Clinical Implementation of PSMA-PET Guided Tumor Response-Based Boost Adaptation in Online Adaptive Radiotherapy for High-Risk Prostate Cancer
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Schema
2.2. Target Volume Definition and Treatment Planning
2.3. Integrated Offline and Online Adaptation Workflow
2.4. Evaluation Strategy
3. Results
3.1. DIL GTV Volume Tracking and Dosimetric Comparison
3.2. Workflow Feasibility and Plan Adaption
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dee, E.C.; Nezolosky, M.D.; Chipidza, F.E.; Arega, M.A.; Butler, S.S.; Sha, S.T.; Mahal, B.A.; Nguyen, P.L.; Yang, D.D.; Muralidhar, V. Prostate cancer-specific mortality burden by risk group among men with localized disease: Implications for research and clinical trial priorities. Prostate 2020, 80, 1128–1133. [Google Scholar] [CrossRef] [PubMed]
- Spohn, S.K.B.; Sachpazidis, I.; Wiehle, R.; Thomann, B.; Sigle, A.; Bronsert, P.; Ruf, J.; Benndorf, M.; Nicolay, N.H.; Sprave, T.; et al. Influence of Urethra Sparing on Tumor Control Probability and Normal Tissue Complication Probability in Focal Dose Escalated Hypofractionated Radiotherapy: A Planning Study Based on Histopathology Reference. Front. Oncol. 2021, 11, 652678. [Google Scholar] [CrossRef]
- Groen, V.H.; van Schie, M.; Zuithoff, N.P.A.; Monninkhof, E.M.; Kunze-Busch, M.; de Boer, J.C.J.; van der Voort van Zijp, J.; Pos, F.J.; Smeenk, R.J.; Haustermans, K.; et al. Urethral and bladder dose—Effect relations for late genitourinary toxicity following external beam radiotherapy for prostate cancer in the FLAME trial. Radiother. Oncol. 2022, 167, 127–132. [Google Scholar] [CrossRef]
- Kerkmeijer, L.G.W.; Groen, V.H.; Pos, F.J.; Haustermans, K.; Monninkhof, E.M.; Smeenk, R.J.; Kunze-Busch, M.; de Boer, J.C.J.; van der Voort van Zijp, J.; van Vulpen, M.; et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients with Localized Prostate Cancer: Results from the FLAME Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 787–796. [Google Scholar] [CrossRef]
- Hötker, A.M.; Mazaheri, Y.; Zheng, J.; Moskowitz, C.S.; Berkowitz, J.; Lantos, J.E.; Pei, X.; Zelefsky, M.J.; Hricak, H.; Akin, O.; et al. Prostate Cancer: Assessing the effects of androgen-deprivation therapy using quantitative diffusion-weighted and dynamic contrast-enhanced MRI. Eur. Radiol. 2015, 25, 2665–2672. [Google Scholar] [CrossRef]
- Zamboglou, C.; Fassbender, T.F.; Steffan, L.; Schiller, F.; Fechter, T.; Carles, M.; Kiefer, S.; Rischke, H.C.; Reichel, K.; Schmidt-Hegemann, N.-S.; et al. Validation of different PSMA-PET/CT-based contouring techniques for intraprostatic tumor definition using histopathology as standard of reference. Radiother. Oncol. 2019, 141, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Maurer, T.; Eiber, M.; Schwaiger, M.; Gschwend, J.E. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 2016, 13, 226–235. [Google Scholar] [CrossRef]
- Karagiannis, V.; Wichmann, V.; Saarinen, J.; Eigeliene, N.; Andersen, H.; Jekunen, A. Radiotherapy treatment modification for prostate cancer patients based on PSMA-PET/CT. Radiat. Oncol. 2022, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Franklin, A.; Yaxley, W.J.; Raveenthiran, S.; Coughlin, G.; Gianduzzo, T.; Kua, B.; McEwan, L.; Wong, D.; Delahunt, B.; Egevad, L. Histological comparison between predictive value of preoperative 3-T multiparametric MRI and 68Ga-PSMA-PET/CT scan for pathological outcomes at radical prostatectomy and pelvic lymph node dissection for prostate cancer. BJU Int. 2021, 127, 71–79. [Google Scholar] [CrossRef]
- Hope, T.A.; Eiber, M.; Armstrong, W.R.; Juarez, R.; Murthy, V.; Lawhn-Heath, C.; Behr, S.C.; Zhang, L.; Barbato, F.; Ceci, F.; et al. Diagnostic Accuracy of 68 Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection. JAMA Oncol. 2021, 7, 1635–1642. [Google Scholar] [CrossRef]
- Goodman, C.D.; Fakir, H.; Pautler, S.; Chin, J.; Bauman, G.S. Dosimetric Evaluation of PSMA-PET-Delineated Dominant Intraprostatic Lesion Simultaneous Infield Boosts. Adv. Radiat. Oncol. 2020, 5, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Gaudreault, M.; Chang, D.; Hardcastle, N.; Jackson, P.; Kron, T.; Hofman, M.S.; Siva, S. Feasibility of biology-guided radiotherapy using PSMA-PET to boost to dominant intraprostatic tumour. Clin. Transl. Radiat. Oncol. 2022, 35, 84–89. [Google Scholar] [CrossRef]
- Zamboglou, C.; Spohn, S.K.B.; Ruf, J.; Benndorf, M.; Gainey, M.; Kamps, M.; Jilg, C.; Gratzke, C.; Adebahr, S.; Schmidtmayer-Zamboglou, B.; et al. PSMA-PET- and MRI-Based Focal Dose Escalated Radiation Therapy of Primary Prostate Cancer: Planned Safety Analysis of a Nonrandomized 2-Armed Phase 2 Trial (ARO2020-01). Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 1025–1035. [Google Scholar] [CrossRef]
- Devos, G.; Tosco, L.; Baldewijns, M.; Gevaert, T.; Goffin, K.; Petit, V.; Mai, C.; Laenen, A.; Raskin, Y.; Van Haute, C.; et al. ARNEO: A Randomized Phase II Trial of Neoadjuvant Degarelix with or Without Apalutamide Prior to Radical Prostatectomy for High-risk Prostate Cancer. Eur. Urol. 2023, 83, 508–518. [Google Scholar] [CrossRef]
- Yan, D.; Vicini, F.; Wong, J.; Martinez, A.; Yan, D.; Vicini, F.; Wong, J.; Martinez, A. Adaptive radiation therapy. Phys. Med. Biol. 1997, 42, 123–132. [Google Scholar] [CrossRef]
- Verweij, M.E.; Tanaka, M.D.; Kensen, C.M.; van der Heide, U.A.; Marijnen, C.A.M.; Janssen, T.; Vijlbrief, T.; van Grevenstein, W.M.U.; Moons, L.M.G.; Koopman, M.; et al. Towards Response ADAptive Radiotherapy for organ preservation for intermediate-risk rectal cancer (preRADAR): Protocol of a phase I dose-escalation trial. BMJ Open 2023, 13, e065010. [Google Scholar] [CrossRef]
- Shirvani, S.M.; Huntzinger, C.J.; Melcher, T.; Olcott, P.D.; Voronenko, Y.; Bartlett-Roberto, J.; Mazin, S. Biology-guided radiotherapy: Redefining the role of radiotherapy in metastatic cancer. Br. J. Radiol. 2021, 94, 20200873. [Google Scholar] [CrossRef] [PubMed]
- Winkel, D.; Bol, G.H.; Kroon, P.S.; van Asselen, B.; Hackett, S.S.; Werensteijn-Honingh, A.M.; Intven, M.P.W.; Eppinga, W.S.C.; Tijssen, R.H.N.; Kerkmeijer, L.G.W.; et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin. Transl. Radiat. Oncol. 2019, 18, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhuang, T.; Montalvo, S.; Wang, K.; Parsons, D.; Zhang, Y.; Iyengar, P.; Wang, J.; Godley, A.; Cai, B.; et al. Adapt-On-Demand: A Novel Strategy for Personalized Adaptive Radiation Therapy for Locally Advanced Lung Cancer. Pract. Radiat. Oncol. 2024, 14, e395–e406. [Google Scholar] [CrossRef]
- Acharya, S.; Fischer-Valuck, B.W.; Kashani, R.; Parikh, P.; Yang, D.; Zhao, T.; Green, O.; Wooten, O.; Li, H.H.; Hu, Y.; et al. Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 394–403. [Google Scholar] [CrossRef]
- McPartlin, A.J.; Li, X.A.; Kershaw, L.E.; Heide, U.; Kerkmeijer, L.; Lawton, C.; Mahmood, U.; Pos, F.; van As, N.; van Herk, M.; et al. MRI-guided prostate adaptive radiotherapy—A systematic review. Radiother. Oncol. 2016, 119, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, R.L.; Dysager, L.; Hansen, C.R.; Jensen, H.R.; Schytte, T.; Nyborg, C.J.; Bertelsen, A.S.; Agergaard, S.N.; Mahmood, F.; Hansen, S.; et al. Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatment. Radiother. Oncol. 2022, 167, 165–171. [Google Scholar] [CrossRef]
- Kishan, A.U.; Ma, T.M.; Lamb, J.M.; Casado, M.; Wilhalme, H.; Low, D.A.; Sheng, K.; Sharma, S.; Nickols, N.G.; Pham, J.; et al. MRI-Guided vs CT-Guided Stereotactic Body Radiotherapy for Patients With Prostate Cancer. JAMA Oncol. 2023, 9, 365–373. [Google Scholar] [CrossRef]
- Draulans, C.; De Roover, R.; van der Heide, U.A.; Kerkmeijer, L.; Smeenk, R.J.; Pos, F.; Vogel, W.V.; Nagarajah, J.; Janssen, M.; Isebaert, S. Optimal 68Ga-PSMA and 18F-PSMA-PET window levelling for gross tumour volume delineation in primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1211–1218. [Google Scholar] [CrossRef]
- Singh, M.; Katdare, A.; Ghosh, S.; Choudhury, S.; Phurailatpam, R.; Patil, D.; Tiwari, M.; Anaz, M.; Chougle, N.H.; Sable, N.; et al. PSMA-PET Guided Intraprostatic Boost in Prostate SBRT (PROBE): A Phase 2 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2025, in press. [Google Scholar] [CrossRef]
- Oderinde, O.M.; Shirvani, S.M.; Olcott, P.D.; Kuduvalli, G.; Mazin, S.; Larkin, D. The technical design and concept of a PET/CT linac for biology-guided radiotherapy. Clin. Transl. Radiat. Oncol. 2021, 29, 106–112. [Google Scholar] [CrossRef]
- Vitzthum, L.K.; Surucu, M.; Gensheimer, M.F.; Kovalchuk, N.; Han, B.; Pham, D.; Chang, D.; Shirvani, S.M.; Aksoy, D.; Maniyedath, A.; et al. BIOGUIDE-X: A First-in-Human Study of the Performance of Positron Emission Tomography-Guided Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 1172–1180. [Google Scholar] [CrossRef]
- Tetar, S.U.; Bruynzeel, A.M.E.; Lagerwaard, F.J.; Slotman, B.J.; Bohoudi, O.; Palacios, M.A. Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer. Phys. Imaging Radiat. Oncol. 2019, 9, 69–76. [Google Scholar] [CrossRef]
- Spohn, S.K.; Kramer, M.; Kiefer, S.; Bronsert, P.; Sigle, A.; Schultze-Seemann, W.; Jilg, C.A.; Sprave, T.; Ceci, L.; Fassbender, T.F. Comparison of manual and semi-automatic [18F] PSMA-1007 PET based contouring techniques for intraprostatic tumor delineation in patients with primary prostate cancer and validation with histopathology as standard of reference. Front. Oncol. 2020, 10, 600690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-N.; Lu, Z.-G.; Wang, S.-D.; Lu, X.; Zhu, L.-L.; Yang, X.; Fu, L.-P.; Zhao, J.; Wang, H.-F.; Xiang, Z.-L.; et al. Gross tumor volume delineation in primary prostate cancer on 18F-PSMA-1007 PET/MRI and 68Ga-PSMA-11 PET/MRI. Cancer Imaging 2022, 22, 36. [Google Scholar] [CrossRef] [PubMed]
Prescriptions/Coverage Goals for PTVs | |||||
Structure | Parameter | Objective | Plan_Initial | Plan_mb1 | Plan_mb2 |
PTVPros3625_5 | V36.25 Gy | ≥98% | 98 [93.3, 100] | 98.0 [95.0, 100] | 98.0 [91.3, 99.3] |
PTVPelv2500_5 | V25 Gy | ≥98% | 93.4 [88.0, 98.0] | 94.0 [90.6, 97.5] | 91.0 [88.6, 98.5] |
PTVmb_5000_5 | V50 Gy | ≥90% | 70.4 [27.8, 95.0] | 75.4 [25.0, 95.0] | 85.4 [45.0, 95.0] |
Normal Tissue/Organ-at-Risk (OAR) Constraints | |||||
Structure | Parameter | Objective | Plan_Initial | Plan_mb1 | Plan_mb2 |
Rectal Wall | D0.035 cc | ≤42.5 Gy | 39.6 [38.8, 42.2] | 38.2 [30.2, 39.6] | 38.2 [30.2, 39.6] |
V39 Gy | <20% | 1.1 [0.0, 2.1] | 0.0 [0.0, 0.5] | 0.0 [0.0, 0.5] | |
V24 Gy | <50% | 18.6 [6.0, 30.3] | 14.1 [3.8, 30.4] | 16.0 [4.0, 30.5] | |
Bladder Wall | V18.3 Gy | <50 cc | 47.5 [46.0, 52.3] | 41.8 [41.0, 49.2] | 40.0 [25.0, 42.0] |
D0.035 cc | <42.5 Gy | 47.5 [43.2, 52.3] | 42.6 [41.8, 44.4] | 40.8 [38.1, 43.4] | |
Bowel Small | D0.035 cc | <27.5 Gy | 29.7 [26.5, 30.9] | 28.9 [26.5, 32.1] | 28.7 [26.2, 33.4] |
V25 Gy | <20 cc | 4.0 [0.0, 5.1] | 2.3 [0, 3.4] | 2.1 [0, 3.2] | |
V20 Gy | <30 cc | 51.7 [49.9, 76.5] | 42.9 [38.2, 67.6] | 41.4 [35.6, 79.9] | |
Sigmoid | D0.035 cc | <37.5 Gy | 29.7 [26.5, 30.9] | 28.9 [26.5, 32.1] | 28.7 [26.2, 33.4] |
V32.5 Gy | <20 cc | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] | |
Urethra | D0.035 cc | <42.5 Gy | 43.2 [40.2, 44.8] | 40.2 [39.3, 45.0] | 40.4 [39.2, 44.8] |
Femoral Heads | V30 Gy | <10 cc | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] | 0.0 [0.0, 0.0] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Lin, M.-H.; Nguyen, N.C.; Su, F.-C.; Parsons, D.; Salcedo, E.; Phillips, E.; Domal, S.; Garant, A.; Hannan, R.; et al. Clinical Implementation of PSMA-PET Guided Tumor Response-Based Boost Adaptation in Online Adaptive Radiotherapy for High-Risk Prostate Cancer. Cancers 2025, 17, 2893. https://doi.org/10.3390/cancers17172893
Li R, Lin M-H, Nguyen NC, Su F-C, Parsons D, Salcedo E, Phillips E, Domal S, Garant A, Hannan R, et al. Clinical Implementation of PSMA-PET Guided Tumor Response-Based Boost Adaptation in Online Adaptive Radiotherapy for High-Risk Prostate Cancer. Cancers. 2025; 17(17):2893. https://doi.org/10.3390/cancers17172893
Chicago/Turabian StyleLi, Ruiqi, Mu-Han Lin, Nghi C. Nguyen, Fan-Chi Su, David Parsons, Erica Salcedo, Elizeva Phillips, Sean Domal, Aurelie Garant, Raquibul Hannan, and et al. 2025. "Clinical Implementation of PSMA-PET Guided Tumor Response-Based Boost Adaptation in Online Adaptive Radiotherapy for High-Risk Prostate Cancer" Cancers 17, no. 17: 2893. https://doi.org/10.3390/cancers17172893
APA StyleLi, R., Lin, M.-H., Nguyen, N. C., Su, F.-C., Parsons, D., Salcedo, E., Phillips, E., Domal, S., Garant, A., Hannan, R., Yang, D., Afaq, A., Lee, M., Oz, O. K., & Desai, N. (2025). Clinical Implementation of PSMA-PET Guided Tumor Response-Based Boost Adaptation in Online Adaptive Radiotherapy for High-Risk Prostate Cancer. Cancers, 17(17), 2893. https://doi.org/10.3390/cancers17172893