Radiomics Combined with Transcriptomics Improves Prediction of Breast Cancer Recurrence, Molecular Subtype and Grade
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort Characteristics
2.2. Data Source
2.3. Transcriptomic Data from TCGA
2.4. Machine Learning
2.4.1. Machine Learning Workbench
2.4.2. Balance Class Sizes—SMOTE
2.4.3. Decision Tree Splits and Information Gain
2.4.4. Feature Selection
2.4.5. Correlation Analysis
3. Results
3.1. Prediction of Molecular Subtypes
3.2. Prediction of Recurrence Events
3.3. Prediction of Nottingham Grade
3.4. Association Analysis Between Radiomic/Clinical Features and Race
3.4.1. Association Analysis Between Clinical Features and Race
3.4.2. Association Analysis Between Radiomic Features and Race
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obeagu, E.I.; Obeagu, G.U. Breast cancer: A review of risk factors and diagnosis. Medicine (Baltimore) 2024, 103, e36905. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.S.; Conant, E.F.; Soo, M.S. Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. J. Breast Imaging 2021, 3, 12–24. [Google Scholar] [CrossRef]
- Russnes, H.G.; Lingjærde, O.C.; Børresen-Dale, A.-L.; Caldas, C. Breast Cancer Molecular Stratification: From Intrinsic Subtypes to Integrative Clusters. Am. J. Pathol. 2017, 187, 2152–2162. [Google Scholar] [CrossRef] [PubMed]
- Nolan, E.; Lindeman, G.J.; Visvader, J.E. Deciphering breast cancer: From biology to the clinic. Cell 2023, 186, 1708–1728. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Davey, M.S.; Boland, M.R.; Ryan, E.J.; Lowery, A.J.; Kerin, M.J. Radiomic differentiation of breast cancer molecular subtypes using pre-operative breast imaging—A systematic review and meta-analysis. Eur. J. Radiol. 2021, 144, 109996. [Google Scholar] [CrossRef]
- Gerend, M.A.; Pai, M. Social determinants of Black-White disparities in breast cancer mortality: A review. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2913–2923. [Google Scholar] [CrossRef]
- Zhao, F.; Copley, B.; Niu, Q.; Liu, F.; Johnson, J.A.; Sutton, T.; Khramtsova, G.; Sveen, E.; Yoshimatsu, T.F.; Zheng, Y.; et al. Racial Disparities in Survival Outcomes among Breast Cancer Patients by Molecular Subtypes. Breast Cancer Res. Treat. 2021, 185, 841–849. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: Patient-level meta-analysis of the randomised trials. Lancet 2015, 386, 1341–1352. [Google Scholar] [CrossRef]
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; et al. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N. Engl. J. Med. 2017, 377, 1836–1846. [Google Scholar] [CrossRef]
- Alaeikhanehshir, S.; Ajayi, T.; Duijnhoven, F.H.; Poncet, C.; Olaniran, R.O.; Lips, E.H.; van ’t Veer, L.J.; Delaloge, S.; Rubio, I.T.; Thompson, A.M.; et al. Locoregional Breast Cancer Recurrence in the European Organisation for Research and Treatment of Cancer 10041/BIG 03-04 MINDACT Trial: Analysis of Risk Factors Including the 70-Gene Signature. J. Clin. Oncol. 2024, 42, 1124–1134. [Google Scholar] [CrossRef]
- Harborg, S.; Heide-Jørgensen, U.; Ahern, T.P.; Ewertz, M.; Cronin-Fenton, D.; Borgquist, S. Statin use and breast cancer recurrence in postmenopausal women treated with adjuvant aromatase inhibitors: A Danish population-based cohort study. Breast Cancer Res. Treat. 2020, 183, 153–160. [Google Scholar] [CrossRef]
- Rose, A.A.N.; Grosset, A.-A.; Dong, Z.; Russo, C.; MacDonald, P.A.; Bertos, N.R.; St-Pierre, Y.; Simantov, R.; Hallett, M.; Park, M.; et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin. Cancer Res. 2010, 16, 2147–2156. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Hancock, B.A.; Solzak, J.P.; Brinza, D.; Scafe, C.; Miller, K.D.; Radovich, M. Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. NPJ Breast Cancer 2017, 3, 24. [Google Scholar] [CrossRef]
- Lin, N.U.; Vanderplas, A.; Hughes, M.E.; Theriault, R.L.; Edge, S.B.; Wong, Y.N.; Blayney, D.W.; Niland, J.C.; Winer, E.P.; Weeks, J.C.; et al. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 2012, 118, 5463–5472. [Google Scholar] [CrossRef]
- Lee, J. Current Treatment Landscape for Early Triple-Negative Breast Cancer (TNBC). J. Clin. Med. 2023, 12, 1524. [Google Scholar] [CrossRef] [PubMed]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; André, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2008, 26, 1275–1281. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef]
- Leon-Ferre, R.A.; Goetz, M.P. Advances in systemic therapies for triple negative breast cancer. BMJ 2023, 381, e071674. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.J.; Dashevsky, B.Z.; Oh, J.H.; Veeraraghavan, H.; Apte, A.P.; Thakur, S.B.; Morris, E.A.; Deasy, J.O. Breast cancer molecular subtype classifier that incorporates MRI features. J. Magn. Reson. Imaging 2016, 44, 122–129. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Burnside, E.S.; Huang, E.; Drukker, K.; Hoadley, K.A.; Fan, C.; Conzen, S.D.; Zuley, M.; Net, J.M.; et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2016, 2, 16012. [Google Scholar] [CrossRef]
- Wang, J.; Kato, F.; Oyama-Manabe, N.; Li, R.; Cui, Y.; Tha, K.K.; Yamashita, H.; Kudo, K.; Shirato, H.; Fan, X. Identifying Triple-Negative Breast Cancer Using Background Parenchymal Enhancement Heterogeneity on Dynamic Contrast-Enhanced MRI: A Pilot Radiomics Study. PLoS ONE 2015, 10, e0143308. [Google Scholar] [CrossRef]
- Azeroual, S.; Ben-Bouazza, F.; Naqi, A.; Sebihi, R. Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: A retrospective study. J. Egypt. Natl. Cancer Inst. 2024, 36, 20. [Google Scholar] [CrossRef]
- Chatterjee, A.; Fan, X.; Slear, J.; Asare, G.; Yousuf, A.N.; Medved, M.; Antic, T.; Eggener, S.; Karczmar, G.S.; Oto, A. Quantitative Multi-Parametric MRI of the Prostate Reveals Racial Differences. Cancers 2024, 16, 3499. [Google Scholar] [CrossRef]
- Saha, A.; Yu, X.; Sahoo, D.; Mazurowski, M.A. Effects of MRI scanner parameters on breast cancer radiomics. Expert Syst. Appl. 2017, 87, 384–391. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2016. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Siriseriwan, W. Smotefamily: A Collection of Oversampling Techniques for Class Imbalance Problem Based on SMOTE. Available online: https://cran.r-project.org/package=smotefamily (accessed on 1 November 2024).
- Salzberg, S.L. C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Mach. Learn. 1994, 16, 235–240. [Google Scholar]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Kursa, M.B.; Rudnicki, W.R. The All Relevant Feature Selection using Random Forest. arXiv 2011. [Google Scholar] [CrossRef]
- Melnik, S.; Gubarev, A.; Long, J.J.; Romer, G.; Shivakumar, S.; Tolton, M.; Vassilakis, T. Dremel: Interactive Analysis of Web-Scale Datasets. Proc. VLDB Endow. 2010, 3, 330–339. [Google Scholar] [CrossRef]
- Arasu, V.A.; Chen, R.C.-Y.; Newitt, D.N.; Chang, C.B.; Tso, H.; Hylton, N.M.; Joe, B.N. Can signal enhancement ratio (SER) reduce the number of recommended biopsies without affecting cancer yield in occult MRI-detected lesions? Acad. Radiol. 2011, 18, 716–721. [Google Scholar] [CrossRef]
- Shan, R.; Dai, L.-J.; Shao, Z.-M.; Jiang, Y.-Z. Evolving molecular subtyping of breast cancer advances precision treatment. Cancer Biol. Med. 2024, 21, 731–739. [Google Scholar] [CrossRef]
- Comes, M.C.; La Forgia, D.; Didonna, V.; Fanizzi, A.; Giotta, F.; Latorre, A.; Martinelli, E.; Mencattini, A.; Paradiso, A.V.; Tamborra, P.; et al. Early Prediction of Breast Cancer Recurrence for Patients Treated with Neoadjuvant Chemotherapy: A Transfer Learning Approach on DCE-MRIs. Cancers 2021, 13, 2298. [Google Scholar] [CrossRef]
- Jiang, M.; Li, C.-L.; Luo, X.-M.; Chuan, Z.-R.; Chen, R.-X.; Jin, C.-Y. An MRI-based Radiomics Approach to Improve Breast Cancer Histological Grading. Acad. Radiol. 2023, 30, 1794–1804. [Google Scholar] [CrossRef]
- Xiao, J.; Rahbar, H.; Hippe, D.S.; Rendi, M.H.; Parker, E.U.; Shekar, N.; Hirano, M.; Cheung, K.J.; Partridge, S.C. Dynamic contrast-enhanced breast MRI features correlate with invasive breast cancer angiogenesis. NPJ Breast Cancer 2021, 7, 42. [Google Scholar] [CrossRef]
- Park, V.Y.; Kim, E.-K.; Kim, M.J.; Yoon, J.H.; Moon, H.J. Breast parenchymal signal enhancement ratio at preoperative magnetic resonance imaging: Association with early recurrence in triple-negative breast cancer patients. Acta Radiol. 2016, 57, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Cho, N.; Shin, S.U.; Lee, H.-B.; Han, W.; Park, I.A.; Kwon, B.R.; Kim, S.Y.; Lee, S.H.; Chang, J.M.; et al. Contrast-enhanced MRI after neoadjuvant chemotherapy of breast cancer: Lesion-to-background parenchymal signal enhancement ratio for discriminating pathological complete response from minimal residual tumour. Eur. Radiol. 2018, 28, 2986–2995. [Google Scholar] [CrossRef] [PubMed]
- Gity, M.; Parviz, S.; Rad, H.S.; Kazerooni, A.F.; Shirali, E.; Shakiba, M.; Baikpour, M. Differentiation of Benign from Malignant Adnexal Masses by Dynamic Contrast-Enhanced MRI (DCE-MRI): Quantitative and Semi-quantitative analysis at 3-Tesla MRI. Asian Pac. J. Cancer Prev. APJCP 2019, 20, 1073–1079. [Google Scholar] [CrossRef]
- Valentini, A.L.; Gui, B.; Cina, A.; Pinto, F.; Totaro, A.; Pierconti, F.; Bassi, P.F.; Bonomo, L. T2-weighted hypointense lesions within prostate gland: Differential diagnosis using wash-in rate parameter on the basis of dynamic contrast-enhanced magnetic resonance imaging—hystopatology correlations. Eur. J. Radiol. 2012, 81, 3090–3095. [Google Scholar] [CrossRef]
- Manganaro, L.; Saldari, M.; Pozza, C.; Vinci, V.; Gianfrilli, D.; Greco, E.; Franco, G.; Sergi, M.E.; Scialpi, M.; Catalano, C.; et al. Dynamic contrast-enhanced and diffusion-weighted MR imaging in the characterisation of small, non-palpable solid testicular tumours. Eur. Radiol. 2018, 28, 554–564. [Google Scholar] [CrossRef]
- Yedjou, C.G.; Sims, J.N.; Miele, L.; Noubissi, F.; Lowe, L.; Fonseca, D.D.; Alo, R.A.; Payton, M.; Tchounwou, P.B. Health and Racial Disparity in Breast Cancer. Adv. Exp. Med. Biol. 2019, 1152, 31–49. [Google Scholar] [CrossRef] [PubMed]
Black | White | All | |
---|---|---|---|
Cohort size | 77 | 270 | 347 |
Luminal-like | 37 | 189 | 226 |
[ER/PR+, HER2+] | 8 | 28 | 36 |
HER2+ | 5 | 15 | 20 |
TN | 27 | 38 | 35 |
Recurrence events | 7 | 22 | 29 |
Imaging Data Only | Gene Expression Data Only | Imaging plus Gene Expression Data | |||||
---|---|---|---|---|---|---|---|
$ Unbalanced Class Size | ^ Balanced Class Size (After Applying SMOTE) | & Unbalanced Class Size | ## Balanced Class Size (After Applying SMOTE) | & Unbalanced Class Size | ## Balanced Class Size (After Applying SMOTE) | ||
Classifier (using 10-fold cross-validation) | Molecular subtype (Class *) | F-Measure | F-Measure | F-Measure | F-Measure | F-Measure | F-Measure |
J48 | 0 | 0.682 | 0.634 | 0.595 | 0.635 | 0.65 | 0.676 |
1 | 0.205 | 0.843 | 0.24 | 0.809 | 0.211 | 0.86 | |
2 | 0.083 | 0.859 | 0 | 0.976 | 0 | 0.976 | |
3 | 0.203 | 0.766 | 0.684 | 0.871 | 0.529 | 0.889 | |
SMO | 0 | 0.776 | 0.776 | 0.738 | 0.758 | 0.747 | 0.841 |
1 | 0.164 | 0.951 | 0 | 0.884 | 0.222 | 0.957 | |
2 | 0.061 | 0.971 | 0 | 0.988 | 0 | 0.964 | |
3 | 0.278 | 0.899 | 0.837 | 0.951 | 0.667 | 0.925 | |
Multi-Layer Perceptron | 0 | 0.738 | 0.449 | 0.675 | 0.758 | 0.771 | 0.841 |
1 | 0.067 | 0.536 | 0.087 | 0.894 | 0 | 0.946 | |
2 | 0 | 0.55 | 0 | 0.976 | 0 | 0.976 | |
3 | 0.198 | 0.549 | 0.769 | 0.951 | 0.732 | 0.925 |
# All Patients | $ White Patients | ^ Black Patients | |||||
---|---|---|---|---|---|---|---|
Classifier | Random Forest | AdaBoostM1 (Using Random Forrest) | Random Forest | AdaBoostM1 (Using Random Forrest) | Random Forest | AdaBoostM1 (Using Random Forrest) | |
Attribute category | Recurrence events | F-Measure | F-Measure | F-Measure | F-Measure | F-Measure | F-Measure |
Breast and & FGT Volume Features (n = 5) | |||||||
no | 0.728 | 0.753 | 0.757 | 0.751 | 0.818 | 0.785 | |
yes | 0.728 | 0.757 | 0.758 | 0.751 | 0.825 | 0.8 | |
Combining Tumor and FGT Enhancement (n = 18) | |||||||
no | 0.866 | 0.853 | 0.889 | 0.89 | 0.891 | 0.891 | |
yes | 0.87 | 0.861 | 0.894 | 0.897 | 0.895 | 0.895 | |
FGT Enhancement (n = 82) | |||||||
no | 0.898 | 0.902 | 0.879 | 0.874 | 0.949 | 0.95 | |
yes | 0.901 | 0.903 | 0.884 | 0.877 | 0.951 | 0.95 | |
FGT Enhancement Texture (n = 176) | |||||||
no | 0.922 | 0.922 | 0.925 | 0.927 | 0.964 | 0.964 | |
yes | 0.927 | 0.927 | 0.928 | 0.93 | 0.965 | 0.965 | |
FGT Enhancement Variation (n = 34) | |||||||
no | 0.897 | 0.887 | 0.903 | 0.886 | 0.941 | 0.933 | |
yes | 0.899 | 0.887 | 0.901 | 0.89 | 0.944 | 0.938 | |
Tumor Enhancement (n = 30) | |||||||
no | 0.876 | 0.879 | 0.895 | 0.903 | 0.916 | 0.948 | |
yes | 0.888 | 0.888 | 0.904 | 0.909 | 0.926 | 0.952 | |
Tumor Enhancement Spatial Heterogeneity (n = 4) | |||||||
no | 0.858 | 0.865 | 0.853 | 0.859 | 0.667 | 0.61 | |
yes | 0.868 | 0.874 | 0.853 | 0.855 | 0.739 | 0.719 | |
Tumor Enhancement Texture (n = 135) | |||||||
no | 0.923 | 0.931 | 0.93 | 0.921 | 0.957 | 0.932 | |
yes | 0.93 | 0.937 | 0.931 | 0.924 | 0.958 | 0.939 | |
Tumor Enhancement Variation (n = 35) | |||||||
no | 0.94 | 0.95 | 0.957 | 0.956 | 0.957 | 0.937 | |
yes | 0.944 | 0.952 | 0.958 | 0.958 | 0.958 | 0.934 | |
Tumor Size and Morphology (n = 10) | |||||||
no | 0.856 | 0.863 | 0.876 | 0.878 | 0.826 | 0.843 | |
yes | 0.873 | 0.876 | 0.879 | 0.881 | 0.831 | 0.843 |
Imaging Data Only | Imaging and Some Clinical Data | ||||
---|---|---|---|---|---|
& Unbalanced Class Size | ## Balanced Class Size (After Applying SMOTE) | && Unbalanced Class Size | #### Balanced Class Size (After Applying SMOTE) | ||
Classifier (using 10-fold cross-validation) | Nottingham grade (Class) | F-Measure | F-Measure | F-Measure | F-Measure |
J48 | 1 | 0.22 | 0.789 | 0.864 | 0.969 |
2 | 0.65 | 0.622 | 0.953 | 0.953 | |
3 | 0.443 | 0.78 | 0.968 | 0.973 | |
Random Forest | 1 | 0 | 0.905 | 0.049 | 0.917 |
2 | 0.759 | 0.748 | 0.761 | 0.803 | |
3 | 0.329 | 0.884 | 0.426 | 0.851 | |
AdaboostM1 (Random Forest) | 1 | 0 | 0.911 | 0.049 | 0.934 |
2 | 0.753 | 0.73 | 0.773 | 0.828 | |
3 | 0.345 | 0.884 | 0.414 | 0.87 |
Feature | Chi2 | Dof | p-Value |
---|---|---|---|
Lymphadenopathy_or_Suspicious_Nodes | 27.8 | 1 | 1.35 × 10−7 |
ER | 14.8 | 1 | 1.17 × 10−4 |
Mol_Subtype | 18.6 | 3 | 3.28 × 10−4 |
Tumor_Grade_Mitotic | 17.5 | 3 | 5.54 × 10−4 |
PR | 10.4 | 1 | 1.28 × 10−3 |
Nottingham_grade | 12.5 | 3 | 5.84 × 10−3 |
FOV_Computed__Field_of_View__in_cm | 31.4 | 15 | 7.70 × 10−3 |
Neoadjuvant_Chemotherapy | 9.2 | 2 | 1.02 × 10−2 |
Tumor_Grade_Nuclear | 10.6 | 3 | 1.41 × 10−2 |
Clinical_Response__Evaluated_Through_Imaging_ | 10.6 | 3 | 1.44 × 10−2 |
Adjuvant_Endocrine_Therapy_Medications | 7.9 | 2 | 1.92 × 10−2 |
Overall_Near_complete_Response___Looser_Definition | 11.6 | 4 | 2.05 × 10−2 |
Received_Neoadjuvant_Therapy_or_Not | 7.6 | 2 | 2.25 × 10−2 |
Pathologic_response_to_Neoadjuvant_therapy___Pathologic_stage__M__following_neoadjuvant_therapy | 9 | 3 | 2.96 × 10−2 |
Overall_Near_complete_Response___Stricter_Definition | 10.3 | 4 | 3.61 × 10−2 |
Pathologic_response_to_Neoadjuvant_therapy___Pathologic_stage__N__following_neoadjuvant_therapy | 11.6 | 5 | 4.01 × 10−2 |
Imaging Features | p-Adj |
---|---|
SER_Washout_tumor_vol_cu_mm | 8.30 × 10−4 |
SER_Partial_tumor_vol_cu_mm | 8.38 × 10−4 |
SER_Total_tumor_vol_cu_mm | 1.30 × 10−3 |
tissueVol_T1 | 1.43 × 10−3 |
Volume_cu_mm_Tumor | 2.22 × 10−3 |
SER_Partial_tissue_vol_cu_mm_T1 | 3.77 × 10−3 |
WashinRate_map_inverse_difference_is_homom_tumor | 5.84 × 10−3 |
WashinRate_map_Homogeneity1_tumor | 5.84 × 10−3 |
WashinRate_map_Homogeneity2_tumor | 5.84 × 10−3 |
SER_Washout_tissue_vol_cu_mm_T1 | 6.95 × 10−3 |
WashinRate_map_inverse_difference_normalized_tumor | 6.95 × 10−3 |
WashinRate_map_Dissimilarity_tumor | 8.31 × 10−3 |
WashinRate_map_difference_entropy_tumor | 8.40 × 10−3 |
Max_Probability_tissue_T1 | 8.76 × 10−3 |
WashinRate_map_Homogeneity2_tissue_T1 | 9.56 × 10−3 |
WashinRate_map_inverse_difference_is_homom_tissue_T1 | 9.96 × 10−3 |
WashinRate_map_Homogeneity1_tissue_T1 | 9.96 × 10−3 |
Inf_mea_of_corr1_Tumor | 9.96 × 10−3 |
WashinRate_map_inverse_difference_moment_normalized_tumor | 1.15 × 10−2 |
SER_Total_tissue_vol_cu_mm_T1 | 1.15 × 10−2 |
WashinRate_map_Max_Probability_tissue_T1 | 1.37 × 10−2 |
Energy_tissue_T1 | 1.40 × 10−2 |
WashinRate_map_Energy_tissue_T1 | 1.40 × 10−2 |
BreastVol | 1.40 × 10−2 |
WashinRate_map_Contrast_tumor | 1.40 × 10−2 |
WashinRate_map_Dissimilarity_tissue_T1 | 1.78 × 10−2 |
WashinRate_map_inverse_difference_normalized_tissue_T1 | 1.78 × 10−2 |
WashinRate_map_Entropy_tissue_T1 | 1.78 × 10−2 |
Grouping_based_proportion_of_3D_tissue_PostCon_Group_1 | 1.78 × 10−2 |
WashinRate_map_inverse_difference_moment_normalized_tissue_T1 | 1.84 × 10−2 |
Correlation1_Tumor | 1.84 × 10−2 |
WashinRate_map_Contrast_tissue_T1 | 1.84 × 10−2 |
Correlation2_Tumor | 1.84 × 10−2 |
WashinRate_map_difference_entropy_tissue_T1 | 1.90 × 10−2 |
Entropy_tissue_T1 | 1.96 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acquaah-Mensah, G.K.; Aguilar, B.; Abdilleh, K. Radiomics Combined with Transcriptomics Improves Prediction of Breast Cancer Recurrence, Molecular Subtype and Grade. Cancers 2025, 17, 2912. https://doi.org/10.3390/cancers17172912
Acquaah-Mensah GK, Aguilar B, Abdilleh K. Radiomics Combined with Transcriptomics Improves Prediction of Breast Cancer Recurrence, Molecular Subtype and Grade. Cancers. 2025; 17(17):2912. https://doi.org/10.3390/cancers17172912
Chicago/Turabian StyleAcquaah-Mensah, George K., Boris Aguilar, and Kawther Abdilleh. 2025. "Radiomics Combined with Transcriptomics Improves Prediction of Breast Cancer Recurrence, Molecular Subtype and Grade" Cancers 17, no. 17: 2912. https://doi.org/10.3390/cancers17172912
APA StyleAcquaah-Mensah, G. K., Aguilar, B., & Abdilleh, K. (2025). Radiomics Combined with Transcriptomics Improves Prediction of Breast Cancer Recurrence, Molecular Subtype and Grade. Cancers, 17(17), 2912. https://doi.org/10.3390/cancers17172912