala, F., Hortal, J., Simón, C., Reyes, A., Rancan, L., Calvo, A., Puig, A., Vara, E., Bellón, J. M., Piñeiro, P., & Garutti, I. (2025). Impact of Intraoperative Lidocaine During Oncologic Lung Resection on Long-Term Outcomes in Primary Lung Cancer: A Post Hoc Analysis of a Randomized Controlled Trial. Cancers, 17(17), 2923. https://doi.org/10.3390/cancers17172923