Pulmonary Suffusion Refinements for Primary and Secondary Malignancies: Preliminary Analyses of Phase I Safety and Drug Delivery Data †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overall Study Design—General
2.2. Evolution of Eligibility Criteria and Design
Eligibility Requirements
2.3. Phase Changes Including the Dose Escalation Rationale
2.4. Objective Eligibility and Suffusion Toxicity/Effect Assessment
2.4.1. Estimation of Post-Surgery Predicted Lung Function
2.4.2. Pharmacological Measurements of Suffusion Delivery
2.5. Suffusion and Metastasectomy Techniques
2.6. Required Technical Adjustments over the Course of Study
2.6.1. Occlusion Catheter Usage
2.6.2. Radiotracer Concordance
2.7. Statistical Plan
3. Results
3.1. General Demographics
3.2. Early Clinical Outcomes Including Catheter and Possible Drug-Related Adverse Events (AEs)
Early (30-Day) Outcomes
3.3. Tracer Indicator for the Desired Drug Distribution
3.4. Blood and Tissue Drug Levels
3.5. Longer Term Outcomes
3.5.1. Cisplatin—Suffusion to Augment Local Control in Patients Undergoing Systemic Therapy for Oligometastatic Lung Cancer
3.5.2. Cisplatin—Suffusion to Suppress Micrometastatic Recurrence
3.5.3. Doxorubicin
3.5.4. Oxaliplatin and Gemcitabine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
6-MWT | 6-min walk test |
AEs | Adverse events |
ANOVA | Analysis of Variance |
CAD | Coronary Artery Disease |
CBC | Complete blood count |
CMP | Comprehensive metabolic panel |
CKD | Chronic Kidney Disease |
CRC | Colorectal cancer |
CT | Computed tomography |
CXR | Chest roentgenograms |
DLCO | Diffusion capacity for carbon monoxide |
DLT | Dose-limiting toxicity |
ECOG | Eastern Cooperative Oncology Group |
EKG | Electrocardiography |
FEV1 | Forced expiratory volume in one second |
FVC | Forced vital capacity |
HIV | Human immunodeficiency virus |
HLD | Hyperlipidemia |
HTN | Hypertension |
MPNST | Malignant peripheral nerve sheath tumor |
MRD | Minimal residual disease |
MTD | Maximum tolerated dose |
NCI CTCAE v5.0 | Common Terminology Criteria for Adverse Events version 5.0 |
NM | Nuclear medicine |
NSCLC | Non-small-cell lung cancer |
NSD | Normal systemic dose |
PA | Pulmonary artery |
PFTs | Pulmonary function tests |
PS | Performance status |
SBRT | Stereotactic body radiation therapy |
SPME | Solid-Phase Micro Extraction |
99Tc | Technetium-99 macroaggregated albumin |
VATS | Video-assisted thoracoscopic surgery |
VC | Vital capacity |
References
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Aluru, J.S.; Barsouk, A. Epidemiology of Lung Cancer. Contemp. Oncol. 2021, 25, 45–52. [Google Scholar] [CrossRef]
- Stella, G.M.; Kolling, S.; Benvenuti, S.; Bortolotto, C. Lung-Seeking Metastases. Cancers 2019, 11, 1010. [Google Scholar] [CrossRef] [PubMed]
- Forster, C.; Ojanguren, A.; Perentes, J.Y.; Zellweger, M.; Krueger, T.; Abdelnour-Berchtold, E.; Gonzalez, M. Survival Prognostic and Recurrence Risk Factors after Single Pulmonary Metastasectomy. J. Cardiothorac. Surg. 2021, 16, 357. [Google Scholar] [CrossRef] [PubMed]
- Kanzaki, R.; Watari, H.; Omura, A.; Kawagishi, S.; Tanaka, R.; Maniwa, T.; Okami, J. Outcomes and Prognostic Factors of Repeat Pulmonary Metastasectomy. Interdiscip. Cardiovasc. Thorac. Surg. 2024, 38, ivae028. [Google Scholar] [CrossRef]
- Younes, R.N.; Gross, J.L.; Taira, A.M.; Martins, A.A.; Neves, G.S. Surgical Resection of Lung Metastases: Results from 529 Patients. Clinics 2009, 64, 535–541. [Google Scholar] [CrossRef]
- Kessel, K.A.; Grosser, R.C.E.; Kraus, K.M.; Hoffmann, H.; Oechsner, M.; Combs, S.E. Stereotactic Body Radiotherapy (Sbrt) in Patients with Lung Metastases—Prognostic Factors and Long-Term Survival Using Patient Self-Reported Outcome (Pro). BMC Cancer 2020, 20, 442. [Google Scholar] [CrossRef]
- Xiao, G.; Wang, X.; Xu, Z.; Liu, Y.; Jing, J. Lung-Specific Metastasis: The Coevolution of Tumor Cells and Lung Microenvironment. Mol. Cancer 2025, 24, 118. [Google Scholar] [CrossRef]
- Treasure, T.; Williams, N.R.; Macbeth, F. The Full Cohort of 512 Patients and the Nested Controlled Trial in 93 Patients in the Pulmonary Metastasectomy in Colorectal Cancer (Pulmicc) Study Raise Doubts About the Effective Size at Present Claimed. J. Cardiothorac. Surg. 2022, 17, 9. [Google Scholar] [CrossRef]
- Grootenboers, M.; Heeren, J.; Putte, B.; Hendriks, J.; Jan van Boven, W.; Van Schil, P.; Schramel, F. Isolated Lung Perfusion for Pulmonary Metastases, a Review and Work in Progress. Perfusion 2006, 21, 267–276. [Google Scholar] [CrossRef]
- Hendriks, J.M.; Van Putte, B.P.; Grootenboers, M.; Van Boven, W.J.; Schramel, F.; Van Schil, P.E. Isolated Lung Perfusion for Pulmonary Metastases. Thorac. Surg. Clin. 2006, 16, 185–198. [Google Scholar] [CrossRef]
- Cypel, M.; Keshavjee, S. Novel Technologies for Isolated Lung Perfusion: Beyond Lung Transplant. Thorac. Surg. Clin. 2016, 26, 139–145. [Google Scholar] [CrossRef]
- Ward, A.; Prokrym, K.; Pass, H. Isolated Lung Perfusion for Pulmonary Metastases. Thorac. Surg. Clin. 2016, 26, 55–67. [Google Scholar] [CrossRef]
- Ramadan, K.; Garza, G.; Montagne, J.; Gokhale, H.; Shan, H.; Keshavjee, S.; Yasufuku, K.; Wakeam, E.; Waddell, T.; Cypel, M. Phase I Dose Escalation Clinical Trial Using a Novel in Vivo Lung Perfusion Strategy in Patients with Multiple Pulmonary Metastases from Colorectal Carcinoma. In Proceedings of the 105th Annual Meeting, Seattle, WA, USA, 2–5 May 2025. [Google Scholar]
- Subramanian, J.; Dhand, R. Inhaled Chemotherapy. J. Aerosol Med. Pulm. Drug Deliv. 2025, 38, 90–101. [Google Scholar] [CrossRef]
- Nakanishi, M.; Yoshida, Y.; Natazuka, T. Prospective Study of Transarterial Infusion of Docetaxel and Cisplatin to Treat Non-Small-Cell Lung Cancer in Patients Contraindicated for Standard Chemotherapy. Lung Cancer 2012, 77, 353–358. [Google Scholar] [CrossRef]
- Vogl, T.J.; Shafinaderi, M.; Zangos, S.; Lindemayr, S.; Vatankhah, K. Regional Chemotherapy of the Lung: Transpulmonary Chemoembolization in Malignant Lung Tumors. Semin. Interv. Radiol. 2013, 30, 176–184. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y. Transcatheter Arterial Chemoembolization for Lung Malignant Tumors. Front. Oncol. 2025, 15, 1551644. [Google Scholar] [CrossRef] [PubMed]
- Hohenforst-Schmidt, W.; Zarogoulidis, P.; Darwiche, K.; Vogl, T.; Goldberg, E.P.; Huang, H.; Simoff, M.; Li, Q.; Browning, R.; Turner, F.J.; et al. Intratumoral Chemotherapy for Lung Cancer: Re-Challenge Current Targeted Therapies. Drug Des. Dev. Ther. 2013, 7, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Mallick, R.; Demmy, T. Regional Lung Chemotherapy Techniques. Innovations 2011, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Demmy, T.L.; Tomaszewski, G.; Dy, G.K.; Yendamuri, S.; Nwogu, C.; Pendyala, L.; Ramnath, N.; Adjei, A.A. Thoracoscopic Organ Suffusion for Regional Lung Chemotherapy (Preliminary Results). Ann. Thorac. Surg. 2009, 88, 385–390, discussion 90-1. [Google Scholar] [CrossRef]
- Karakousis, C.P.; Park, H.C.; Sharma, S.D.; Kanter, P. Regional Chemotherapy Via the Pulmonary Artery for Pulmonary Metastases. J. Surg. Oncol. 1981, 18, 249–255. [Google Scholar] [CrossRef]
- Smyth, N.P.; Blades, B. Selective Chemotherapy of the Lung during Unilateral Pulmonary Arterial Occlusion with a Balloon-Tipped Catheter. J. Thorac. Cardiovasc. Surg. 1960, 40, 653–666. [Google Scholar] [CrossRef]
- Demmy, T.L.; Wagner-Mann, C.; Allen, A. Isolated Lung Chemotherapeutic Infusions for Treatment of Pulmonary Metastases: A Pilot Study. J. Biomed. Sci. 2002, 9, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Detweiler, D.K. The Cardiovascular System and Blood Flow. In Best & Taylor’s Physiologic Basis of Medical Practice; Brobeck, J.R., Ed.; Williams & Wilkins: Baltimore, MD, USA, 1979. [Google Scholar]
- Nitsche, L.J.; Curtin, L.; Sexton, S.; Khoury, T.; Prey, J.D.; Yendamuri, S.; Demmy, T.L. Preclinical Experience with Cisplatin, Gemcitabine, and Doxorubicin in Pulmonary Suffusion. JTCVS Open 2025, 24, 484–495. [Google Scholar] [CrossRef]
- Demmy, T.L. Thoracoscopic Lung Suffusion. Thorac. Surg. Clin. 2016, 26, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Solimando, D.A., Jr.; Waddell, J.A. Docetaxel and Cisplatin Regimen for Non-Small-Cell Lung Cancer. Hosp. Pharm. 2013, 48, 550–557. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Colon Cancer; Version 3.2025; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2025; Available online: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf (accessed on 27 April 2025).
- Seddon, B.; Strauss, S.J.; Whelan, J.; Leahy, M.; Woll, P.J.; Cowie, F.; Rothermundt, C.; Wood, Z.; Benson, C.; Ali, N.; et al. Gemcitabine and Docetaxel Versus Doxorubicin as First-Line Treatment in Previously Untreated Advanced Unresectable or Metastatic Soft-Tissue Sarcomas (Geddis): A Randomised Controlled Phase 3 Trial. Lancet Oncol. 2017, 18, 1397–1410. [Google Scholar] [CrossRef]
- Ducoulombier, A.; Cousin, S.; Kotecki, N.; Penel, N. Gemcitabine-Based Chemotherapy in Sarcomas: A Systematic Review of Published Trials. Crit. Rev. Oncol. Hematol. 2016, 98, 73–80. [Google Scholar] [CrossRef]
- Miriam, J.; Lucy, J.; Gillon, C.S.C. Use of the Modified Borg Scale and Numerical Rating Scale to Measure Chronic Breathlessness: A Pooled Data Analysis. Eur. Respir. J. 2016, 47, 1861–1864. [Google Scholar] [CrossRef]
- Bell, M.D.; Long, T.; Roden, A.C.; Cooper, F.I.; Sanchez, H.; Trower, C.; Martinez, C.; Hooper, J.E. Updating Normal Organ Weights Using a Large Current Sample Database. Arch. Pathol. Lab. Med. 2022, 146, 1486–1495. [Google Scholar] [CrossRef]
- Sastry, P.; Tocock, A.; Coonar, A.S. Adrenalectomy for Isolated Metastasis from Operable Non-Small-Cell Lung Cancer. Interact. Cardiovasc. Thorac. Surg. 2014, 18, 495–497. [Google Scholar] [CrossRef]
- Furrer, K.; Bettex, D.; Horisberger, T.; Inci, I.; Nagaraj, N.G.; Morselli, H.T.; Battilana, B.; Schuepbach, R.; Ulrich, S.; Hebeisen, M.; et al. Fluid Management of Cardiopulmonary Bypass during Pulmonary Endarterectomy for Cteph Patients Impacts Perioperative Outcome. JHLT Open 2025, 9, 100253. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Demura, Y.; Umeda, Y.; Mizuno, S.; Ameshima, S.; Chiba, Y.; Ishizaki, T. Multi-Arterial Infusion Chemotherapy for Non-Small Cell Lung Carcinoma--Significance of Detecting Feeding Arteries and Tumor Staining. Lung Cancer 2008, 61, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Sparks, P.J.; Hines, J.; Lowry, J.; Strode, M.; Roach, M. Selective Pulmonary Artery Perfusion with Blood Flow Occlusion Delivers Concentrated Levels of Chemotherapy to Ipsilateral Hilar and Mediastinal Lymph Nodes. World J. Oncol. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Jiang, R.W.; Bojko, B.; Pawliszyn, J. Perspective on In vivo SPME for Human Applications: Starting from Monitoring Doxorubicin during Lung Chemo-Perfusion. J. Pharm. Anal. 2024, 14, 100918. [Google Scholar] [CrossRef]
- Jiang, R.W.; Zhou, W.; Cypel, M.; Demmy, T.L.; Shafirstein, G.; Garza, G.; Gawrys, E.; Bogusiewicz, J.; Bojko, B.; Pawliszyn, J. Minimally Invasive Chemical Biopsy Needle with Self-Wettable Extraction Phase for in Vivo Tissue Sampling during Medical Procedures. Adv. Sci. (Weinh) 2025, e00396, (in press). [Google Scholar] [CrossRef]
- Yue, X.; Cui, J.; Huang, S.; Liu, W.; Qi, J.; He, K.; Li, T. An Interpretable Radiomics-Based Machine Learning Model for Predicting Reverse Left Ventricular Remodeling in Stemi Patients Using Late Gadolinium Enhancement of Myocardial Scar. Eur. Radiol. 2025, (in press). [Google Scholar] [CrossRef]
- Zhan, Y.; Song, F.; Zhang, W.; Gong, T.; Zhao, S.; Lv, F. Prediction of Benign and Malignant Pulmonary Nodules Using Preoperative CT Features: Using PNI-GARS as a Predictor. Front. Immunol. 2024, 15, 1446511. [Google Scholar] [CrossRef]
Characteristic | N | Value or Percentage |
---|---|---|
Age | ||
All primaries | 30 | 55 ± 12 |
NSCLC | 7 | 60 ± 10 |
CRC | 16 | 54 ± 11 |
Sarcoma (soft tissue) | 6 | 51 ± 16 |
Breast (triple-negative) | 1 | 64 |
Female sex | 20 | 67% |
Smoking | ||
Active | 0 | 0% |
Former | 15 | 50% |
Never | 15 | 50% |
Comorbidity | ||
COPD | 7 | 23.3% |
Asthma | 2 | 6.6% |
HTN | 9 | 30% |
HLD | 7 | 23.3% |
CAD | 2 | 6.6% |
CKD | 1 | 3.3% |
Diverticulosis | 5 | 16.6% |
HIV | 1 | 3.3% |
Other cancer types | 5 | 16.6% |
FEV1 % predicted | 30 | 95.4 ± 20.8 |
DLCO % predicted | 30 | 83.3 ± 19.1 |
FVC % predicted | 30 | 104 ± 19.5 |
6 min walk test % predicted | 30 | 84.5 ± 26.1 |
Borg dyspnea scale (≥3) | 7 | (23%) |
Suffused side percentage | 30 | 48.3 ± 8.1 |
Non-suffused side percentage | 30 | 52.2 ± 7.3 |
Primary cancer treatment | ||
Chemotherapy | 5 | 16.6% |
Chemotherapy + irradiation | 3 | 10% |
Chemotherapy + surgery | 12 | 40% |
Chemotherapy + surgery + irradiation | 5 | 16.6% |
Surgery + irradiation | 2 | 6.6% |
Surgery | 2 | 6.6% |
Extra-thoracic organs with metastases | 7 | 0.5 ± 0.7 |
Ipsilateral pulmonary metastases | 23 | 1.3 ± 1.2 |
Contralateral pulmonary metastases | 21 | 0.3 ± 0.5 |
Total metastases number | 24 | 1.4 ± 1.3 |
Pulmonary disease-free interval (months) | 23 | 9.0 ± 15.9 |
Pre-suffusion pulmonary metastases treatment | ||
Surgery same side | 2 | 6.6% |
Surgery opposite side | 3 | 10% |
Irradiation same side | 1 | 3.3% |
SBRT same side | 2 | 6.6% |
Intrathoracic positive lymph nodes | 10 | 3.3 |
Lung involvement | ||
Unilateral | 20 | 66.6% |
Bilateral | 8 | 26.7% |
Bilateral randomized right | 5 | 62.5% |
Bilateral randomized left | 3 | 37.5% |
Suffused side | ||
Right | 16 | 53.3% |
Left | 14 | 46.7% |
Technique | ||
VATS | 28 | 93.3% |
Open thoracotomy | 2 | 6.7% |
Planned surgery | ||
Wedge only | 13 | 43.3% |
Wedge + segmentectomy | 2 | 6.7% |
Wedge + lobectomy | 5 | 16.7% |
Wedge + lingulectomy | 1 | 3.3% |
Segmentectomy | 1 | 3.3% |
Lobectomy | 3 | 10% |
No tissue removed | 5 | 16.7% |
Suffused chemotherapy | ||
Cisplatin | 10 | 33.3% |
Oxaliplatin | 14 | 46.7% |
Doxorubicin | 4 | 13.3% |
Gemcitabine | 2 | 6.7% |
Variable | VATS | OPEN | All Cases |
---|---|---|---|
VATS for vein control (min) | 63 ± 26 | 102 ± 93 | 68 ± 25 |
Vein control to suffusion start (min) | 97 ± 42 | 116 ± 09 | 99 ± 41 |
Interventional radiologist time | 53 ± 35 | 11 ± 1 | 50 ± 35 |
Suffusion (min) * | 30 ± 4 | 30 ± 0 | 30 ± 4 |
Metastasectomy (min) | 117 ± 72 | 274 ± 111 | 127 ± 83 |
Total procedural time (min) | 399 ± 106 | 524 ± 123 | 408 ± 110 |
Blood aspirated to create suffusate space (mL) | 166 ± 78 | 360 ± 190 | 179 ± 104 |
PA (“wedge”) during suffusion (mmHg) | 26.7 ± 8.8 | 33.8 ± 3.3 | 27.2 ± 8.7 |
EBL (mL) | 79 ± 81 | 100 ± 71 | 80 ± 80 |
Systemic therapy start, lung cancer (weeks) | 1.9 ± 2.0 | -- | 1.9 ± 2.0 |
Chemotherapy restart, if needed (weeks) ** | 6.8 ± 1.3 | 11.5 ± 7.5 | 9.1 ± 5.9 |
Chest tube removed (day) | 1.3 ± 0.2 | 2.0 ± 1.0 | 1.5 ± 1.0 |
Hospital stay (days) | 1.5 ± 1.3 | 6.5 ± 0.5 | 1.9 ± 1.8 |
# | Dose | Type | Status, Age | Response | DFS (mo) | Comment |
---|---|---|---|---|---|---|
Augment Local Control | ||||||
1 | 3.75 | Lung | Dead | Complete | 59 | |
2 | 3.75 | Lung | Dead | Complete, Δ | 8 | Pulmonary recurrence |
3 | 3.75 | Lung | Dead | Partial | 15 | |
4 | 5.625 | Lung | Alive, 63 | Complete, Δ | 151 | 2nd 1° Breast |
6 | 5.625 | Lung | Dead | Mixed, Δ | 9 | |
7 | 5.625 | Lung-B | Dead | Stable | 23 | |
10 | 7.5 | Lung | Alive, 89 | Complete, Δ | 14 | |
Suppress Metastases | ||||||
5 | 5.625 | Sarcoma | Alive | Complete | 165 | Leiomyosarcoma |
8 | 5.625 | Sarcoma | Dead | Progress | 13 | MPNST |
11 | 7.5 | Breast | Alive, 76 | Complete | 145 | TN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demmy, T.; Abdelhady, S.; Tomaszewski, G.; Petroziello, M.; Hasan, O.; Hennon, M.; Dexter, E.; Vadehra, D.; Gupta, A.; Grand‘Maison, A.; et al. Pulmonary Suffusion Refinements for Primary and Secondary Malignancies: Preliminary Analyses of Phase I Safety and Drug Delivery Data. Cancers 2025, 17, 2880. https://doi.org/10.3390/cancers17172880
Demmy T, Abdelhady S, Tomaszewski G, Petroziello M, Hasan O, Hennon M, Dexter E, Vadehra D, Gupta A, Grand‘Maison A, et al. Pulmonary Suffusion Refinements for Primary and Secondary Malignancies: Preliminary Analyses of Phase I Safety and Drug Delivery Data. Cancers. 2025; 17(17):2880. https://doi.org/10.3390/cancers17172880
Chicago/Turabian StyleDemmy, Todd, Samah Abdelhady, Garin Tomaszewski, Michael Petroziello, Omar Hasan, Mark Hennon, Elisabeth Dexter, Deepak Vadehra, Ajay Gupta, Anne Grand‘Maison, and et al. 2025. "Pulmonary Suffusion Refinements for Primary and Secondary Malignancies: Preliminary Analyses of Phase I Safety and Drug Delivery Data" Cancers 17, no. 17: 2880. https://doi.org/10.3390/cancers17172880
APA StyleDemmy, T., Abdelhady, S., Tomaszewski, G., Petroziello, M., Hasan, O., Hennon, M., Dexter, E., Vadehra, D., Gupta, A., Grand‘Maison, A., Dy, G., & Yendamuri, S. (2025). Pulmonary Suffusion Refinements for Primary and Secondary Malignancies: Preliminary Analyses of Phase I Safety and Drug Delivery Data. Cancers, 17(17), 2880. https://doi.org/10.3390/cancers17172880