Distinct Metabolomic and Lipoprotein Signatures in Gall Bladder Cancer Patients of Black African Ancestry
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Recruitment and Sample Collection
2.2. Sample Processing
2.3. Sample Preparation
2.4. Nuclear Magnetic Resonance Analysis
2.5. Nuclear Magnetic Resonance Profiling
2.6. Statistics and Data Analysis
3. Results
3.1. Clinicopathological Features of Gall Bladder Cancer and Benign Biliary Pathology Patients
3.2. Dysregulated Metabolites and Lipoproteins in Gall Bladder Cancer Patients
Features | OR (95%CI) | p-Value |
---|---|---|
Conj Bili | 1.03 (1.01 1.06) | 0.272 |
LDL-TG | 1.00 (0.94 1.08) | 0.006 |
HDL-C | 1.03 (0.98 1.08) | 0.253 |
Ethanol | 0.23 (0.05 0.74) | 0.032 |
Asparagine | - | 0.854 |
GlycB | 1.41 (0.66 2.88) | 0.330 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1H | Proton |
95%CI | 95% confidence interval |
ALP | Alkaline phosphatase |
AUC | Area under the curve |
BBP | Benign biliary pathology |
C | Cholesterol |
CE | Cholesterol ester |
Conj Bili | Conjugated bilirubin |
CRP | C-reactive protein |
DIFF | Standard diffusion-edited |
FC | Free cholesterol |
FDR | False discovery rate |
GBC | Gall bladder cancer |
GGT | Gamma-glutamyl transferase |
HDL | High-density lipoprotein |
IDL | Intermediate-density lipoprotein |
IQR | Interquartile range |
LDL | Low-density lipoprotein |
NMR | Nuclear magnetic resonance |
NOESY | Nuclear Overhauser effect spectroscopy |
OR | Odds ratio |
P | Particle number |
PPM | Parts per million |
ROC | Receiver operating curve |
S | Size |
Tbili | Total bilirubin |
TG | Triglycerides |
VLDL | Very-low-density lipoprotein |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Torre, L.A.; Siegel, R.L.; Islami, F.; Bray, F.; Jemal, A. Worldwide burden of and trends in mortality from gallbladder and other biliary tract cancers. Clin. Gastroenterol. Hepatol. 2018, 16, 427–437. [Google Scholar] [CrossRef]
- Abdu, S.M.; Assefa, E.M. Prevalence of gallstone disease in Africa: A systematic review and meta-analysis. BMJ Open Gastroenterol. 2025, 12, e001441. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.A.; Khan, M.U.; Brand, M. Gallbladder cancer in Africa: A higher than expected rate in a “low-risk” population. Surgery 2022, 171, 855–858. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Thandra, K.C.; Barsouk, A. Epidemiology of gallbladder cancer. Clin. Exp. Hepatol. 2019, 5, 93–102. [Google Scholar] [CrossRef]
- Tirca, L.; Savin, C.; Stroescu, C.; Balescu, I.; Petrea, S.; Diaconu, C.; Gaspar, B.; Pop, L.; Varlas, V.; Hasegan, A. Risk factors and prognostic factors in GBC. J. Clin. Med. 2024, 13, 4201. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, K.; Yang, Y.; Ji, Z.; Zhou, D.; Ouyang, J.; Wang, Z.; Wang, F.; Liu, C.; Li, Q. Gallbladder cancer: Current and future treatment options. Front. Pharmacol. 2023, 14, 1183619. [Google Scholar] [CrossRef] [PubMed]
- Hundal, R.; Shaffer, E.A. Gallbladder cancer: Epidemiology and outcome. Clin. Epidemiol. 2014, 6, 99–109. [Google Scholar]
- Schmidt, M.A.; Marcano-Bonilla, L.; Roberts, L.R. Gallbladder cancer: Epidemiology and genetic risk associations. Chin. Clin. Oncol. 2019, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.A.; da Costa, W.L.; Thrift, A.P. Increasing incidence of gallbladder cancer among non-Hispanic Blacks in the United States: A birth cohort phenomenon. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1410–1417. [Google Scholar] [CrossRef]
- Baichan, P.; Naicker, P.; Augustine, T.N.; Smith, M.; Candy, G.; Devar, J.; Nweke, E.E. Proteomic analysis identifies dysregulated proteins and associated molecular pathways in a cohort of gallbladder cancer patients of African ancestry. Clin. Proteom. 2023, 20, 8. [Google Scholar] [CrossRef]
- Cacciatore, S.; Wium, M.; Licari, C.; Ajayi-Smith, A.; Masieri, L.; Anderson, C.; Salukazana, A.S.; Kaestner, L.; Carini, M.; Carbone, G.M. Inflammatory metabolic profile of South African patients with prostate cancer. Cancer Metab. 2021, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Mazibuko, J.; Elebo, N.; Williams, A.A.; Omoshoro-Jones, J.; Devar, J.W.; Smith, M.; Cacciatore, S.; Fru, P.N. Metabolites and lipoproteins may predict the severity of early Acute Pancreatitis in a South African cohort. Biomedicines 2024, 12, 2431. [Google Scholar] [CrossRef]
- Elebo, N.; Omoshoro-Jones, J.; Fru, P.N.; Devar, J.; De Wet van Zyl, C.; Vorster, B.C.; Smith, M.; Cacciatore, S.; Zerbini, L.F.; Candy, G. Serum metabolomic and lipoprotein profiling of pancreatic ductal adenocarcinoma patients of african ancestry. Metabolites 2021, 11, 663. [Google Scholar] [CrossRef] [PubMed]
- Elia, I.; Haigis, M.C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab. 2021, 3, 21–32. [Google Scholar] [CrossRef]
- Cacciatore, S.; Loda, M. Innovation in metabolomics to improve personalized healthcare. Ann. N. Y. Acad. Sci. 2015, 1346, 57–62. [Google Scholar] [CrossRef]
- Du, Y.; Wijaya, W.A.; Liu, W.H. Advancements in metabolomics research in benign gallbladder diseases: A review. Medicine 2024, 103, e38126. [Google Scholar] [CrossRef] [PubMed]
- Sonkar, K.; Behari, A.; Kapoor, V.; Sinha, N. 1H NMR metabolic profiling of human serum associated with benign and malignant gallstone diseases. Metabolomics 2013, 9, 515–528. [Google Scholar] [CrossRef]
- Alam, M.S.; Harun-Ar-Rashid, A.; Islam, M.N.; Jannat, F. The Association of the Serum Lipid Abnormalities in Cholelithiasis Patients. Sch. J. Appl. Med. Sci. 2021, 1, 109–112. [Google Scholar] [CrossRef]
- Hayat, S.; Hassan, Z.; Changazi, S.H.; Zahra, A.; Noman, M.; ul Abdin, M.Z.; Javed, H.; Ans, A.H. Comparative analysis of serum lipid profiles in patients with and without gallstones: A prospective cross-sectional study. Ann. Med. Surg. 2019, 42, 11–13. [Google Scholar] [CrossRef]
- El Moghazy, W.; Kashkoush, S.; Meeberg, G.; Kneteman, N. Incidence, characteristics, and prognosis of incidentally discovered hepatocellular carcinoma after liver transplantation. J. Transplant. 2016, 2016, 1916387. [Google Scholar] [CrossRef] [PubMed]
- Perez, P.; Rodriguez-Peralvarez, M.; Guerrero, L.; Gonzalez, V.; Sanchez, R.; Centeno, M.; Poyato, A.; Briceno, J.; Sanchez-Frias, M.; Montero, J.L. Incidental hepatocellular carcinoma after liver transplantation: Prevalence, histopathological features and prognostic impact. PLoS ONE 2017, 12, e0175010. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Eguchi, S.; Yoshizumi, T.; Akamatsu, N.; Kaido, T.; Hamada, T.; Takamura, H.; Shimamura, T.; Umeda, Y.; Shinoda, M. Incidental intrahepatic cholangiocarcinoma in patients undergoing liver transplantation: A multi-center study in Japan. J. Hepato-Biliary-Pancreat. Sci. 2021, 28, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, L.; Rohland, O.; Ali-Deeb, A.; Dondorf, F.; Settmacher, U.; Rauchfuß, F. Liver Transplantation for Incidental Cholangiocarcinoma or Combined Hepatocellular Carcinoma/Cholangiocarcinoma—Own Experiences and Review of the Literature. Cancers 2023, 15, 3609. [Google Scholar] [CrossRef]
- Serkova, N.; Fuller, T.F.; Klawitter, J.; Freise, C.E.; Niemann, C.U. 1H-NMR–based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int. 2005, 67, 1142–1151. [Google Scholar] [CrossRef]
- Otvos, J.D.; Shalaurova, I.; Wolak-Dinsmore, J.; Connelly, M.A.; Mackey, R.H.; Stein, J.H.; Tracy, R.P. GlycA: A composite nuclear magnetic resonance biomarker of systemic inflammation. Clin. Chem. 2015, 61, 714–723. [Google Scholar] [CrossRef]
- Mallol, R.; Amigó, N.; Rodríguez, M.A.; Heras, M.; Vinaixa, M.; Plana, N.; Rock, E.; Ribalta, J.; Yanes, O.; Masana, L. Liposcale: A novel advanced lipoprotein test based on 2D diffusion-ordered 1H NMR spectroscopy. J. Lipid Res. 2015, 56, 737–746. [Google Scholar] [CrossRef]
- Jeyarajah, E.J.; Cromwell, W.C.; Otvos, J.D. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin. Lab. Med. 2006, 26, 847–870. [Google Scholar] [CrossRef]
- Rodríguez-Tomàs, E.; Murcia, M.; Arenas, M.; Arguís, M.; Gil, M.; Amigó, N.; Correig, X.; Torres, L.; Sabater, S.; Baiges-Gayà, G. Serum paraoxonase-1-related variables and lipoprotein profile in patients with lung or head and neck cancer: Effect of radiotherapy. Antioxidants 2019, 8, 213. [Google Scholar] [CrossRef]
- Abdel-Shafy, E.A.; Kassim, M.; Vignoli, A.; Mamdouh, F.; Tyekucheva, S.; Ahmed, D.; Ojo, D.; Price, B.; Socciarelli, F.; Duarte-Delgado, N.P. KODAMA enables self-guided weakly supervised learning in spatial transcriptomics. bioRxiv 2025. [Google Scholar] [CrossRef]
- Cacciatore, S.; Luchinat, C.; Tenori, L. Knowledge discovery by accuracy maximization. Proc. Natl. Acad. Sci. USA 2014, 111, 5117–5122. [Google Scholar] [CrossRef]
- Cacciatore, S.; Tenori, L.; Luchinat, C.; Bennett, P.R.; MacIntyre, D.A. KODAMA: An R package for knowledge discovery and data mining. Bioinformatics 2017, 33, 621–623. [Google Scholar] [CrossRef]
- Bai, J.; Tang, R.; Zhou, K.; Chang, J.; Wang, H.; Zhang, Q.; Shi, J.; Sun, C. An asparagine metabolism-based classification reveals the metabolic and immune heterogeneity of hepatocellular carcinoma. BMC Med. Genom. 2022, 15, 222. [Google Scholar] [CrossRef]
- Ong, S.L.; Garcea, G.; Thomasset, S.C.; Neal, C.P.; Lloyd, D.M.; Berry, D.P.; Dennison, A.R. Ten-year experience in the management of gallbladder cancer from a single hepatobiliary and pancreatic centre with review of the literature. HPB 2008, 10, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Barahona Ponce, C.; Scherer, D.; Brinster, R.; Boekstegers, F.; Marcelain, K.; Gárate-Calderón, V.; Müller, B.; De Toro, G.; Retamales, J.; Barajas, O. Gallstones, body mass index, C-Reactive protein, and gallbladder cancer: Mendelian randomization analysis of Chilean and European genotype data. Hepatology 2021, 73, 1783–1796. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kemp, T.J.; Gao, Y.-T.; Corbel, A.; McGee, E.E.; Roa, J.C.; Wang, B.; Araya, J.C.; Shen, M.-C.; Rashid, A. Circulating levels of inflammatory proteins and survival in patients with gallbladder cancer. Sci. Rep. 2018, 8, 5671. [Google Scholar] [CrossRef]
- Gomez-Rosas, P.; Tartari, C.J.; Russo, L.; Bolognini, S.; Ticozzi, C.; Romeo, D.; Schieppati, F.; Barcella, L.; Falanga, A.; Marchetti, M. Thromboinflammatory Biomarkers Are Early Predictors of Disease Progression in Non-Small Cell Lung Cancer Patients. Cancers 2025, 17, 1932. [Google Scholar] [CrossRef]
- Kaczmarek, F.; Marcinkowska-Gapińska, A.; Bartkowiak-Wieczorek, J.; Nowak, M.; Kmiecik, M.; Brzezińska, K.; Dotka, M.; Brosz, P.; Firlej, W.; Wojtyła-Buciora, P. Blood-Based Biomarkers as Predictive and Prognostic Factors in Immunotherapy-Treated Patients with Solid Tumors—Currents and Perspectives. Cancers 2025, 17, 2001. [Google Scholar] [CrossRef] [PubMed]
- Bruserud, Ø.; Aarstad, H.H.; Tvedt, T.H.A. Combined C-reactive protein and novel inflammatory parameters as a predictor in cancer—What can we learn from the hematological experience? Cancers 2020, 12, 1966. [Google Scholar] [CrossRef]
- Maran, L.; Hamid, A.; Hamid, S.B.S. Lipoproteins as markers for monitoring cancer progression. J. Lipids 2021, 2021, 8180424. [Google Scholar] [CrossRef]
- Delmas, D.; Mialhe, A.; Cotte, A.K.; Connat, J.-L.; Bouyer, F.; Hermetet, F.; Aires, V. Lipid metabolism in cancer: Exploring phospholipids as potential biomarkers. Biomed. Pharmacother. 2025, 187, 118095. [Google Scholar] [CrossRef]
- Giacomini, I.; Gianfanti, F.; Desbats, M.A.; Orso, G.; Berretta, M.; Prayer-Galetti, T.; Ragazzi, E.; Cocetta, V. Cholesterol metabolic reprogramming in cancer and its pharmacological modulation as therapeutic strategy. Front. Oncol. 2021, 11, 682911. [Google Scholar] [CrossRef]
- Lee-Rueckert, M.; Jauhiainen, M.; Kovanen, P.T.; Escolà-Gil, J.C. Lipids and lipoproteins in the interstitial tissue fluid regulate the formation of dysfunctional tissue-resident macrophages: Implications for atherogenic, tumorigenic, and obesogenic processes. Semin. Cancer Biol. 2025, 114, 104–127. [Google Scholar] [CrossRef]
- Madaudo, C.; Bono, G.; Ortello, A.; Astuti, G.; Mingoia, G.; Galassi, A.R.; Sucato, V. Dysfunctional high-density lipoprotein cholesterol and coronary artery disease: A narrative review. J. Pers. Med. 2024, 14, 996. [Google Scholar] [CrossRef]
- Ashorobi, D.; Liao, H. Lipoprotein X-Induced Hyperlipidemia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Crook, M. Lipoprotein X: Clinical implications. Ann. Clin. Biochem. 2013, 50, 93–94. [Google Scholar] [CrossRef]
- Heimerl, S.; Boettcher, A.; Kaul, H.; Liebisch, G. Lipid profiling of lipoprotein X: Implications for dyslipidemia in cholestasis. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2016, 1861, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Phatlhane, D.V.; Zemlin, A.E. Severe hypercholesterolemia mediated by lipoprotein X in a patient with cholestasis. Ann. Hepatol. 2016, 14, 924–928. [Google Scholar] [CrossRef]
- Liang, R.-P.; Zhang, X.-X.; Zhao, J.; Zhu, R.-T.; Wang, W.-J.; Lu, Q.-W.; Sun, Y.-L. Ubiquitin-specific protease 3 facilitates cell proliferation by deubiquitinating pyruvate kinase L/R in gallbladder cancer. Lab. Investig. 2022, 102, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.-z.; Zhang, Y.; Weng, M.-z.; Wang, S.-h.; Hu, Y.; Hou, Z.-y.; Qin, Y.-y.; Gong, W.; Zhang, Y.-J.; Kong, X. Long noncoding RNA GCASPC, a target of miR-17-3p, negatively regulates pyruvate carboxylase–dependent cell proliferation in gallbladder cancer. Cancer Res. 2016, 76, 5361–5371. [Google Scholar] [CrossRef]
- Morine, Y.; Utsunomiya, T.; Yamanaka-Okumura, H.; Saito, Y.; Yamada, S.; Ikemoto, T.; Imura, S.; Kinoshita, S.; Hirayama, A.; Tanaka, Y. Essential amino acids as diagnostic biomarkers of hepatocellular carcinoma based on metabolic analysis. Oncotarget 2022, 13, 1286. [Google Scholar] [CrossRef]
- Assi, N.; Fages, A.; Vineis, P.; Chadeau-Hyam, M.; Stepien, M.; Duarte-Salles, T.; Byrnes, G.; Boumaza, H.; Knueppel, S.; Kuehn, T. A statistical framework to model the meeting-in-the-middle principle using metabolomic data: Application to hepatocellular carcinoma in the EPIC study. Mutagenesis 2015, 30, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.C., Jr.; Teigen, E.L.; Ramchandani, V.A. Absorption and peak blood alcohol concentration after drinking beer, wine, or spirits. Alcohol Clin. Exp. Res. 2014, 38, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Mbaye, B.; Borentain, P.; Magdy Wasfy, R.; Alou, M.T.; Armstrong, N.; Mottola, G.; Meddeb, L.; Ranque, S.; Gérolami, R.; Million, M. Endogenous ethanol and triglyceride production by gut Pichia kudriavzevii, Candida albicans and Candida glabrata yeasts in non-alcoholic steatohepatitis. Cells 2022, 11, 3390. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.-J.; Yao, F.; Lu, W.-P.; Xu, H.-M. Gut microbiome and metabolic-associated fatty liver disease: Current status and potential applications. World J. Hepatol. 2023, 15, 867. [Google Scholar] [CrossRef] [PubMed]
Feature | Control (BBP) (n = 27) | GBC (n = 40) | p-Value |
---|---|---|---|
Age (year), median [IQR] | 53 [42, 66] | 61.5 [55.75 72] | 0.0795 |
Gender | 0.610 | ||
Female, n (%) | 18 (66.7) | 23 (57.5) | |
Male, n (%) | 9 (33.3) | 17 (42.5) | |
Tbili (μmol/L), median [IQR] | 16.5 [12, 31] | 216.5 [93.5, 322.75] | <0.001 |
Conj Bili (μmol/L), median [IQR] | 13.5 [4.75, 26] | 174.5 [76.25, 252.75] | <0.001 |
ALP (U/L), median [IQR] | 308.5 [127.25, 499.25] | 564 [323.25, 909.25] | 0.0396 |
GGT (U/L), median [IQR] | 452 [159, 612] | 490 [234, 693.5] | 0.436 |
CRP (mg/L), median [IQR] | 22.5 [7.25, 83.25] | 74 [40, 191] | 0.0234 |
Feature | Control (BBP) Median [IQR] | GBC Median [IQR] | p-Value | FDR |
---|---|---|---|---|
VLDL-C (nmol/L) | 16.8 [8.4, 21.1] | 17.4 [9.8, 26.6] | 0.356 | 0.431 |
IDL-C (nmol/L) | 16.7 [10.0, 23.1] | 31.4 [15.6, 54.0] | 0.004 | 0.016 |
LDL-C (nmol/L) | 128.2 [111.1, 151.9] | 135.1 [108.1, 158.0] | 0.596 | 0.623 |
HDL-C (nmol/L) | 45.0 [31.9, 61.1] | 22.0 [2.3, 43.2] | 0.003 | 0.014 |
VLDL-TG (nmol/L) | 58.2 [41.0, 80.6] | 72.5 [54.6, 103.6] | 0.122 | 0.227 |
IDL-TG (nmol/L) | 16.5 [10.4, 19.5] | 21.8 [14.0, 37.0] | 0.008 | 0.028 |
LDL-TG (nmol/L) | 23.7 [15.8, 30.7] | 33.5 [21.7, 54.6] | 0.003 | 0.014 |
HDL-TG (nmol/L) | 16.7 [13.2, 22.2] | 18.8 [14.1, 23.9] | 0.469 | 0.539 |
VLDL-P (nmol/L) | 43.8 [29.8, 59.3] | 51.9 [38.2, 74.8] | 0.138 | 0.227 |
Large VLDL-P (nmol/L) | 0.99 [0.77, 1.38] | 1.29 [0.90, 1.62] | 0.158 | 0.227 |
Medium VLDL-P (nmol/L) | 4.6 [3.6, 6.2] | 5.1 [3.6, 6.6] | 0.699 | 0.699 |
Small VLDL-P (nmol/L) | 37.0 [26.2, 52.9] | 47.7 [32.2, 65.6] | 0.144 | 0.227 |
LDL-P (nmol/L) | 1342.6 [1108.7, 1514.3] | 1507.9 [1181.1, 1871.1] | 0.087 | 0.199 |
Large LDL-P (nmol/L) | 211.9 [175.1, 248.5] | 229.5 [165.5, 280.7] | 0.341 | 0.431 |
Medium LDL-P (nmol/L) | 457.9 [325.7, 610.4] | 657.1 [429.20, 841.0] | 0.031 | 0.079 |
Small LDL-P (nmol/L) | 642.8 [547.5, 731.1] | 668.1 [558.7, 754.1] | 0.554 | 0.607 |
HDL-P (mol/L) | 22.7 [13.7, 31.1] | 13.2 [5.2, 22.2] | 0.002 | 0.014 |
Large HDL-P (mol/L) | 0.3 [0.3, 0.3] | 0.3 [0.2, 0.3] | 0.141 | 0.227 |
Medium HDL-P (mol/L) | 10.0 [9.5, 12.2] | 8.7 [6.3, 11.4] | 0.013 | 0.039 |
Small HDL-P (mol/L) | 12.3 [2.4, 20.2] | 4.1 [0.1, 10.0] | 0.003 | 0.014 |
VLDL-Z (nm) | 42.2 [42.2, 42.2] | 42.2 [42.2, 42.2] | 0.334 | 0.431 |
LDL-Z (nm) | 21.3 [21.2, 21.5] | 21.4 [21.2, 21.6] | 0.155 | 0.227 |
HDL-Z (nm) | 8.4 [8.3, 8.9] | 8.8 [8.5, 9.6] | 0.003 | 0.014 |
Feature | BBP (Median [IQR]) | GBC (Median [IQR]) | p-Value | FDR |
---|---|---|---|---|
Formate | 0.01 [0.01, 0.02] | 0.02 [0.0,1 0.02] | 0.499 | 0.713 |
Phenylalanine | 0.14 [0.09, 0.23] | 0.26 [0.14, 0.33] | 0.013 | 0.276 |
Tyrosine | 0.08 [0.05, 0.12] | 0.08 [0.04, 0.12] | 0.828 | 0.920 |
Unknown signal at 7.14 ppm | 0 [0, 0.02] | 0.01 [0, 0.10] | 0.044 | 0.276 |
Histidine | 0.07 [0.03, 0.09] | 0.06 [0.02, 0.08] | 0.138 | 0.459 |
Urea | 0.26 [0.11, 0.45] | 0.25 [0.15, 0.34] | 0.894 | 0.932 |
Glucose | 1.89 [1.40, 2.40] | 1.71 [0.91, 2.34] | 0.579 | 0.762 |
Mannose | 0.04 [0.02, 0.06] | 0.04 [0.02, 0.06] | 0.933 | 0.942 |
Ascorbate | 0.01 [0, 0.01] | 0 [0, 0.004] | 0.243 | 0.534 |
Lactose | 0.02 [0.01, 0.03] | 0.02 [0.01, 0.03] | 0.476 | 0.700 |
Lactate | 1.64 [0.80, 2.19] | 1.44 [0.91, 2.38] | 0.942 | 0.942 |
Creatinine | 0.11 [0.05, 0.13] | 0.12 [0.07, 0.15] | 0.278 | 0.534 |
Creatine | 0.03 [0.02, 0.06] | 0.06 [0.02, 0.09] | 0.162 | 0.475 |
Glycerol | 0.27 [0.12, 0.33] | 0.23 [0.08, 0.36] | 0.625 | 0.765 |
Threonine | 0.18 [0.10, 0.24] | 0.10 [0.07, 0.15] | 0.021 | 0.276 |
Glycine | 0.72 [0.58, 0.92] | 0.58 [0.27, 0.76] | 0.038 | 0.276 |
Proline | 0.12 [0.02, 0.22] | 0.06 [0.02, 0.14] | 0.149 | 0.464 |
Methanol | 0.06 [0.04, 0.09] | 0.05 [0.02, 0.10] | 0.419 | 0.654 |
Asparagine | 0 [0, 0.01] | 0.006 [0, 0.02] | 0.022 | 0.276 |
N,N-dimethylglycine | 0.02 [0.01, 0.04] | 0.03 [0.01, 0.05] | 0.278 | 0.534 |
Citrate | 0.09 [0.02, 0.23] | 0.04 [0, 0.16] | 0.267 | 0.534 |
Glutamine | 0.34 [0.22, 0.51] | 0.33 [0.14, 0.54] | 0.642 | 0.765 |
Pyruvate | 0.06 [0.03, 0.1] | 0.11 [0.04, 0.19] | 0.030 | 0.276 |
Glutamate | 0.42 [0.27, 0.81] | 0.39 [0.21, 0.73] | 0.530 | 0.717 |
Acetoacetate | 0.13 [0.08, 0.20] | 0.1 [0.05, 0.20] | 0.334 | 0.567 |
Lysine | 0.02 [0.01, 0.03] | 0.02 [0.01, 0.03] | 0.847 | 0.921 |
Acetate | 0.10 [0.06, 0.13] | 0.09 [0.05, 0.13] | 0.523 | 0.717 |
Alanine | 1.06 [0.39, 1.30] | 0.78 [0.38, 1.08] | 0.197 | 0.534 |
2-hydroxyisobutyrate | 0.01 [0.002, 0.02] | 0.01 [0.004, 0.02] | 0.340 | 0.567 |
3-hydroxybutyrate | 0.18 [0.01, 0.68] | 0.19 [0.11, 0.62] | 0.299 | 0.534 |
Ethanol | 0.55 [0.13, 1.23] | 0 [0, 0.31] | <0.001 | 0.033 |
Isopropanol | 0.07 [0.001, 0.27] | 0 [0, 0.13] | 0.073 | 0.367 |
Propylene glycol | 0.01 [0, 0.02] | 0.01 [0, 0.03] | 0.622 | 0.765 |
Valine | 0.38 [0.23, 0.50] | 0.43 [0.17, 0.52] | 0.791 | 0.919 |
Isoleucine | 0.1 [0.03, 0.14] | 0.04 [0.01, 0.11] | 0.133 | 0.459 |
Leucine | 0.45 [0.25, 0.67] | 0.41 [0.19, 0.54] | 0.252 | 0.534 |
2-hydroxybutyrate | 0.03 [0, 0.05] | 0.05 [0.01, 0.09] | 0.095 | 0.432 |
Protein NH | 130.2 [59.4, 160.1] | 123.4 [58.3, 143.2] | 0.440 | 0.667 |
Unsaturated lipid (-CH=CH-) | 17.08 [9.57, 31.18] | 19.79 [10.97, 27.96] | 0.819 | 0.920 |
Lipid (alpha-CH2) | 3.06 [1.34, 4.74] | 3.42 [1.61, 8.74] | 0.214 | 0.534 |
Cholesterol backbone (-C(18)H3), | 2.69 [1.89, 3.53] | 1.62 [0.79, 2.90] | 0.039 | 0.276 |
Lipid (=CH-CH2-CH=) | 10.42 [5.84, 14.19] | 8.68 [4.55, 11.11] | 0.205 | 0.534 |
Glycerol phospholipid | 0.29 [0.12, 0.68] | 0.52 [0.16, 1.26] | 0.068 | 0.367 |
Phospholipid | 4.07 [2.53, 5.14] | 3.24 [1.54, 4.56] | 0.111 | 0.459 |
Lipid (beta-CH2) | 15.39 [10.21, 17.51] | 11.89 [6.02, 19.75] | 0.385 | 0.621 |
Lipid (-(-CH2-)n-) | 104.3 [45.9, 159.0] | 126.3 [59.8, 188.3] | 0.294 | 0.534 |
Lipid (-CH3-) | 77.77 [34.58, 96.66] | 71.65 [32.79, 99.77] | 0.875 | 0.931 |
GlycB | 0.89 [0.48, 1.27] | 1.12 [0.75, 1.50] | 0.138 | 0.459 |
GlycA | 4.51 [3.21, 5.69] | 4.63 [2.58, 7.11] | 0.629 | 0.765 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devar, J.; Elebo, N.; Makan, A.; Pincus, A.; Lahoud, N.; Cacciatore, S.; Candy, G.; Smith, M.; Nweke, E.E. Distinct Metabolomic and Lipoprotein Signatures in Gall Bladder Cancer Patients of Black African Ancestry. Cancers 2025, 17, 2925. https://doi.org/10.3390/cancers17172925
Devar J, Elebo N, Makan A, Pincus A, Lahoud N, Cacciatore S, Candy G, Smith M, Nweke EE. Distinct Metabolomic and Lipoprotein Signatures in Gall Bladder Cancer Patients of Black African Ancestry. Cancers. 2025; 17(17):2925. https://doi.org/10.3390/cancers17172925
Chicago/Turabian StyleDevar, John, Nnenna Elebo, Ashna Makan, Ariel Pincus, Nicola Lahoud, Stefano Cacciatore, Geoffrey Candy, Martin Smith, and Ekene Emmanuel Nweke. 2025. "Distinct Metabolomic and Lipoprotein Signatures in Gall Bladder Cancer Patients of Black African Ancestry" Cancers 17, no. 17: 2925. https://doi.org/10.3390/cancers17172925
APA StyleDevar, J., Elebo, N., Makan, A., Pincus, A., Lahoud, N., Cacciatore, S., Candy, G., Smith, M., & Nweke, E. E. (2025). Distinct Metabolomic and Lipoprotein Signatures in Gall Bladder Cancer Patients of Black African Ancestry. Cancers, 17(17), 2925. https://doi.org/10.3390/cancers17172925