Cumulative Dose Analysis in Adaptive Carbon Ion Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Image Acquisition
2.3. Treatment Planning
2.4. Planning Assessment and Adaptive Replanning
2.5. Accumulated Dose Calculation
2.6. Follow-Up and Survival Outcomes
2.7. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Characteristics of Adaptive Radiotherapy
3.3. Comparison of Target and Normal Tissue Coverage Between As-Scheduled Plan and Adaptive Replan
3.4. Survival Outcomes and Toxicity Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CIRT | Carbon ion radiotherapy |
LA-NSCLC | Locally advanced non-small cell lung cancer |
RBE | Relative biological effectiveness |
CT | Computed tomography |
ART | Adaptive radiotherapy |
DIR | Deformable image registration |
BMI | Body mass index |
SD | Standard deviation |
IQR | Interquartile range |
SCC | Squamous cell carcinoma |
TNM | Tumor–node–metastasis |
GTV | Gross tumor volume |
CTV | Clinical target volume |
IM | Internal margin |
HI | Homogeneity index |
CI | Conformity index |
LC | Local control |
PFS | Progression-free survival |
OS | Overall survival |
Appendix A
Organs at Risk | Dose Limits |
---|---|
Lungs normal a | V30 Gy(RBE) < 15%, Minimizing lung dose as much as possible |
Esophagus | Maximum < 60 Gy(RBE) (Dmax of ≤56 Gy is preferable) |
Spinal cord | Maximum dose < 50 Gy(RBE) |
V30 Gy(RBE) < 0.7 cc | |
Trachea | Maximum dose < 60 Gy(RBE) (Dmax of ≤56 Gy is preferable) |
Bronchus | Maximum dose < 60 Gy(RBE) (Dmax of ≤56 Gy is preferable) |
Parameter | Non-ART | ART | p Value | p Value | |
---|---|---|---|---|---|
As-Scheduled Plan (n = 19) | As-Scheduled Plan (n = 27) | Adaptive Plan (n = 27) | Non-ART vs. As-Scheduled Plan | Non-ART vs. Adaptive Plan | |
V90% (%) | 100.00 [99.96, 100.00] | 99.55 [94.97, 99.97] | 99.99 [99.84, 100.00] | <0.001 | 0.780 |
V95% (%) | 100.00 [99.64, 100.00] | 98.65 [86.30, 99.80] | 99.76 [99.19, 100.00] | <0.001 | 0.772 |
V98% (%) | 99.59 [95.70, 99.99] | 96.48 [81.10, 98.35] | 98.10 [96.68, 99.73] | 0.004 | 0.260 |
D90% [Gy(RBE)] | 63.91 [63.23, 63.98] | 63.12 [59.14, 63.84] | 63.78 [63.58, 64.02] | 0.032 | 0.156 |
D95% [Gy(RBE)] | 63.50 [62.86, 63.89] | 62.07 [56.22, 63.38] | 63.50 [63.05, 63.86] | 0.006 | 0.075 |
D98% [Gy(RBE)] | 63.35 [62.42, 63.78] | 60.47 [53.12, 62.40] | 62.73 [62.21, 63.39] | <0.001 | 0.448 |
HI | 1.02 [1.02, 1.03] | 1.04 [1.02, 1.15] | 1.02 [1.02, 1.03] | <0.001 | 0.632 |
CI | 0.74 [0.61, 0.86] | 0.61 [0.52, 0.70] | 0.80 [0.69, 0.84] | 0.020 | 0.511 |
References
- Kamada, T.; Tsujii, H.; Blakely, E.A.; Debus, J.; De Neve, W.; Durante, M.; Jäkel, O.; Mayer, R.; Orecchia, R.; Pötter, R.; et al. Carbon ion radiotherapy in Japan: An assessment of 20 years of clinical experience. Lancet Oncol. 2015, 16, e93–e100. [Google Scholar] [CrossRef]
- Brown, A.; Suit, H. The centenary of the discovery of the bragg peak. Radiother. Oncol. 2004, 73, 265–268. [Google Scholar] [CrossRef]
- Tsujii, H.; Kamada, T. A review of update clinical results of carbon ion radiotherapy. Jpn. J. Clin. Oncol. 2012, 42, 670–685. [Google Scholar] [CrossRef]
- Karger, C.P.; Peschke, P. Rbe and related modeling in carbon-ion therapy. Phys. Med. Biol. 2017, 63, 01tr02. [Google Scholar] [CrossRef]
- Tinganelli, W.; Durante, M. Carbon ion radiobiology. Cancers 2020, 12, 3022. [Google Scholar] [CrossRef]
- Mi, J.; Jia, S.; Chen, L.; Li, Y.; Sun, J.; Zhang, L.; Mao, J.; Chen, J.; Ma, N.; Zhao, J.; et al. Bone matching versus tumor matching in image-guided carbon ion radiotherapy for locally advanced non-small cell lung cancer. Radiat. Oncol. 2024, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Chen, J.; Ma, N.; Zhao, J.; Mao, J.; Jiang, G.; Lu, J.; Wu, K. Adaptive carbon ion radiotherapy for locally advanced non-small cell lung cancer: Organ-sparing potential and target coverage. Med. Phys. 2022, 49, 3980–3989. [Google Scholar] [CrossRef] [PubMed]
- Irie, D.; Saitoh, J.-I.; Shirai, K.; Abe, T.; Kubota, Y.; Sakai, M.; Noda, S.-E.; Ohno, T.; Nakano, T. Verification of dose distribution in carbon ion radiation therapy for stage i lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 1117–1123. [Google Scholar] [CrossRef]
- Glide-Hurst, C.K.; Lee, P.; Yock, A.D.; Olsen, J.R.; Cao, M.; Siddiqui, F.; Parker, W.; Doemer, A.; Rong, Y.; Kishan, A.U.; et al. Adaptive radiation therapy (art) strategies and technical considerations: A state of the art review from nrg oncology. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1054–1075. [Google Scholar] [CrossRef]
- Bertholet, J.; Anastasi, G.; Noble, D.; Bel, A.; van Leeuwen, R.; Roggen, T.; Duchateau, M.; Pilskog, S.; Garibaldi, C.; Tilly, N.; et al. Patterns of practice for adaptive and real-time radiation therapy (pop-art rt) part ii: Offline and online plan adaption for interfractional changes. Radiother. Oncol. 2020, 153, 88–96. [Google Scholar] [CrossRef]
- Harris, J.P.; Samson, P.; Owen, D.; Siva, S.; Daly, M.E.; Giuliani, M. Adapt or perish: Adaptive rt for nsclc. Int. J. Radiat. Oncol. Biol. Phys. 2024, 119, 1047–1051. [Google Scholar] [CrossRef]
- Ramella, S.; Fiore, M.; Silipigni, S.; Zappa, M.C.; Jaus, M.; Alberti, A.M.; Matteucci, P.; Molfese, E.; Cornacchione, P.; Greco, C.; et al. Local control and toxicity of adaptive radiotherapy using weekly ct imaging: Results from the lartia trial in stage iii nsclc. J. Thorac. Oncol. 2017, 12, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Bibault, J.-E.; Arsène-Henry, A.; Durdux, C.; Mornex, F.; Hamza, S.; Trouette, R.; Thureau, S.; Faivre, J.-C.; Boisselier, P.; Lerouge, D.; et al. Radiothérapie adaptative du carcinome bronchique non à petites cellules. Cancer Radiother. 2015, 19, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-small-cell lung cancer. Nat. Rev. Dis. Prim. 2015, 1, 15009. [Google Scholar] [CrossRef]
- Miao, D.; Zhao, J.; Han, Y.; Zhou, J.; Li, X.; Zhang, T.; Li, W.; Xia, Y. Management of locally advanced non-small cell lung cancer: State of the art and future directions. Cancer Commun. 2024, 44, 23–46. [Google Scholar] [CrossRef]
- Tashiro, M.; Ishii, T.; Koya, J.-I.; Okada, R.; Kurosawa, Y.; Arai, K.; Abe, S.; Ohashi, Y.; Shimada, H.; Yusa, K.; et al. Technical approach to individualized respiratory-gated carbon-ion therapy for mobile organs. Radiol. Phys. Technol. 2013, 6, 356–366. [Google Scholar] [CrossRef]
- Sakai, M.; Kubota, Y.; Saitoh, J.-I.; Irie, D.; Shirai, K.; Okada, R.; Torikoshi, M.; Ohno, T.; Nakano, T. Robustness of patient positioning for interfractional error in carbon ion radiotherapy for stage i lung cancer: Bone matching versus tumor matching. Radiother. Oncol. 2018, 129, 95–100. [Google Scholar] [CrossRef]
- Ohno, T.; Kanai, T.; Yamada, S.; Yusa, K.; Tashiro, M.; Shimada, H.; Torikai, K.; Yoshida, Y.; Kitada, Y.; Katoh, H.; et al. Carbon ion radiotherapy at the gunma university heavy ion medical center: New facility set-up. Cancers 2011, 3, 4046–4060. [Google Scholar] [CrossRef]
- Hewson, E.A.; Dillon, O.; Poulsen, P.R.; Booth, J.T.; Keall, P.J. Six-degrees-of-freedom pelvic bone monitoring on 2D kV intrafraction images to enable multi-target tracking for locally advanced prostate cancer. Med. Phys. 2025, 52, 77–87. [Google Scholar] [CrossRef]
- Han, S.; Furukawa, T.; Hara, Y.; Fukuda, S. Time-resolved dosimetry with pencil-beam scanning for quality assurance/quality control in particle therapy. J. Appl. Clin. Med. Phys. 2021, 22, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Kanai, T.; Endo, M.; Minohara, S.; Miyahara, N.; Koyama-Ito, H.; Tomura, H.; Matsufuji, N.; Futami, Y.; Fukumura, A.; Hiraoka, T.; et al. Biophysical characteristics of himac clinical irradiation system for heavy-ion radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 201–210. [Google Scholar] [CrossRef]
- Kase, Y.; Kanai, T.; Sakama, M.; Tameshige, Y.; Himukai, T.; Nose, H.; Matsufuji, N. Microdosimetric approach to nirs-defined biological dose measurement for carbon-ion treatment beam. J. Radiat. Res. 2011, 52, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Feuvret, L.; Noël, G.; Mazeron, J.-J.; Bey, P. Conformity index: A review. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 333–342. [Google Scholar] [CrossRef]
- Zhong, H.; Siddiqui, S.M.; Movsas, B.; Chetty, I.J. Evaluation of adaptive treatment planning for patients with non-small cell lung cancer. Phys. Med. Biol. 2017, 62, 4346–4360. [Google Scholar] [CrossRef]
- Piperdi, H.; Portal, D.; Neibart, S.S.; Yue, N.J.; Jabbour, S.K.; Reyhan, M. Adaptive radiation therapy in the treatment of lung cancer: An overview of the current state of the field. Front. Oncol. 2021, 11, 770382. [Google Scholar] [CrossRef]
- Koay, E.J.; Lege, D.; Mohan, R.; Komaki, R.; Cox, J.D.; Chang, J.Y. Adaptive/nonadaptive proton radiation planning and outcomes in a phase ii trial for locally advanced non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Takakusagi, Y.; Katoh, H.; Kano, K.; Anno, W.; Tsuchida, K.; Mizoguchi, N.; Serizawa, I.; Yoshida, D.; Kamada, T. Preliminary result of carbon-ion radiotherapy using the spot scanning method for prostate cancer. Radiat. Oncol. 2020, 15, 127. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, X.; Sun, J.; Wang, W.; Zhao, J.; Zhang, Q.; Jiang, G.; Wang, Z. Pencil beam scanning carbon ion radiotherapy for hepatocellular carcinoma. J. Hepatocell. Carcinoma 2023, 10, 2397–2409. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Okamoto, M.; Li, Y.; Shiba, S.; Okazaki, S.; Komatsu, S.; Sakai, M.; Kubo, N.; Ohno, T.; Nakano, T. Evaluation of intensity- and contour-based deformable image registration accuracy in pancreatic cancer patients. Cancers 2019, 11, 1447. [Google Scholar] [CrossRef]
- Webster, M.; Podgorsak, A.; Li, F.; Zhou, Y.; Jung, H.; Yoon, J.; Dona Lemus, O.; Zheng, D. New Approaches in Radiotherapy. Cancers 2025, 17, 1980. [Google Scholar] [CrossRef]
Characteristic | Overall | Non-ART | ART | p Value |
---|---|---|---|---|
n = 46 | n = 19 | n = 27 | ||
Age, mean (SD) | 73.6 (9.5) | 75.6 (7.9) | 72.3 (10.5) | 0.304 |
Sex (%) | 0.877 | |||
Male | 38 (82.6) | 15 (78.9) | 23 (85.2) | |
Female | 8 (17.4) | 4 (21.1) | 4 (14.8) | |
Height (cm), mean (SD) | 163.6 (7.4) | 161.8 (8.2) | 164.9 (6.6) | 0.166 |
Weight (kg), mean (SD) | 57.6 (10.7) | 55.6 (11.8) | 59.0 (9.8) | 0.237 |
BMI, mean (SD) | 21.4 (3.1) | 21.1 (3.3) | 21.7 (3.0) | 0.503 |
Past Medical History (%) | 1.000 | |||
Lung-related diseases | 23 (50.0) | 9 (47.4) | 14 (51.8) | |
Other | 23 (50.0) | 10 (52.6) | 13 (48.2) | |
Tumor Site (%) | 0.833 | |||
Right | 27 (58.7) | 12 (63.2) | 15 (55.6) | |
Left | 19 (41.3) | 7 (36.8) | 12 (44.4) | |
Tumor Location (%) | 0.118 | |||
Central type | 17 (37.0) | 4 (21.1) | 13 (48.1) | |
Peripheral type | 29 (63.0) | 15 (78.9) | 14 (51.9) | |
Pulmonary Lobe (%) | 0.288 | |||
Upper | 20 (43.5) | 6 (31.6) | 14 (51.8) | |
Lower | 26 (56.5) | 13 (68.4) | 13 (48.2) | |
Physiology (%) | 0.405 | |||
SCC | 27 (58.7) | 9 (47.4) | 18 (66.7) | |
Adenocarcinoma | 7 (15.2) | 4 (21.0) | 3 (11.1) | |
Clinical diagnosis (histology unknown) | 12 (26.1) | 6 (31.6) | 6 (22.2) | |
Maximum tumor size (mm), mean (SD) | 43.51 (19.7) | 38.1 (19.3) | 47.3 (19.5) | 0.078 |
Tumor volume (ml), median [IQR] | 36.1 [18.9,66.7] | 25.6 [2.7,45.2] | 42.6 [21.2,90.4] | 0.037 |
N Stage (%) | 0.580 | |||
N0 | 20 (43.5) | 7 (36.8) | 13 (48.1) | |
N+ | 26 (56.5) | 12 (63.2) | 14 (51.9) | |
TNM Stage (%) | 0.486 | |||
IIB | 24 (52.2) | 11 (57.9) | 13 (48.2) | |
IIIA | 11 (23.9) | 5 (26.3) | 6 (22.2) | |
IIIB | 8 (17.4) | 3 (15.8) | 5 (18.5) | |
IIIC | 3 (6.5) | 0 (0.00) | 3 (11.1) | |
Smoking (%) | 0.178 | |||
No | 9 (19.6) | 6 (31.6) | 3 (11.1) | |
Yes | 37 (80.4) | 13 (68.4) | 24 (88.9) | |
Drinking (%) | 0.846 | |||
No | 31 (67.4) | 12 (63.2) | 19 (70.4) | |
Yes | 15 (32.6) | 7 (36.8) | 8 (29.6) | |
Chemotherapy (%) | 0.213 | |||
No | 39 (84.8) | 18 (94.7) | 21 (77.8) | |
Yes | 7 (15.2) | 1 (5.3) | 6 (22.2) | |
Follow-up time (months), median [IQR] | 18.9 [10.9, 29.8] | 23.3 [12.1, 41.6] | 15.4 [11.1, 25.0] | 0.190 |
Type of Adverse Effect | ART Group, n = 27 (%) | Non-ART Group, n = 19 (%) |
---|---|---|
Acute Reactions | 7 (25.9) | 5 (26.3) |
Dermatitis | 1 (3.7) | 1 (5.3) |
Pneumonitis | 1 (3.7) | 1 (5.3) |
Esophagitis | 3 (11.1) | 2 (10.5) |
Chest wall pain | 0 (0) | 1 (5.3) |
Leukopenia | 1 (3.7) | 0 (0) |
Anemia | 0 (0) | 0 (0) |
Thrombocytopenia | 1 (3.7) | 0 (0) |
Late Reactions | 2 (7.4) | 4 (21.1) |
Dermatitis | 0 (0) | 0 (0) |
Pneumonitis | 0 (0) | 2 (10.5) |
Esophagitis | 2 (7.4) | 1 (5.3) |
Chest wall | 0 (0) | 0 (0) |
Rib fractures | 0 (0) | 1 (5.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, Z.; Sakai, M.; Meng, X.; Kubo, N.; Kawamura, H.; Ohno, T. Cumulative Dose Analysis in Adaptive Carbon Ion Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer. Cancers 2025, 17, 2709. https://doi.org/10.3390/cancers17162709
Ju Z, Sakai M, Meng X, Kubo N, Kawamura H, Ohno T. Cumulative Dose Analysis in Adaptive Carbon Ion Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer. Cancers. 2025; 17(16):2709. https://doi.org/10.3390/cancers17162709
Chicago/Turabian StyleJu, Zhuojun, Makoto Sakai, Xiangdi Meng, Nobuteru Kubo, Hidemasa Kawamura, and Tatsuya Ohno. 2025. "Cumulative Dose Analysis in Adaptive Carbon Ion Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer" Cancers 17, no. 16: 2709. https://doi.org/10.3390/cancers17162709
APA StyleJu, Z., Sakai, M., Meng, X., Kubo, N., Kawamura, H., & Ohno, T. (2025). Cumulative Dose Analysis in Adaptive Carbon Ion Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer. Cancers, 17(16), 2709. https://doi.org/10.3390/cancers17162709