The Targeted Inhibition of Histone Lysine Demethylases as a Novel Promising Anti-Cancer Therapeutic Strategy—An Update on Recent Evidence
Simple Summary
Abstract
1. Introduction
2. The Inhibition of Histone Lysine Demethylases Has Anti-Cancer Effects
2.1. KDM1A/B (LSD1/2)
Name of Compound | Target KDM | Biological Effects | Reference |
---|---|---|---|
4,5-Dimethoxycanthin-6-on | LSD1 | Reduced glioblastoma cell viability, migration, and colony formation; decreased activity of AKT/mTOR and MAPK signaling pathways; induction of apoptosis and pyroptosis; reduced tumor weight and volume in mouse U251 cells xenograft | [47] |
B35 (indole derivative) | LSD1 | Inhibited lung cancer cell proliferation and colony formation; induced apoptosis; reduced tumor volume and percentage of Ki-67 positive cells in mouse A549 cells xenograft | [48] |
Compound 5a (cyanopyrimidine derivative) | LSD1 | IC50 values < 10 µM in various cell lines, e.g., leukemia, non-small cell lung cancer, and colorectal cancer cells; anti-inflammatory potential based on TNF-α reduction in RAW 264.7 murine monocytes | [49] |
Compound 9j (tranylcypromine-based triazolopyrimidine analog) | LSD1 | Viability reduction in gastric cancer, lung cancer, and prostate cancer cell lines; inhibition of epithelial-to-mesenchymal transition; S-phase cell cycle arrest; apoptosis induction; reduced tumor volume and weight in mouse H1650 lung cancer cells xenograft | [50] |
Compound 10e (sulfonyl benzoyl hydrazide derivative) | LSD1 | Viability reduction in lung cancer, colorectal cancer, ovarian cancer, and breast cancer cell lines; induction of apoptosis and S-phase cell cycle arrest in HCT116 cell line; decreased tumor volume and weight in mouse HCT116 cells xenograft | [51] |
DDP-38003 | LSD1 | Reduced glycolytic capacity, ER stress induction, and reduced tumor growth in the zebrafish larvae model of glioblastoma tumor-initiating cells; resistance to LSD1i depended on PGAP1 expression | [43] |
D6 (chalcone derivative) | LSD1 | D6 derivative potently inhibited LSD1 and led to accumulation of H3K9me1/2 in leukemia cancer cells; D6 reduced cell proliferation in vitro and suppressed xenograft tumor growth in vivo | [45] |
GSK-LSD1 | LSD1 | Reduced tumor growth in a xenograft model of thyroid cancer | [42] |
LSD1-UM-109 | LSD1 | LSD1-UM-109 (compound 46)—a pyrrolo [2,3-c]pyridine derivative—showed strong inhibition of acute myeloid leukemia and squamous cell lung cancer cell proliferation | [52] |
NCD38 | LSD1 | Reduced triple-negative breast cancer cell viability, invasion, and mammosphere formation; induced apoptosis; downregulated IL-6/JAK/STAT3 and EMT pathways; reduced tumor volume and weight in mouse breast cancer patient-derived cells xenograft | [53] |
ORY-1001 | LSD1 | Reduced proliferation and induced apoptosis in hepatocellular cancer cells | [15] |
S2172 | LSD1 | Reduced proliferation of glioblastoma cells and impaired growth of xenograft tumors; significantly increased H3K4me1/2/3 and H3K9me2 level; reduced expression of cancer stem cell markers; S2172 penetrates the blood-brain-barrier | [54] |
SP2509 | LSD1 | Reduced tongue tumor development induced by 4NQO in a mouse model | [33] |
PFI-90 | LSD1, KDM3B | Suppressed xenograft tumor growth of PAX3-FOXO1 fusion-positive rhabdomyosarcoma, delayed tumor progression | [55] |
IOX1 | KDM3 | Reduced proliferation of CRC cells, reduced stemness potential, and inhibited xenograft tumor growth; inhibited Wnt target gene expression | [56] |
KDM2A/3A | Reduced proliferation and invasion, and increased apoptosis in bladder cancer cells; decreased tumor volume in xenograft mice | [57] | |
IOX1-based PROTAC * #4 | KDM3 | Decreased Wnt signaling pathway activity and Wnt target genes expression in colorectal cancer cell lines, reduced the growth of CRC stem cells-derived tumors in vivo | [10] |
ML324 | KDM4 | Reduced bladder cancer cell proliferation, and induced apoptosis; decreased tumor growth in mouse bladder cancer cells xenograft | [58] |
SD49-7 | KDM4 | Reduced leukemia cell viability in vitro and leukemia development in the patient-derived cells xenograft mouse model; increased apoptosis by suppressing MDM2 expression via change in H3K9me3 levels on the MDM2 promoter region | [59] |
TACH101 | KDM4A-D | Viability reduction in leukemia, breast cancer, esophageal cancer, multiple myeloma, colorectal cancer, and breast cancer cells; reduced tumor volume in various mouse xenografts | [60] |
QC6352 | KDM4 | Significantly delayed MYCN-amplified neuroblastoma growth in a patient-derived xenograft model | [61] |
Compound 33a (4,6-diarylquinoxaline derivative) | KDM4D | Reduced liver cancer cell proliferation, colony formation, and migration | [62] |
AS-8351 | KDM5B | Inhibited Ewing sarcoma cells in vitro and in vivo via upregulation of FBXW7 and enhanced degradation of cyclin E1 | [63] |
Compound 11ad (1H-pyrazole- [3,4-b] pyridine derivative) | KDM5B | Reduced prostate cancer cell viability, colony formation, and migration with concomitant induction of apoptosis and G2/M cell cycle arrest via attenuation of PI3K/AKT signaling pathway | [64] |
KDM5-C70 | KDM5B | Reduced expression of PPARγ coactivator-1α (PGC1α) and prostate-specific antigen, followed by decreased cell proliferation of prostate cancer cell lines | [65] |
GSK-J4 | KDM6A/B | Different effects in mouse prostate cancer cells xenografts: decreased tumor growth in androgen-dependent cancer and increased tumor volume in androgen-independent cancer | [66] |
KDM6A/B | Reduced retinoblastoma cell viability, proliferation, colony formation, and PI3K/AKT/NF-κB signaling pathway-related proteins; decreased tumor volume and Ki-67 expression in mouse xenograft | [67] | |
KDM6A/B | Reduced cervical cancer cell viability, colony formation, migration, and invasion; decreased tumor growth in mouse xenografts | [68] | |
KDM6B | Reduced adhesion of mantle lymphoma cells to stromal cells by downregulating the NF-κB pathway | [69] | |
KDM6B | Reduced prostate cancer cell viability; cytotoxicity; reduced cell migration and invasion; inhibition of canonical TGFβ pathway | [70] | |
KDM6B | In vitro reduced invasion of osteosarcoma cells; in vivo reduced lung metastasis (mouse 143B cells xenograft) | [71] | |
JIB-04 | KDM4–6 | In vitro reduced breast cancer cell migration and colony formation with concomitant lower expression of EMT—supporting proteins N-cadherin, Vimentin, and Snail; in vivo decreased tumor volume in mouse MDA-MB-231 cells xenograft | [72] |
KDM4, KDM6 | Reduced viability, migration, invasion, and stemness in hepatocellular cancer cells, reduced E2F-dependent transcription of cell cycle regulatory genes by decreasing AKT expression via KDM6B | [73] | |
Compound 4 | KDM7A | Reduced breast cancer cell viability, including taxol-resistant cells; G1/G0 cell cycle arrest; decreased expression of stemness markers | [74] |
TC-E 5002 (KDM2/7-IN-1) | KDM7A | Overcoming of cisplatin-resistance in mouse T24 cells bladder cancer xenograft | [75] |
Daminozide | PHF8 | Promoted differentiation of chronic myeloid leukemia cells, reduced cell proliferation, decreased the expression of BCR-ABL1 | [76] |
iPHF8 | PHF8 | Reduced HCT-116 cell proliferation in vitro; reduced xenograft tumor growth | [77] |
2.2. KDM2A/B (JHDM1A/B)
2.3. KDM3 (JMJD1)
2.4. KDM4 (JMJD2)
2.5. KDM5 (JARID1)
2.6. KDM6A/B (UTX/JMJD3)
2.7. KDM7B (PHF8, JHDM1F)
2.8. Other KDMs
3. The Effect of KDM Inhibition on Cancer Cell Metabolism
4. The Inhibition of KDMs and Modulation of Tumor Microenvironment
5. The Inhibition of KDMs and Immune Response Modulation
6. The Use of KDMi for Chemo- and Radiotherapy Sensitization
7. The Use of Combinations of KDMi with Other Targeted Therapeutics
8. Perspectives and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AML | Acute myeloid leukemia |
AR | Androgen receptor |
CAFs | Cancer-associated fibroblasts |
CRC | Colorectal cancer |
EMT | Epithelial-to-mesenchymal transition |
ESCC | Esophageal squamous cell carcinoma |
HNSCC | Head and neck squamous cell carcinoma |
KDM | Histone lysine demethylase |
KDMi | Histone lysine demethylase inhibitor |
LSD1 | Lysine-specific histone demethylase 1A |
NSCLC | Non-small cell lung cancer |
OSCC | Oral squamous cell carcinoma |
PDAC | Pancreatic ductal adenocarcinoma |
RCCC | Renal clear-cell carcinoma |
TAMs | Tumor-associated macrophages |
TME | Tumor microenvironment |
TNBC | Triple-negative breast cancer |
References
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Honer, M.A.; Ferman, B.I.; Gray, Z.H.; Bondarenko, E.A.; Whetstine, J.R. Epigenetic Modulators Provide a Path to Understanding Disease and Therapeutic Opportunity. Genes Dev. 2024, 38, 473–503. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Li, Z.; Lin, C.; Zhang, T.; Wang, G. Development of JmjC-Domain-Containing Histone Demethylase (KDM2-7) Inhibitors for Cancer Therapy. Drug Discov. Today 2023, 28, 103519. [Google Scholar] [CrossRef]
- Oh, S.; Janknecht, R. Versatile JMJD Proteins: Juggling Histones and Much More. Trends Biochem. Sci. 2024, 49, 804–818. [Google Scholar] [CrossRef]
- Eckschlager, T.; Vicha, A.; Frolikova, D. Lysine Demethylases and Cancer. Pathol.-Res. Pract. 2025, 271, 156011. [Google Scholar] [CrossRef]
- Li, D.; Liang, H.; Wei, Y.; Xiao, H.; Peng, X.; Pan, W. Exploring the Potential of Histone Demethylase Inhibition in Multi-Therapeutic Approaches for Cancer Treatment. Eur. J. Med. Chem. 2024, 264, 115999. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Singh, R.; Jauhari, S.; Lodhi, N.; Srivastava, R. Histone Demethylase Modulation: Epigenetic Strategy to Combat Cancer Progression. Epigenomes 2023, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-H.; Yoo, H.-B.; Roe, J.-S. Current Advances and Future Directions in Targeting Histone Demethylases for Cancer Therapy. Mol. Cells 2025, 48, 100192. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Lee, K.L.; Poellinger, L.; Masai, H.; Kato, H. Catalytic Domain-Dependent and -Independent Transcriptional Activities of the Tumour Suppressor Histone H3K27 Demethylase UTX/KDM6A in Specific Cancer Types. Epigenetics 2023, 18, 2222245. [Google Scholar] [CrossRef]
- Zaman, S.U.; Pagare, P.P.; Ma, H.; Hoyle, R.G.; Zhang, Y.; Li, J. Novel PROTAC Probes Targeting KDM3 Degradation to Eliminate Colorectal Cancer Stem Cells through Inhibition of Wnt/β-Catenin Signaling. RSC Med. Chem. 2024, 15, 3746–3758. [Google Scholar] [CrossRef]
- Guan, T.; Zhang, Y.; Li, S.; Zhang, W.; Song, Y.; Li, Y.; He, Y.; Chen, Y. Discovery of an Efficacious KDM5B PROTAC Degrader GT-653 up-Regulating IFN Response Genes in Prostate Cancer. Eur. J. Med. Chem. 2024, 272, 116494. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.; Wang, Y.; Yang, X.; Chen, Z.; Wu, F.; Ren, R.; Sun, Y.; Lai, Y.; Peng, L.; Yu, L.; et al. Discovery of a First-in-Class PROTAC Degrader of Histone Lysine Demethylase KDM4. Eur. J. Med. Chem. 2025, 288, 117410. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Feng, J.; Zhao, K.; Huang, T.; Zhang, B.; Yang, Y.; Sun, A.; Lin, Q.; Shao, G. LSD1 Demethylates and Destabilizes Autophagy Protein LC3B in Ovarian Cancer. Biomolecules 2024, 14, 1377. [Google Scholar] [CrossRef] [PubMed]
- Dorna, D.; Grabowska, A.; Paluszczak, J. Natural Products Modulating Epigenetic Mechanisms by Affecting Histone Methylation/Demethylation: Targeting Cancer Cells. Br. J. Pharmacol. 2025, 182, 2137–2158. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zhang, X.; Zhou, N.; Hu, T.; Shen, Y.; Chen, T.J.; Liu, Y.; Cui, H.; Zhu, S. Apigenin Inhibits Lipid Metabolism of Hepatocellular Carcinoma Cells by Targeting the Histone Demethylase KDM1A. Phytomedicine 2024, 135, 156024. [Google Scholar] [CrossRef]
- Li, N.; Yang, L.; Zuo, H. Arborinine Suppresses Ovarian Cancer Development through Inhibition of LSD1. Life Sci. 2022, 291, 120275. [Google Scholar] [CrossRef]
- Feng, C.; Gong, L.; Wang, J. Arborinine from Glycosmis parva Leaf Extract Inhibits Clear-Cell Renal Cell Carcinoma by Inhibiting KDM1A/UBE2O Signaling. Food Nutr. Res. 2022, 66, 8714. [Google Scholar] [CrossRef]
- Chu, Y.; Xiao, Z.; Jing, N.; Yan, W.; Wang, S.; Ma, B.; Zhang, J.; Li, Y. Arborinine, a Potential LSD1 Inhibitor, Inhibits Epithelial-Mesenchymal Transition of SGC-7901 Cells and Adriamycin-Resistant Gastric Cancer SGC-7901/ADR Cells. Investig. New Drugs 2021, 39, 627–635. [Google Scholar] [CrossRef]
- Shen, Z.; Gu, Y.; Jiang, R.; Qian, H.; Li, S.; Xu, L.; Gu, W.; Zuo, Y. Antitumor Effect of Demethylzeylasteral (T-96) on Triple-Negative Breast Cancer via LSD1-Mediate Epigenetic Mechanisms. Anal. Cell. Pathol. 2022, 2022, 2522597. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, C.; Teng, D.; Su, S.; Luo, X.; Liu, Z.; Liao, G. Discovery of Higenamine as a Potent, Selective and Cellular Active Natural LSD1 Inhibitor for MLL-Rearranged Leukemia Therapy. Bioorg. Chem. 2021, 109, 104723. [Google Scholar] [CrossRef]
- Yang, C.; Fang, Y.; Luo, X.; Teng, D.; Liu, Z.; Zhou, Y.; Liao, G. Discovery of Natural Product-like Spirooxindole Derivatives as Highly Potent and Selective LSD1/KDM1A Inhibitors for AML Treatment. Bioorg. Chem. 2022, 120, 105596. [Google Scholar] [CrossRef]
- Gu, M.; Xu, X.; Wang, X.; Wang, Y.; Zhao, Y.; Hu, X.; Zhu, L.; Deng, Z.; Han, C. Target Ligand Separation and Identification of Isoforsythiaside as a Histone Lysine-Specific Demethylase 1 Covalent Inhibitor Against Breast Cancer Metastasis. J. Med. Chem. 2024, 67, 19874–19888. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Tian, X.; Song, L.; Xie, J.; Liao, J.C.; Meeks, J.J.; Wu, X.-R.; Gin, G.E.; Wang, B.; Uchio, E.; et al. Kawain Inhibits Urinary Bladder Carcinogenesis through Epigenetic Inhibition of LSD1 and Upregulation of H3K4 Methylation. Biomolecules 2023, 13, 521. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Li, Z.; Li, L.; Du, K.; Yang, J.; Zhang, Z.; Wu, X.; Ma, J. Sanguinarine, Identified as a Natural Alkaloid LSD1 Inhibitor, Suppresses Lung Cancer Cell Growth and Migration. Iran. J. Basic Med. Sci. 2022, 25, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Zhang, H.; Li, Y.; Miao, G.; Liu, X.; Lv, Q. Viscosalactone B, a Natural LSD1 Inhibitor, Inhibits Proliferation in Vitro and in Vivo against Prostate Cancer Cells. Investig. New Drugs 2023, 41, 134–141. [Google Scholar] [CrossRef]
- Wang, M.; Hu, Y.; Cai, F.; Guo, L.; Mao, Y.; Zhang, Y. Jmjd2c Maintains the ALDHbri+ Cancer Stemness with Transcription Factor SOX2 in Lung Squamous Cell Carcinoma. Cancer Biol. Ther. 2024, 25, 2373447. [Google Scholar] [CrossRef]
- Xu, H.; Gao, J.; Fu, S.; Liang, Z.; Zhang, Y.; Chen, H.; Zheng, Q. Genkwanin Impairs Triple-Negative Breast Cancer Aggressiveness and Metastasis by Targeting Lysine Demethylase 4C. Phytomedicine 2025, 143, 156869. [Google Scholar] [CrossRef]
- Pu, Y.; Han, Y.; Ouyang, Y.; Li, H.; Li, L.; Wu, X.; Yang, L.; Gao, J.; Zhang, L.; Zhou, J.; et al. Kaempferol Inhibits Colorectal Cancer Metastasis through Circ_0000345 Mediated JMJD2C/β-Catenin Signalling Pathway. Phytomedicine 2024, 128, 155261. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Yang, L.; Liu, J.; Cui, C.; Yang, M.; Zou, D.; Zhou, L.; Zhou, Q.; Ge, W.; et al. Luteolin Directly Binds to KDM4C and Attenuates Ovarian Cancer Stemness via Epigenetic Suppression of PPP2CA/YAP Axis. Biomed. Pharmacother. 2023, 160, 114350. [Google Scholar] [CrossRef]
- Xia, M.; Wu, Y.; Zhu, H.; Duan, W. Tanshinone I Induces Ferroptosis in Gastric Cancer Cells via the KDM4D/P53 Pathway. Hum. Exp. Toxicol. 2023, 42, 09603271231216963. [Google Scholar] [CrossRef]
- Liu, J.-S.; Fang, W.-K.; Yang, S.-M.; Wu, M.-C.; Chen, T.-J.; Chen, C.-M.; Lin, T.-Y.; Liu, K.-L.; Wu, C.-M.; Chen, Y.-C.; et al. Natural Product Myricetin Is a Pan-KDM4 Inhibitor Which with Poly Lactic-Co-Glycolic Acid Formulation Effectively Targets Castration-Resistant Prostate Cancer. J. Biomed. Sci. 2022, 29, 29. [Google Scholar] [CrossRef]
- Wu, M.-J.; Yang, S.-M.; Fang, W.-K.; Chen, T.-J.; Wu, C.-Y.; Hsu, Y.-J.; Shen, C.-E.; Cheng, Y.-C.; Hsieh, W.-C.; Yuh, C.-H.; et al. KDM4C Works in Concert with GATA1 to Regulate Heme Metabolism in Head and Neck Squamous Cell Carcinoma. Cell. Mol. Life Sci. 2025, 82, 170. [Google Scholar] [CrossRef]
- Alhousami, T.; Diny, M.; Ali, F.; Shin, J.; Kumar, G.; Kumar, V.; Campbell, J.D.; Noonan, V.; Hanna, G.J.; Denis, G.V.; et al. Inhibition of LSD1 Attenuates Oral Cancer Development and Promotes Therapeutic Efficacy of Immune Checkpoint Blockade and YAP/TAZ Inhibition. Mol. Cancer Res. 2022, 20, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.K.; Raut, R.D.; Iqbal, K.; Choudhury, C.; Alhousami, T.; Chogle, S.; Acosta, A.S.; Fagman, L.; Deabold, K.; Takada, M.; et al. Lysine-Specific Demethylase 1 Controls Key OSCC Preneoplasia Inducer STAT3 through CDK7 Phosphorylation during Oncogenic Progression and Immunosuppression. Int. J. Oral Sci. 2025, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, F. LSD1 Silencing Inhibits the Proliferation, Migration, Invasion, and Epithelial-To-Mesenchymal Transition of Hypopharyngeal Cancer Cells by Inducing Autophagy and Pyroptosis. Chin. J. Physiol. 2023, 66, 162–170. [Google Scholar] [CrossRef]
- González-Novo, R.; Armesto, M.; González-Murillo, Á.; Dreger, M.; Hurlstone, A.F.L.; Benito, A.; Samaniego, R.; Ramírez, M.; Redondo-Muñoz, J. Dual Effect of Targeting LSD1 on the Invasiveness and the Mechanical Response of Acute Lymphoblastic Leukemia Cells. Biomed. Pharmacother. 2025, 183, 117830. [Google Scholar] [CrossRef]
- Li, H.; Fan, X.; Fang, X.; Wang, Y. Histone Demethylase LSD1 Promotes Castration-Resistant Prostate Cancer by Causing Widespread Gene Expression Derangements. IUBMB Life 2025, 77, e70011. [Google Scholar] [CrossRef]
- Liu, Q.; Xiong, J.; Xu, D.; Hao, N.; Zhang, Y.; Sang, Y.; Wang, Z.; Zheng, X.; Min, J.; Diao, H.; et al. TdIF1-LSD1 Axis Regulates Epithelial—Mesenchymal Transition and Metastasis via Histone Demethylation of E-Cadherin Promoter in Lung Cancer. Int. J. Mol. Sci. 2021, 23, 250. [Google Scholar] [CrossRef]
- Dong, B.; Song, X.; Wang, X.; Dai, T.; Wang, J.; Yu, Z.; Deng, J.; Evers, B.M.; Wu, Y. FBXO24 Suppresses Breast Cancer Tumorigenesis by Targeting LSD1 for Ubiquitination. Mol. Cancer Res. 2023, 21, 1303–1316. [Google Scholar] [CrossRef]
- Su, Y.; Du, Y.; He, W. USP1-Mediated Deubiquitination of KDM1A Promotes the Malignant Progression of Triple-Negative Breast Cancer. J. Biochem. Mol. Toxicol. 2024, 38, e23864. [Google Scholar] [CrossRef]
- Xi, Y.; Wang, R.; Qu, M.; Pan, Q.; Wang, M.; Ai, X.; Sun, Z.; Zhang, C.; Tang, P.; Jiang, J.; et al. Super-Enhancer-Hijacking RBBP7 Potentiates Metastasis and Stemness of Breast Cancer via Recruiting NuRD Complex Subunit LSD1. J. Transl. Med. 2025, 23, 266. [Google Scholar] [CrossRef]
- Zhang, W.; Ruan, X.; Li, Y.; Zhi, J.; Hu, L.; Hou, X.; Shi, X.; Wang, X.; Wang, J.; Ma, W.; et al. KDM1A Promotes Thyroid Cancer Progression and Maintains Stemness through the Wnt/β-Catenin Signaling Pathway. Theranostics 2022, 12, 1500–1517. [Google Scholar] [CrossRef]
- Marotta, G.; Osti, D.; Zaccheroni, E.; Costanza, B.; Faletti, S.; Marinaro, A.; Richichi, C.; Mesa, D.; Rodighiero, S.; Soriani, C.; et al. Metabolic Traits Shape Responses to LSD1-Directed Therapy in Glioblastoma Tumor-Initiating Cells. Sci. Adv. 2025, 11, eadt2724. [Google Scholar]
- Stitzlein, L.M.; Gangadharan, A.; Walsh, L.M.; Nam, D.; Espejo, A.B.; Singh, M.M.; Patel, K.H.; Lu, Y.; Su, X.; Ezhilarasan, R.; et al. Comparison of Pharmacological Inhibitors of Lysine-Specific Demethylase 1 in Glioblastoma Stem Cells Reveals Inhibitor-Specific Efficacy Profiles. Front. Neurol. 2023, 14, 1112207. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Zhou, Y.; Li, X.; Zhang, H.; Zhang, G. Discovery of Orally Active Chalcones as Histone Lysine Specific Demethylase 1 Inhibitors for the Treatment of Leukaemia. J. Enzym. Inhib. Med. Chem. 2021, 36, 207–217. [Google Scholar] [CrossRef]
- Wang, J.; Fang, X.; Xing, Y.; Ding, M.; Zhu, L.; Wang, M. KDM1A-Mediated ZFP64 Demethylation Activates CENPL to Promote Epithelial Ovarian Cancer Progression. Cytotechnology 2025, 77, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Huang, B.; Xiong, Y.; Yang, L.; Wu, L. 4,5-Dimethoxycanthin-6-One Is a Novel LSD1 Inhibitor That Inhibits Proliferation of Glioblastoma Cells and Induces Apoptosis and Pyroptosis. Cancer Cell Int. 2022, 22, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Huang, H.; Wang, X.; Wu, T.; Yin, W.; Li, X.; Wang, L.; Gu, Y.; Zhao, D.; et al. Identification of Novel Indole Derivatives as Highly Potent and Efficacious LSD1 Inhibitors. Eur. J. Med. Chem. 2022, 239, 114523. [Google Scholar] [CrossRef] [PubMed]
- Tasneem, S.; Sheikh, K.A.; Naematullah, M.; Mumtaz Alam, M.; Khan, F.; Garg, M.; Amir, M.; Akhter, M.; Amin, S.; Haque, A.; et al. Synthesis, Biological Evaluation and Docking Studies of Methylene Bearing Cyanopyrimidine Derivatives Possessing a Hydrazone Moiety as Potent Lysine Specific Demethylase-1 (LSD1) Inhibitors: A Promising Anticancer Agents. Bioorg. Chem. 2022, 126, 105885. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Wang, P.; Zhang, Z.; Ma, H.; Sun, Y.; Zhang, X.; Li, X.; Qiao, Y.; Zhang, F.; et al. Design, Synthesis and in Vitro/in Vivo Anticancer Activity of Tranylcypromine-Based Triazolopyrimidine Analogs as Novel LSD1 Inhibitors. Eur. J. Med. Chem. 2023, 253, 115321. [Google Scholar] [CrossRef]
- Ai, W.; Zuo, Z. Synthesis, Optimization and Antitumor Activity Evaluation of Sulfonyl Benzoyl Hydrazide Derivatives as Novel Human LSD1 Inhibitors. Bioorg. Med. Chem. Lett. 2024, 114, 129982. [Google Scholar] [CrossRef]
- Zheng, C.; Rej, R.K.; Wang, M.; Huang, L.; Fernandez-Salas, E.; Yang, C.-Y.; Wang, S. Discovery of Pyrrolo[2,3-c]pyridines as Potent and Reversible LSD1 Inhibitors. ACS Med. Chem. Lett. 2023, 14, 1389–1395. [Google Scholar] [CrossRef]
- Zhou, M.; Venkata, P.P.; Viswanadhapalli, S.; Palacios, B.; Alejo, S.; Chen, Y.; He, Y.; Pratap, U.P.; Liu, J.; Zou, Y.; et al. KDM1A Inhibition Is Effective in Reducing Stemness and Treating Triple Negative Breast Cancer. Breast Cancer Res. Treat. 2021, 185, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Shinjo, K.; Umehara, T.; Niwa, H.; Sato, S.; Katsushima, K.; Sato, S.; Wang, X.; Murofushi, Y.; Suzuki, M.M.; Koyama, H.; et al. Novel Pharmacologic Inhibition of Lysine-Specific Demethylase 1 as a Potential Therapeutic for Glioblastoma. Cancer Gene Ther. 2024, 31, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Gryder, B.E.; Sinniah, R.; Peach, M.L.; Shern, J.F.; Abdelmaksoud, A.; Pomella, S.; Woldemichael, G.M.; Stanton, B.Z.; Milewski, D.; et al. KDM3B Inhibitors Disrupt the Oncogenic Activity of PAX3-FOXO1 in Fusion-Positive Rhabdomyosarcoma. Nat. Commun. 2024, 15, 1703. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, R.G.; Wang, H.; Cen, Y.; Zhang, Y.; Li, J. IOX1 Suppresses Wnt Target Gene Transcription and Colorectal Cancer Tumorigenesis through Inhibition of KDM3 Histone Demethylases. Mol. Cancer Ther. 2021, 20, 191–202. [Google Scholar] [CrossRef]
- Lu, B.; Wei, J.; Zhou, H.; Chen, J.; Li, Y.; Ye, L.; Zhao, W.; Wu, S. Histone H3K36me2 Demethylase KDM2A Promotes Bladder Cancer Progression through Epigenetically Silencing RARRES3. Cell Death Dis. 2022, 13, 547. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.; He, Y.; Zheng, X.; Lin, T.; Yang, L.; Tan, P.; Wei, Q. Inhibition of KDM4A Restricts SQLE Transcription and Induces Oxidative Stress Imbalance to Suppress Bladder Cancer. Redox Biol. 2024, 77, 103407. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Gao, H.; Gu, J.; Zhang, Y.; Zhang, Y.; Xie, M.; Cheng, X.; Yang, M.; Zhang, W.; et al. KDM4 Inhibitor SD49-7 Attenuates Leukemia Stem Cell via KDM4A/MDM2/P21CIP1 Axis. Theranostics 2022, 12, 4922–4934. [Google Scholar] [CrossRef]
- Chandhasin, C.; Dang, V.; Perabo, F.; Del Rosario, J.; Chen, Y.K.; Filvaroff, E.; Stafford, J.A.; Clarke, M. TACH101, a First-in-Class Pan-Inhibitor of KDM4 Histone Demethylase. Anti-Cancer Drugs 2023, 34, 1122–1131. [Google Scholar] [CrossRef]
- Abu-Zaid, A.; Fang, J.; Jin, H.; Singh, S.; Pichavaram, P.; Wu, Q.; Tillman, H.; Janke, L.; Rosikiewicz, W.; Xu, B.; et al. Histone Lysine Demethylase 4 Family Proteins Maintain the Transcriptional Program and Adrenergic Cellular State of MYCN-Amplified Neuroblastoma. Cell Rep. Med. 2024, 5, 101468. [Google Scholar] [CrossRef]
- Ni, D.; Chen, X.; Wang, H.; Shen, T.; Li, X.; Liang, B.; Zhang, R.; Liu, R.; Xiao, W. Design, Synthesis and Biological Evaluation of 4,6-Diarylquinoxaline-Based KDM4D Inhibitors. Bioorg. Med. Chem. 2024, 114, 117945. [Google Scholar] [CrossRef]
- Chen, B.; Chen, H.; Lu, S.; Zhu, X.; Que, Y.; Zhang, Y.; Huang, J.; Zhang, L.; Zhang, Y.; Sun, F.; et al. KDM5B Promotes Tumorigenesis of Ewing Sarcoma via FBXW7/CCNE1 Axis. Cell Death Dis. 2022, 13, 354. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yang, P.; Yang, Y.; Lin, Z.; Fan, Z.; Wei, X.; Yan, L.; Li, Y.; He, Z.; Ma, L.; et al. Discovery of a Novel 1H-Pyrazole- [3,4-b] Pyridine-Based Lysine Demethylase 5B Inhibitor with Potential Anti-Prostate Cancer Activity That Perturbs the Phosphoinositide 3-Kinase/AKT Pathway. Eur. J. Med. Chem. 2023, 251, 115250. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, Y. PGC1α as a Downstream Effector of KDM5B Promotes the Progression of Androgen Receptor-Positive and Androgen Receptor-Negative Prostate Cancers. Am. J. Cancer Res. 2024, 14, 4367–4377. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.; Penault-Llorca, F.; Bignon, Y.-J.; Guy, L.; Bernard-Gallon, D. Effects of GSK-J4 on JMJD3 Histone Demethylase in Mouse Prostate Cancer Xenografts. Cancer Genom. Proteom. 2022, 19, 339–349. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, W.; Xu, C.; Yang, H.; Huang, G. Antitumoral Potential of the Histone Demethylase Inhibitor GSK-J4 in Retinoblastoma. Investig. Ophthalmol. Vis. Sci. 2024, 65, 34. [Google Scholar] [CrossRef]
- Chen, D.; Cai, B.; Zhu, Y.; Ma, Y.; Yu, X.; Xiong, J.; Shen, J.; Tie, W.; Zhang, Y.; Guo, F. Targeting Histone Demethylases JMJD3 and UTX: Selenium as a Potential Therapeutic Agent for Cervical Cancer. Clin. Epigenetics 2024, 16, 51. [Google Scholar] [CrossRef]
- Sadeghi, L.; Wright, A.P.H. GSK-J4 Inhibition of KDM6B Histone Demethylase Blocks Adhesion of Mantle Cell Lymphoma Cells to Stromal Cells by Modulating NF-κB Signaling. Cells 2023, 12, 2010. [Google Scholar] [CrossRef]
- Dalpatraj, N.; Naik, A.; Thakur, N. Combination Treatment of a Phytochemical and a Histone Demethylase Inhibitor—A Novel Approach towards Targeting TGFβ-Induced EMT, Invasion, and Migration in Prostate Cancer. Int. J. Mol. Sci. 2023, 24, 1860. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, F.; Gao, B.; Ma, M.; Chen, M.; Wu, Y.; Zhang, W.; Sun, Y.; Liu, S.; Shen, H. KDM6B-Mediated Histone Demethylation of LDHA Promotes Lung Metastasis of Osteosarcoma. Theranostics 2021, 11, 3868–3881. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, S.; Yu, T.; Zeng, T.; Wei, L.; You, Y.; Tang, J.; Dang, T.; Sun, H.; Zhang, Y. KDM4A Promotes Malignant Progression of Breast Cancer by Down-Regulating BMP9 Inducing Consequent Enhancement of Glutamine Metabolism. Cancer Cell Int. 2024, 24, 322. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.-S.; Cho, H.-I.; Jo, S.-R.; Jang, Y.-K. JIB-04, a Pan-Inhibitor of Histone Demethylases, Targets Histone-Lysine-Demethylase-Dependent AKT Pathway, Leading to Cell Cycle Arrest and Inhibition of Cancer Stem-Like Cell Properties in Hepatocellular Carcinoma Cells. Int. J. Mol. Sci. 2022, 23, 7657. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.-J.; Liu, Y.-J.; Liu, Z.-G.; Chen, R.-Y.; Wang, R.; Yu, J.; Li, C.-Y.; Yang, G.; Chen, J. Structure-Based Identification of a Potent KDM7A Inhibitor Exerts Anticancer Activity through Transcriptionally Reducing MKRN1 in Taxol-Resistant and -Sensitive Triple-Negative Breast Cancer Cells. Bioorg. Chem. 2024, 153, 107945. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, B.-C.; Jeong, S.-H.; Jeong, C.W.; Ku, J.H.; Kim, H.H.; Kwak, C. Histone Demethylase KDM7A Regulates Androgen Receptor Activity, and Its Chemical Inhibitor TC-E 5002 Overcomes Cisplatin-Resistance in Bladder Cancer Cells. Int. J. Mol. Sci. 2020, 21, 5658. [Google Scholar] [CrossRef]
- Feng, H.; Fu, Y.; Cui, Z.; Zhou, M.; Zhang, L.; Gao, Z.; Ma, S.; Chen, C. Histone Demethylase PHF8 Facilitates the Development of Chronic Myeloid Leukaemia by Directly Targeting BCR::ABL1. Br. J. Haematol. 2023, 202, 1178–1191. [Google Scholar] [CrossRef]
- Wu, X.-N.; Li, J.; He, Q.; Li, B.; He, Y.; Pan, X.; Wang, M.; Sang, R.; Ding, J.; Gao, X.; et al. Targeting the PHF8/YY1 Axis Suppresses Cancer Cell Growth through Modulation of ROS. Proc. Natl. Acad. Sci. USA 2024, 121, e2219352120. [Google Scholar] [CrossRef]
- Xie, Z.; Li, H.; Zang, J. Knockdown of Lysine (K)-Specific Demethylase 2B KDM2B Inhibits Glycolysis and Induces Autophagy in Lung Squamous Cell Carcinoma Cells by Regulating the Phosphatidylinositol 3-Kinase/AKT/Mammalian Target of Rapamycin Pathway. Bioengineered 2021, 12, 12227–12235. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, Z.; Li, C.; Nie, L.; Chen, K. KDM2B Mediates the Wnt/β-Catenin Pathway through Transcriptional Activation of PKMYT1 via microRNA-Let-7b-5p/EZH2 to Affect the Development of Non-Small Cell Lung Cancer. Exp. Cell Res. 2022, 417, 113208. [Google Scholar] [CrossRef]
- Han, Y.; Maimaiti, N.; Sun, Y.; Yao, J. Knockout of KDM3A in MDA-MB-231 Breast Cancer Cells Inhibits Tumor Malignancy and Promotes Apoptosis. J. Mol. Histol. 2024, 55, 139–148. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Q.; Yang, Q. KDM3A Promotes Oral Squamous Cell Carcinoma Cell Proliferation and Invasion via H3K9me2 Demethylation-Activated DCLK1. Genes Genom. 2022, 44, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Cruz, P.; Peña-Lopez, D.; Figueroa, D.; Riobó, I.; Benedetti, V.; Saavedra, F.; Espinoza-Arratia, C.; Escobar, T.M.; Lladser, A.; Loyola, A. Unraveling the Role of JMJD1B in Genome Stability and the Malignancy of Melanomas. Int. J. Mol. Sci. 2024, 25, 10689. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Cao, H.; Liu, J.; Cao, G.; Li, T. Antitumor Effects of IOX1 Combined with Bevacizumab-Induced Apoptosis and Immunity on Colorectal Cancer Cells. Int. Immunopharmacol. 2024, 141, 112896. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Ding, X.; Ding, C.; Wang, G.; Fu, C.; Liu, F.; Shi, J.; He, W. The Role of JMJD2A in Immune Evasion and Malignant Behavior of Esophageal Squamous Cell Carcinoma. Int. Immunopharmacol. 2024, 137, 112401. [Google Scholar] [CrossRef]
- Hou, Y.; Yu, W.; Wu, G.; Wang, Z.; Leng, S.; Dong, M.; Li, N.; Chen, L. Carcinogenesis Promotion in Oral Squamous Cell Carcinoma: KDM4A Complex-Mediated Gene Transcriptional Suppression by LEF1. Cell Death Dis. 2023, 14, 510. [Google Scholar] [CrossRef]
- Pei, J.; Zhang, S.; Yang, X.; Han, C.; Pan, Y.; Li, J.; Wang, Z.; Sun, C.; Zhang, J. Epigenetic Regulator KDM4A Activates Notch1-NICD-Dependent Signaling to Drive Tumorigenesis and Metastasis in Breast Cancer. Transl. Oncol. 2023, 28, 101615. [Google Scholar] [CrossRef]
- Cai, X.; Yu, X.; Tang, T.; Xu, Y.; Wu, T. JMJD2A Promotes the Development of Castration-Resistant Prostate Cancer by Activating Androgen Receptor Enhancer and Inhibiting the cGAS-STING Pathway. Mol. Carcinog. 2024, 63, 1682–1696. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Wang, B.-J.; Fu, Y.-K.; Huo, C.; Wang, Y.-P.; Chen, B.-C.; Liu, W.-Y.; Tseng, J.-C.; Jiang, S.S.; Sie, Z.-L.; et al. Inhibition of KDM4C/c-Myc/LDHA Signalling Axis Suppresses Prostate Cancer Metastasis via Interference of Glycolytic Metabolism. Clin. Transl. Med. 2022, 12, e764. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, H.; Li, Z.; Sun, W.; Zhao, E.; Cui, H. Histone Demethylase KDM4B Accelerates the Progression of Glioblastoma via the Epigenetic Regulation of MYC Stability. Clin. Epigenetics 2023, 15, 192. [Google Scholar] [CrossRef]
- Tang, H.; Guan, Y.; Yuan, Z.; Guo, T.; Tan, X.; Fan, Y.; Zhang, E.; Wang, X. Histone Demethylase KDM4B Contributes to Advanced Clear Cell Renal Carcinoma and Association with Copy Number Variations and Cell Cycle Progression. Epigenetics 2023, 18, 2192319. [Google Scholar] [CrossRef]
- Hasan, A.U.; Serada, S.; Sato, S.; Obara, M.; Hirata, S.; Nagase, Y.; Kondo, Y.; Taira, E. KDM4B Histone Demethylase Inhibition Attenuates Tumorigenicity of Malignant Melanoma Cells by Overriding the p53-Mediated Tumor Suppressor Pathway. J. Cell. Biochem. 2025, 126, e30643. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Li, Z.; Xue, J.; Xue, H.; Liu, Z.; Zhang, W.; Liu, H.; Xu, S. KDM4C Silencing Inhibits Cell Migration and Enhances Radiosensitivity by Inducing CXCL2 Transcription in Hepatocellular Carcinoma. Cell Death Discov. 2023, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Feng, Y.; Yang, X. MicroRNA-409-5p Inhibits GIST Tumorigenesis and Improves Imatinib Resistance by Targeting KDM4D Expression. Curr. Med. Sci. 2023, 43, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Lahiri, A.; Mukherjee, S.; Roy, M.; Datta, A. Prevention of Inorganic Arsenic Induced Squamous Cell Carcinoma of the Skin in Swiss Albino Mice by Black Tea through Epigenetic Modulation. Heliyon 2022, 8, e10341. [Google Scholar] [CrossRef]
- Mi, Y.; Zhang, L.; Sun, C.; Feng, Y.; Sun, J.; Wang, J.; Yang, D.; Qi, X.; Wan, H.; Xia, G.; et al. Lysine Demethylase 5A Promotes Prostate Adenocarcinoma Progression by Suppressing microRNA-330-3p Expression and Activating the COPB2/PI3K/AKT Axis in an ETS1-Dependent Manner. J. Cell Commun. Signal. 2022, 16, 579–599. [Google Scholar] [CrossRef]
- Kirtana, R.; Manna, S.; Patra, S.K. KDM5A Noncanonically Binds Antagonists MLL1/2 to Mediate Gene Regulation and Promotes Epithelial to Mesenchymal Transition. Biochim. Et Biophys. Acta (BBA)-Gene Regul. Mech. 2023, 1866, 194986. [Google Scholar] [CrossRef]
- Luo, Y.; He, Y.; Xu, Y.; Wang, Y.; Yang, L. The KDM5A/HOXA5 Axis Regulates Osteosarcoma Progression via Activating the Wnt/β-Catenin Pathway. Eur. J. Med. Res. 2025, 30, 284. [Google Scholar] [CrossRef]
- Shen, W.-J.; Kao, H.-M.; Wang, C.-Y.; Kousar, R.; Lin, J.-S.; Ko, C.-C.; Lin, H.-Y.; Ta, H.D.K.; Anuraga, G.; Xuan, D.T.M.; et al. Multiple Comprehensive Analyses Identify Lysine Demethylase KDM as a Potential Therapeutic Target for Pancreatic Cancer. Int. J. Med. Sci. 2024, 21, 2158–2169. [Google Scholar] [CrossRef]
- Yuan, W.; Hu, J.; Wang, M.; Li, G.; Lu, S.; Qiu, Y.; Liu, C.; Liu, Y. KDM5B Promotes Metastasis and Epithelial–Mesenchymal Transition via Wnt/β-Catenin Pathway in Squamous Cell Carcinoma of the Head and Neck. Mol. Carcinog. 2024, 63, 885–896. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Jiang, Y.; Zhang, J.; Wang, Z.; Wang, L.; Fan, X.; Ba, G. Identifying KDM5B as the Synthetic Lethal Target of KMT2D-Mutated Osteosarcoma. Chem.-Biol. Interact. 2025, 412, 111451. [Google Scholar] [CrossRef]
- DiCiaccio, B.; Seehawer, M.; Li, Z.; Patmanidis, A.; Bui, T.; Foidart, P.; Nishida, J.; D’Santos, C.S.; Papachristou, E.K.; Papanastasiou, M.; et al. ZBTB7A Is a Modulator of KDM5-Driven Transcriptional Networks in Basal Breast Cancer. Cell Rep. 2024, 43, 114991. [Google Scholar] [CrossRef]
- Metzler, V.M.; De Brot, S.; Haigh, D.B.; Woodcock, C.L.; Lothion-Roy, J.; Harris, A.E.; Nilsson, E.M.; Ntekim, A.; Persson, J.L.; Robinson, B.D.; et al. The KDM5B and KDM1A Lysine Demethylases Cooperate in Regulating Androgen Receptor Expression and Signalling in Prostate Cancer. Front. Cell Dev. Biol. 2023, 11, 1116424. [Google Scholar] [CrossRef]
- Wang, F.; Huang, J.; Zeng, S.; Pan, Y.; Zhou, H. ETS Homologous Factor, Controlled by Lysine-Specific Demethylase 5B, Suppresses Clear Cell Renal Cell Carcinoma by Inducing Filamin-B. Gene 2024, 927, 148702. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, L.; Gu, Y.; Wang, S.; Zhou, L.; Cheng, X.; Jiang, H.; Huang, Y.; Zhang, Y.; Qian, W.; et al. Lysine Demethylase 5C Inhibits Transcription of Prefoldin Subunit 5 to Activate C-Myc Signal Transduction and Colorectal Cancer Progression. Mol. Med. 2024, 30, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, W.; Wang, X.; Chen, M. AUP1 Transcriptionally Activated by KDM5B Reprograms Lipid Metabolism to Promote the Malignant Progression of Cervical Cancer. Int. J. Oncol. 2024, 65, 107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, H.; Ye, L.; Bao, S.; Zhang, R.; Che, J.; Luo, W.; Yu, C.; Wang, W. Comprehensive Transcriptomic Analyses Identify KDM Genes-Related Subtypes with Different TME Infiltrates in Gastric Cancer. BMC Cancer 2023, 23, 454. [Google Scholar] [CrossRef]
- Shen, X.; Xiong, S.; Wang, S.; Lu, S.; Wan, Y.; Zhang, H. Mutation on JmjC Domain of UTX Impaired Its Antitumor Effects in Pancreatic Cancer via Inhibiting G0S2 Expression and Activating the Toll-like Signaling Pathway. Mol. Med. 2024, 30, 258. [Google Scholar] [CrossRef]
- Luan, Y.; Zhang, H.; Liu, Y.; Xue, J.; Wang, K.; Ma, B.; Ma, K.; Lu, H.; Chen, X.; Liu, Y.; et al. UTX Inhibition Suppresses Proliferation and Promotes Apoptosis in Patient-derived Glioblastoma Stem Cells by Modulating Periostin Expression. J. Cell. Physiol. 2024, 239, e31178. [Google Scholar] [CrossRef]
- Chen, Z.; Qi, Y.; Shen, J.; Chen, Z. Histone Demethylase KDM6A Coordinating with KMT2B Regulates Self-Renewal and Chemoresistance of Non-Small Cell Lung Cancer Stem Cells. Transl. Oncol. 2023, 37, 101778. [Google Scholar] [CrossRef]
- Seehawer, M.; Li, Z.; Nishida, J.; Foidart, P.; Reiter, A.H.; Rojas-Jimenez, E.; Goyette, M.-A.; Yan, P.; Raval, S.; Munoz Gomez, M.; et al. Loss of Kmt2c or Kmt2d Drives Brain Metastasis via KDM6A-Dependent Upregulation of MMP3. Nat. Cell Biol. 2024, 26, 1165–1175. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, X.; Gao, Y.; Wang, M.; Xiao, M.; Zhu, K.; Niu, W.; Dai, Y. Inactivation of KDM6A Promotes the Progression of Colorectal Cancer by Enhancing the Glycolysis. Eur. J. Med. Res. 2024, 29, 310. [Google Scholar] [CrossRef]
- Kong, N.; Zhang, R.; Wu, G.; Sui, X.; Wang, J.; Kim, N.Y.; Blake, S.; De, D.; Xie, T.; Cao, Y.; et al. Intravesical Delivery of KDM6A -mRNA via Mucoadhesive Nanoparticles Inhibits the Metastasis of Bladder Cancer. Proc. Natl. Acad. Sci. USA 2022, 119, e2112696119. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Yang, Z.; Cui, X.; Zheng, L.; Fu, Y.; Shao, W.; Zhang, L.; Yang, Q.; Jia, J. KDM6B Promotes Gastric Carcinogenesis and Metastasis via Upregulation of CXCR4 Expression. Cell Death Dis. 2022, 13, 1068. [Google Scholar] [CrossRef]
- Lesbon, J.C.C.; Garnica, T.K.; Xavier, P.L.P.; Rochetti, A.L.; Reis, R.M.; Müller, S.; Fukumasu, H. A Screening of Epigenetic Therapeutic Targets for Non-Small Cell Lung Cancer Reveals PADI4 and KDM6B as Promising Candidates. Int. J. Mol. Sci. 2022, 23, 11911. [Google Scholar] [CrossRef] [PubMed]
- Shait Mohammed, M.R.; Zamzami, M.; Choudhry, H.; Ahmed, F.; Ateeq, B.; Khan, M.I. The Histone H3K27me3 Demethylases KDM6A/B Resist Anoikis and Transcriptionally Regulate Stemness-Related Genes. Front. Cell Dev. Biol. 2022, 10, 780176. [Google Scholar] [CrossRef] [PubMed]
- Moubarak, R.S.; De Pablos-Aragoneses, A.; Ortiz-Barahona, V.; Gong, Y.; Gowen, M.; Dolgalev, I.; Shadaloey, S.A.A.; Argibay, D.; Karz, A.; Von Itter, R.; et al. The Histone Demethylase PHF8 Regulates TGFβ Signaling and Promotes Melanoma Metastasis. Sci. Adv. 2022, 8, eabi7127. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Y.; Wang, S.; Wang, Y.; Sui, M.; Liu, J.; Chen, P.; Wang, J.; Zhang, Y.; Dang, C.; et al. Genome-Wide CRISPR Screening Identifies PHF8 as an Effective Therapeutic Target for KRAS- or BRAF-Mutant Colorectal Cancers. J. Exp. Clin. Cancer Res. 2025, 44, 70. [Google Scholar] [CrossRef]
- Di Nisio, E.; Manzini, V.; Licursi, V.; Negri, R. To Erase or Not to Erase: Non-Canonical Catalytic Functions and Non-Catalytic Functions of Members of Histone Lysine Demethylase Families. Int. J. Mol. Sci. 2024, 25, 6900. [Google Scholar] [CrossRef]
- Shen, J.; Liu, G.; Qi, H.; Xiang, X.; Shao, J. JMJD5 Inhibits Lung Cancer Progression by Facilitating EGFR Proteasomal Degradation. Cell Death Dis. 2023, 14, 657. [Google Scholar] [CrossRef]
- Liu, G.; Qi, H.; Shen, J. JMJD5 Inhibits Lung Cancer Progression by Regulating Glucose Metabolism through the P53/TIGAR Pathway. Med. Oncol. 2023, 40, 145. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Liu, J.; Wang, Y.; Xia, G.; Huang, X. Jumonji-C Domain-Containing Protein 5 Suppresses Proliferation and Aerobic Glycolysis in Pancreatic Cancer Cells in a c-Myc-Dependent Manner. Cell. Signal. 2022, 93, 110282. [Google Scholar] [CrossRef]
- Brewitz, L.; Nakashima, Y.; Piasecka, S.K.; Salah, E.; Fletcher, S.C.; Tumber, A.; Corner, T.P.; Kennedy, T.J.; Fiorini, G.; Thalhammer, A.; et al. 5-Substituted Pyridine-2,4-Dicarboxylate Derivatives Have Potential for Selective Inhibition of Human Jumonji-C Domain-Containing Protein 5. J. Med. Chem. 2023, 66, 10849–10865. [Google Scholar] [CrossRef]
- Song, J.; Zheng, J.; Liu, X.; Dong, W.; Yang, C.; Wang, D.; Ruan, X.; Zhao, Y.; Liu, L.; Wang, P.; et al. A Novel Protein Encoded by ZCRB1-Induced circHEATR5B Suppresses Aerobic Glycolysis of GBM through Phosphorylation of JMJD5. J. Exp. Clin. Cancer Res. 2022, 41, 171. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Yang, C.-Y.; Peng, B.; Ho, S.-L.; Tsao, C.-H.; Lin, C.-K.; Lin, C.-S.; Lin, G.-J.; Lin, H.-Y.; Huang, H.-C.; et al. Allyl Isothiocyanate Suppresses the Proliferation in Oral Squamous Cell Carcinoma via Mediating the KDM8/CCNA1 Axis. Biomedicines 2023, 11, 2669. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Tsao, C.-H.; Hsieh, C.-C.; Lin, C.-K.; Lin, C.-S.; Li, Y.-H.; Chang, W.-C.; Cheng, J.-C.; Lin, G.-J.; Sytwu, H.-K.; et al. Downregulation of Jumonji-C Domain-Containing Protein 5 Inhibits Proliferation by Silibinin in the Oral Cancer PDTX Model. PLoS ONE 2020, 15, e0236101. [Google Scholar] [CrossRef]
- Yue, B.; Chen, J.; Bao, T.; Zhang, Y.; Yang, L.; Zhang, Z.; Wang, Z.; Zhu, C. Chromosomal Copy Number Amplification-Driven Linc01711 Contributes to Gastric Cancer Progression through Histone Modification-Mediated Reprogramming of Cholesterol Metabolism. Gastric Cancer 2024, 27, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Single-Cell RNA Sequencing Identifies Macrophage Signatures Correlated with Clinical Features and Tumour Microenvironment in Meningiomas. IET Syst. Biol. 2023, 17, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Sreeshma, B.; Mohan, A.M.; Devi, A. Jumonji and AT-Rich Interacting Domain 2 (JARID2) Exhibits a Tumor-Suppressive Role in Oral Squamous Cell Carcinoma by Modulating Tumor Progression and Metastasis. 3 Biotech 2024, 14, 319. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Song, Z.; Cheng, J.; Tang, Z. JARID2, a Novel Regulatory Factor, Promotes Cell Proliferation, Migration, and Invasion in Oral Squamous Cell Carcinoma. BMC Cancer 2024, 24, 793. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, Y.; Hao, X.; Wang, X.; Liu, J.; Gao, T.; Wang, M.; Zhang, J.; Huo, M.; Hu, T.; et al. JARID2 Coordinates with the NuRD Complex to Facilitate Breast Tumorigenesis through Response to Adipocyte-Derived Leptin. Cancer Commun. 2023, 43, 1117–1142. [Google Scholar] [CrossRef]
- Hönigova, K.; Navratil, J.; Peltanova, B.; Polanska, H.H.; Raudenska, M.; Masarik, M. Metabolic Tricks of Cancer Cells. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 2022, 1877, 188705. [Google Scholar] [CrossRef]
- Tufail, M.; Jiang, C.-H.; Li, N. Altered Metabolism in Cancer: Insights into Energy Pathways and Therapeutic Targets. Mol. Cancer 2024, 23, 203. [Google Scholar] [CrossRef] [PubMed]
- Pallavi, R.; Gatti, E.; Durfort, T.; Stendardo, M.; Ravasio, R.; Leonardi, T.; Falvo, P.; Duso, B.A.; Punzi, S.; Xieraili, A.; et al. Caloric Restriction Leads to Druggable LSD1-Dependent Cancer Stem Cells Expansion. Nat. Commun. 2024, 15, 828. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Sun, H.; Chen, Y.; Yu, X.; Zhang, J.; Li, P. FOXP2 Suppresses the Proliferation, Invasion, and Aerobic Glycolysis of Hepatocellular Carcinoma Cells by Regulating the KDM5A/FBP1 Axis. Environ. Toxicol. 2024, 39, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Chianese, U.; Papulino, C.; Passaro, E.; Evers, T.M.; Babaei, M.; Toraldo, A.; De Marchi, T.; Niméus, E.; Carafa, V.; Nicoletti, M.M.; et al. Histone Lysine Demethylase Inhibition Reprograms Prostate Cancer Metabolism and Mechanics. Mol. Metab. 2022, 64, 101561. [Google Scholar] [CrossRef]
- Alfaleh, M.A.; Razeeth Shait Mohammed, M.; Hashem, A.M.; Abujamel, T.S.; Alhakamy, N.A.; Imran Khan, M. Extracellular Matrix Detached Cancer Cells Resist Oxidative Stress by Increasing Histone Demethylase KDM6 Activity. Saudi J. Biol. Sci. 2024, 31, 103871. [Google Scholar] [CrossRef]
- Zhang, Z.; Aoki, H.; Umezawa, K.; Kranrod, J.; Miyazaki, N.; Oshima, T.; Hirao, T.; Miura, Y.; Seubert, J.; Ito, K.; et al. Potential Role of Lipophagy Impairment for Anticancer Effects of Glycolysis-Suppressed Pancreatic Ductal Adenocarcinoma Cells. Cell Death Dis. 2024, 10, 166. [Google Scholar] [CrossRef]
- Song, X.-Q.; Yu, T.-J.; Ou-Yang, Y.; Ding, J.-H.; Jiang, Y.-Z.; Shao, Z.-M.; Xiao, Y. Copy Number Amplification of FLAD1 Promotes the Progression of Triple-Negative Breast Cancer through Lipid Metabolism. Nat. Commun. 2025, 16, 1241. [Google Scholar] [CrossRef]
- Peltanova, B.; Raudenska, M.; Masarik, M. Effect of Tumor Microenvironment on Pathogenesis of the Head and Neck Squamous Cell Carcinoma: A Systematic Review. Mol. Cancer 2019, 18, 63. [Google Scholar] [CrossRef]
- Chen, J.-S.; Teng, Y.-N.; Chen, C.-Y.; Chen, J.-Y. A Novel STAT3/NFκB P50 Axis Regulates Stromal-KDM2A to Promote M2 Macrophage-Mediated Chemoresistance in Breast Cancer. Cancer Cell Int. 2023, 23, 237. [Google Scholar] [CrossRef]
- Wei, S.; Zhao, S.; Yang, W.; Zhou, J.; Xu, G.; Zhang, C.; Wang, M.; Xiao, H.; Feng, Y.; Shang, L.; et al. EHF Promotes Liver Cancer Progression by Meditating IL-6 Secretion through Transcription Regulation of KDM2B in TAMs. Cell. Signal. 2025, 129, 111670. [Google Scholar] [CrossRef]
- Song, Y.; Li, L.; Xi, Y. Lysine Demethylase 3A in Hypoxic Macrophages Promotes Ovarian Cancer Development through Regulation of the Vascular Endothelial Growth Factor A/Akt Signaling. Tissue Cell 2023, 85, 102253. [Google Scholar] [CrossRef]
- Yu, J.; Huang, L.; Cao, L. M2 Macrophages Regulate KDM6B/PFKFB2 Metabolic Reprogramming of Cervical Squamous Cell Carcinoma through CXCL1. Cell Mol. Biol. 2024, 70, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Dai, B.; Liu, X.; Zhou, D.; Yan, H.; Shen, T.; Wang, D.; Tan, X. KDM6B Regulates M2 Polarization of Macrophages by Modulating the Stability of Nuclear β-Catenin. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2023, 1869, 166611. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Hu, B.; Yao, W.; Tian, K.; Zhu, G.; Jin, M.; Huang, S.; Chen, X.; Zhang, Y. HPV11 Targeting KDM4A Regulates the Polarization of Macrophage M1 and Promotes the Development of Nasal Inverted Papilloma. Cell Commun. Signal. 2024, 22, 603. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Zhang, H.; Pang, Y.; Yi, L.; Wang, X.; Wei, P.; Wang, H.; Lin, S. Epigenetic Regulators Combined with Tumour Immunotherapy: Current Status and Perspectives. Clin. Epigenetics 2025, 17, 51. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, B.; Li, B.; Wu, H.; Jiang, M. Cold and Hot Tumors: From Molecular Mechanisms to Targeted Therapy. Signal Transduct. Target. Ther. 2024, 9, 274. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, N.; Zhu, H.; Liu, M.; Hao, J.; Wang, S.; Guo, T.; Mamun, M.; Pang, J.; Liu, Q.; et al. Unlocking the Dual Role of LSD1 in Tumor Immunity: Innate and Adaptive Pathways. Theranostics 2024, 14, 7054–7071. [Google Scholar] [CrossRef]
- Bao, L.; Zhu, P.; Mou, Y.; Song, Y.; Qin, Y. Targeting LSD1 in Tumor Immunotherapy: Rationale, Challenges and Potential. Front. Immunol. 2023, 14, 1214675. [Google Scholar] [CrossRef]
- Lee, D.Y.; Salahuddin, T.; Iqbal, J. Lysine-Specific Demethylase 1 (LSD1)-Mediated Epigenetic Modification of Immunogenicity and Immunomodulatory Effects in Breast Cancers. Curr. Oncol. 2023, 30, 2127–2143. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Vasilatos, S.N.; Yin, J.; Qin, Y.; Zhang, L.; Davidson, N.E.; Huang, Y. Restoration of TFPI2 by LSD1 Inhibition Suppresses Tumor Progression and Potentiates Antitumor Immunity in Breast Cancer. Cancer Lett. 2024, 600, 217182. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-M.; Xiong, X.-P.; Wu, J.-W.; Chen, H.-X.; Zhou, Y.; Ji, S.-K.; Dai, X.-J.; Zheng, Y.-C.; Liu, H.-M. Discovery of Acridine-Based LSD1 Inhibitors as Immune Activators Targeting LSD1 in Gastric Cancer. Eur. J. Med. Chem. 2023, 251, 115255. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.-J.; Zhao, L.-J.; Yang, L.-H.; Guo, T.; Xue, L.-P.; Ren, H.-M.; Yin, Z.-L.; Xiong, X.-P.; Zhou, Y.; Ji, S.-K.; et al. Phenothiazine-Based LSD1 Inhibitor Promotes T-Cell Killing Response of Gastric Cancer Cells. J. Med. Chem. 2023, 66, 3896–3916. [Google Scholar] [CrossRef]
- Wang, B.; Wang, S.-W.; Zhou, Y.; Wang, S.-P.; Gao, Y.; Liu, H.-M.; Ji, S.-K.; Wang, S.-Q.; Zheng, Y.-C.; Zhang, C.; et al. Discovery of 2-Aryl-4-Aminoquinazolin-Based LSD1 Inhibitors to Activate Immune Response in Gastric Cancer. J. Med. Chem. 2024, 67, 16165–16184. [Google Scholar] [CrossRef]
- Dai, X.-J.; Liu, Y.; Wang, N.; Chen, H.-X.; Wu, J.-W.; Xiong, X.-P.; Ji, S.-K.; Zhou, Y.; Shen, L.; Wang, S.-P.; et al. Novel Acridine-Based LSD1 Inhibitors Enhance Immune Response in Gastric Cancer. Eur. J. Med. Chem. 2023, 259, 115684. [Google Scholar] [CrossRef]
- Shen, D.-D.; Pang, J.-R.; Bi, Y.-P.; Zhao, L.-F.; Li, Y.-R.; Zhao, L.-J.; Gao, Y.; Wang, B.; Wang, N.; Wei, L.; et al. LSD1 Deletion Decreases Exosomal PD-L1 and Restores T-Cell Response in Gastric Cancer. Mol. Cancer 2022, 21, 75. [Google Scholar] [CrossRef]
- Liang, C.; Ye, M.; Yu, L.; Zhang, P.-F.; Guo, X.-J.; Meng, X.-L.; Zeng, H.-Y.; Hu, S.-Y.; Zhang, D.-H.; Sun, Q.-M.; et al. Lysine-Specific Demethylase 1 Deletion Reshapes Tumour Microenvironment to Overcome Acquired Resistance to Anti-Programmed Death 1 Therapy in Liver Cancer. Clin. Transl. Med. 2025, 15, e70335. [Google Scholar] [CrossRef]
- Hiatt, J.B.; Sandborg, H.; Garrison, S.M.; Arnold, H.U.; Liao, S.-Y.; Norton, J.P.; Friesen, T.J.; Wu, F.; Sutherland, K.D.; Rienhoff, H.Y.; et al. Inhibition of LSD1 with Bomedemstat Sensitizes Small Cell Lung Cancer to Immune Checkpoint Blockade and T-Cell Killing. Clin. Cancer Res. 2022, 28, 4551–4564. [Google Scholar] [CrossRef]
- Tang, F.; Lu, C.; He, X.; Lin, W.; Xie, B.; Gao, X.; Peng, Y.; Yang, D.; Sun, L.; Weng, L. E3 Ligase Trim35 Inhibits LSD1 Demethylase Activity through K63-Linked Ubiquitination and Enhances Anti-Tumor Immunity in NSCLC. Cell Rep. 2023, 42, 113477. [Google Scholar] [CrossRef]
- Liu, Y.; Debo, B.; Li, M.; Shi, Z.; Sheng, W.; Shi, Y. LSD1 Inhibition Sustains T Cell Invigoration with a Durable Response to PD-1 Blockade. Nat. Commun. 2021, 12, 6831. [Google Scholar] [CrossRef]
- Qiu, F.; Jiang, P.; Zhang, G.; An, J.; Ruan, K.; Lyu, X.; Zhou, J.; Sheng, W. Priming with LSD1 Inhibitors Promotes the Persistence and Antitumor Effect of Adoptively Transferred T Cells. Nat. Commun. 2024, 15, 4327. [Google Scholar] [CrossRef]
- Pallavicini, I.; Frasconi, T.M.; Catozzi, C.; Ceccacci, E.; Tiberti, S.; Haas, D.; Samson, J.; Heuser-Loy, C.; Nava Lauson, C.B.; Mangione, M.; et al. LSD1 Inhibition Improves Efficacy of Adoptive T Cell Therapy by Enhancing CD8+ T Cell Responsiveness. Nat. Commun. 2024, 15, 7366. [Google Scholar] [CrossRef]
- Chen, C.; Shin, J.H.; Fang, Z.; Brennan, K.; Horowitz, N.B.; Pfaff, K.L.; Welsh, E.L.; Rodig, S.J.; Gevaert, O.; Gozani, O.; et al. Targeting KDM2A Enhances T-Cell Infiltration in NSD1-Deficient Head and Neck Squamous Cell Carcinoma. Cancer Res. 2023, 83, 2645–2655. [Google Scholar] [CrossRef]
- Jie, X.; Chen, Y.; Zhao, Y.; Yang, X.; Xu, Y.; Wang, J.; Meng, R.; Zhang, S.; Dong, X.; Zhang, T.; et al. Targeting KDM4C Enhances CD8+ T Cell Mediated Antitumor Immunity by Activating Chemokine CXCL10 Transcription in Lung Cancer. J. Immunother. Cancer 2022, 10, e003716. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zong, J.; Liu, Y.; Aili, T.; Qiu, M.; Wu, J.; Hu, B. Endogenous Retroviruses Unveiled: A Comprehensive Review of Inflammatory Signaling/Senescence-Related Pathways and Therapeutic Strategies. Aging Dis. 2025, 16, 738–756. [Google Scholar] [CrossRef]
- Dong, B.; Wang, X.; Song, X.; Wang, J.; Liu, X.; Yu, Z.; Zhou, Y.; Deng, J.; Wu, Y. RNF20 Contributes to Epigenetic Immunosuppression through CDK9-Dependent LSD1 Stabilization. Proc. Natl. Acad. Sci. USA 2024, 121, e2307150121. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Zhang, D.; Chen, J.; Qi, L.; Zhang, M.; Yang, X.; Ye, T.; Ye, Q.; Lin, J. CHMP4A Stimulates CD8+ T-Lymphocyte Infiltration and Inhibits Breast Tumor Growth via the LSD1/IFNβ Axis. Cancer Sci. 2023, 114, 3162–3175. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wei, S.; Qiu, C.; Han, C.; Du, Z.; Wu, N. KDM1A Epigenetically Enhances RAD51 Expression to Suppress the STING-Associated Anti-Tumor Immunity in Esophageal Squamous Cell Carcinoma. Cell Death Dis. 2024, 15, 882. [Google Scholar] [CrossRef]
- Zheng, J.; Feng, H.; Lin, J.; Zhou, J.; Xi, Z.; Zhang, Y.; Ling, F.; Liu, Y.; Wang, J.; Hou, T.; et al. KDM3A Ablation Activates Endogenous Retrovirus Expression to Stimulate Antitumor Immunity in Gastric Cancer. Adv. Sci. 2024, 11, 2309983. [Google Scholar] [CrossRef]
- Sun, M.; Han, X.; Li, J.; Zheng, J.; Li, J.; Wang, H.; Li, X. Targeting KDM4 Family Epigenetically Triggers Antitumour Immunity via Enhancing Tumour-intrinsic Innate Sensing and Immunogenicity. Clin. Amp Transl. Med. 2024, 14, e1598. [Google Scholar] [CrossRef] [PubMed]
- Montano, M.M.; Yeh, I.-J.; Ketchart, W. cGAS/STING-Independent Induction of Type I Interferon by Inhibitors of the Histone Methylase KDM5B. FASEB J. 2025, 39, e70629. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lin, J.; Zhou, W.; Moses, R.; Dai, Z.; Kossenkov, A.V.; Drapkin, R.; Bitler, B.G.; Karakashev, S.; Zhang, R. KDM5A Inhibits Antitumor Immune Responses Through Downregulation of the Antigen-Presentation Pathway in Ovarian Cancer. Cancer Immunol. Res. 2022, 10, 1028–1038. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Liu, Y.; Sun, L.; Tai, Q.; Gao, S.; Jiang, W. Inhibition of KDM5B Participates in Immune Microenvironment Remodeling in Pancreatic Cancer by Inducing STING Expression. Cytokine 2024, 175, 156451. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, L.; Wu, Z.; Yuan, K.; Hong, G.; Lian, Z.; Feng, J.; Li, N.; Li, D.; Wong, J.; et al. Loss of PHF8 Induces a Viral Mimicry Response by Activating Endogenous Retrotransposons. Nat. Commun. 2023, 14, 4225. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Zanni, R.; Jiang, X.; Weichselbaum, R.R.; Lin, W. Nanoparticle-Mediated Toll-Like Receptor Activation and Dual Immune Checkpoint Downregulation for Potent Cancer Immunotherapy. ACS Nano 2025, 19, 8852–8866. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, P.; Wang, J.; Zhao, W.; Liu, H.; He, P. Inhibition of Lysine-Specific Demethylase 1 Enhances the Sensitivity of the Chemotherapeutic Drug Doxorubicin in Gastric Cancer Cell. Mol. Biol. Rep. 2023, 50, 507–516. [Google Scholar] [CrossRef]
- Chen, Y.; Johnson, J.D.; Jayamohan, S.; He, Y.; Venkata, P.P.; Jamwal, D.; Alejo, S.; Zou, Y.; Lai, Z.; Viswanadhapalli, S.; et al. KDM1A/LSD1 Inhibition Enhances Chemotherapy Response in Ovarian Cancer. Mol. Carcinog. 2024, 63, 2026–2039. [Google Scholar] [CrossRef]
- Venkata, P.P.; Jayamohan, S.; He, Y.; Alejo, S.; Johnson, J.D.; Palacios, B.E.; Pratap, U.P.; Chen, Y.; Liu, Z.; Zou, Y.; et al. Pharmacological Inhibition of KDM1A/LSD1 Enhances Estrogen Receptor Beta-Mediated Tumor Suppression in Ovarian Cancer. Cancer Lett. 2023, 575, 216383. [Google Scholar] [CrossRef]
- Mills, C.M.; Turner, J.; Piña, I.C.; Garrabrant, K.A.; Geerts, D.; Bachmann, A.S.; Peterson, Y.K.; Woster, P.M. Synthesis and Evaluation of Small Molecule Inhibitors of LSD1 for Use against MYCN-Expressing Neuroblastoma. Eur. J. Med. Chem. 2022, 244, 114818. [Google Scholar] [CrossRef]
- Gajendran, C.; Tantry, S.J.; Naveen, S.M.; Mohammed, Z.; Dewang, P.; Hallur, M.; Nair, S.; Vaithilingam, K.; Nagayya, B.; Rajagopal, S.; et al. Novel Dual LSD1/HDAC6 Inhibitor for the Treatment of Cancer. PLoS ONE 2023, 18, e0279063. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Pang, J.-R.; Zhang, Y.; Li, Z.-R.; Zi, X.-L.; Liu, H.-M.; Wang, N.; Zhao, L.-J.; Gao, Y.; Wang, B.; et al. Neddylation-Dependent LSD1 Destabilization Inhibits the Stemness and Chemoresistance of Gastric Cancer. Int. J. Biol. Macromol. 2024, 254, 126801. [Google Scholar] [CrossRef]
- Ladaika, C.A.; Chakraborty, A.; Masood, A.; Hostetter, G.; Yi, J.M.; O’Hagan, H.M. LSD1 Inhibition Attenuates Targeted Therapy-Induced Lineage Plasticity in BRAF Mutant Colorectal Cancer. Mol. Cancer 2025, 24, 122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, Q.; Piao, Y.; Shao, S.; Zhou, Z.; Tang, J.; Xiang, J.; Shen, Y. Synergistic Combination of Oral Transcytotic Nanomedicine and Histone Demethylase Inhibitor for Enhanced Cancer Chemoimmunotherapy. ACS Nano 2024, 18, 33729–33742. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Duan, X.; Tang, T.; Cui, S.; Wu, T. JMJD2A Participates in Cytoskeletal Remodeling to Regulate Castration-Resistant Prostate Cancer Docetaxel Resistance. BMC Cancer 2023, 23, 423. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Chen, Y.-A.; Liang, Y.; Chen, Z.; Lu, J.; Fang, Y.; Cao, J.; Lu, J.; Zhao, H.; Pong, R.-C.; et al. Therapeutic Targeting of Histone Lysine Demethylase KDM4B Blocks the Growth of Castration-Resistant Prostate Cancer. Biomed. Pharmacother. 2023, 158, 114077. [Google Scholar] [CrossRef]
- Singh, S.; Abu-Zaid, A.; Jin, H.; Fang, J.; Wu, Q.; Wang, T.; Feng, H.; Quarni, W.; Shao, Y.; Maxham, L.; et al. Targeting KDM4 for Treating PAX3-FOXO1–Driven Alveolar Rhabdomyosarcoma. Sci. Transl. Med. 2022, 14, eabq2096. [Google Scholar] [CrossRef]
- Kim, T.; Park, B.-S.; Heo, S.; Jeon, H.; Kim, J.; Kim, D.; Kook Lee, S.; Jung, S.-Y.; Kong, S.-Y.; Lu, T. Combinatorial CRISPR Screen Reveals FYN and KDM4 as Targets for Synergistic Drug Combination for Treating Triple Negative Breast Cancer. eLife 2025, 13, RP93921. [Google Scholar] [CrossRef]
- Zhang, N.; Lan, R.; Chen, Y.; Hu, J. Identification of KDM4C as a Gene Conferring Drug Resistance in Multiple Myeloma. Open Life Sci. 2024, 19, 20220848. [Google Scholar] [CrossRef]
- Xing, Y.; Mao, M.; Zhu, T.; Shi, H.; Ding, H. KDM4A Silencing Reverses Cisplatin Resistance in Ovarian Cancer Cells by Reducing Mitophagy via SNCA Transcriptional Inactivation. CMM 2025, 25, 1372–1382. [Google Scholar] [CrossRef]
- Li, X.-X.; Xu, J.-K.; Su, W.-J.; Wu, H.-L.; Zhao, K.; Zhang, C.-M.; Chen, X.-K.; Yang, L.-X. The Role of KDM4A-Mediated Histone Methylation on Temozolomide Resistance in Glioma Cells through the HUWE1/ROCK2 Axis. Kaohsiung J. Med. Sci. 2024, 40, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Alejo, S.; Palacios, B.E.; Venkata, P.P.; He, Y.; Li, W.; Johnson, J.D.; Chen, Y.; Jayamohan, S.; Pratap, U.P.; Clarke, K.; et al. Lysine-Specific Histone Demethylase 1A (KDM1A/LSD1) Inhibition Attenuates DNA Double-Strand Break Repair and Augments the Efficacy of Temozolomide in Glioblastoma. Neuro-Oncology 2023, 25, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, J.; Wang, Y.; Liu, X.; Yang, X.; Liao, Z.; Deng, S.; Deng, Y.; Zhou, Z.; Tian, Y.; et al. Deubiquitinase USP7 Stabilizes KDM5B and Promotes Tumor Progression and Cisplatin Resistance in Nasopharyngeal Carcinoma through the ZBTB16/TOP2A Axis. Cell Death Differ. 2024, 31, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Y.; Liao, Z.; Ge, H.; Güngör, C.; Li, Y. KDM5 Family of Demethylases Promotes CD44-Mediated Chemoresistance in Pancreatic Adenocarcinomas. Sci. Rep. 2023, 13, 18250. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Wang, Y.; Li, B.; Liang, J.; Chen, Y.; Tang, B.; Yu, S.; Wang, H. KDM5B Promotes SMAD4 Loss-Driven Drug Resistance through Activating DLG1/YAP to Induce Lipid Accumulation in Pancreatic Ductal Adenocarcinoma. Cell Death Discov. 2024, 10, 252. [Google Scholar] [CrossRef]
- He, C.; Sun, J.; Liu, C.; Jiang, Y.; Hao, Y. Elevated H3K27me3 Levels Sensitize Osteosarcoma to Cisplatin. Clin. Epigenetics 2019, 11, 8. [Google Scholar] [CrossRef]
- Shokry, D.; Khan, M.W.; Powell, C.; Johnson, S.; Rennels, B.C.; Boyd, R.I.; Sun, Z.; Fazal, Z.; Freemantle, S.J.; Parker, M.H.; et al. Refractory Testicular Germ Cell Tumors Are Highly Sensitive to the Targeting of Polycomb Pathway Demethylases KDM6A and KDM6B. Cell Commun. Signal. 2024, 22, 528. [Google Scholar] [CrossRef]
- Zhai, P.; Tong, T.; Wang, X.; Li, C.; Liu, C.; Qin, X.; Li, S.; Xie, F.; Mao, J.; Zhang, J.; et al. Nuclear miR-451a Activates KDM7A and Leads to Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma. Cell. Mol. Life Sci. 2024, 81, 282. [Google Scholar] [CrossRef]
- Li, Q.; Qin, K.; Tian, Y.; Chen, B.; Zhao, G.; Xu, S.; Wu, L. Inhibition of Demethylase by IOX1 Modulates Chromatin Accessibility to Enhance NSCLC Radiation Sensitivity through Attenuated PIF1. Cell Death Dis. 2023, 14, 817. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, J.; Nihira, N.T.; Togashi, Y.; Goda, A.; Koike, J.; Yamaguchi, K.; Furukawa, Y.; Tomita, T.; Saeki, Y.; et al. Ribosomal S6 Kinase (RSK) Plays a Critical Role in DNA Damage Response via the Phosphorylation of Histone Lysine Demethylase KDM4B. Breast Cancer Res. 2024, 26, 146. [Google Scholar] [CrossRef]
- Wang, X.; Gu, M.; Ju, Y.; Zhou, J. Overcoming Radio-Resistance in Esophageal Squamous Cell Carcinoma via Hypermethylation of PIK3C3 Promoter Region Mediated by KDM5B Loss. J. Radiat. Res. 2022, 63, 331–341. [Google Scholar] [CrossRef]
- Macedo-Silva, C.; Miranda-Gonçalves, V.; Tavares, N.T.; Barros-Silva, D.; Lencart, J.; Lobo, J.; Oliveira, Â.; Correia, M.P.; Altucci, L.; Jerónimo, C. Epigenetic Regulation of TP53 Is Involved in Prostate Cancer Radioresistance and DNA Damage Response Signaling. Signal Transduct. Target. Ther. 2023, 8, 395. [Google Scholar] [CrossRef]
- Boila, L.D.; Ghosh, S.; Bandyopadhyay, S.K.; Jin, L.; Murison, A.; Zeng, A.G.X.; Shaikh, W.; Bhowmik, S.; Muddineni, S.S.N.A.; Biswas, M.; et al. KDM6 Demethylases Integrate DNA Repair Gene Regulation and Loss of KDM6A Sensitizes Human Acute Myeloid Leukemia to PARP and BCL2 Inhibition. Leukemia 2023, 37, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Dorna, D.; Kleszcz, R.; Paluszczak, J. Triple Combinations of Histone Lysine Demethylase Inhibitors with PARP1 Inhibitor–Olaparib and Cisplatin Lead to Enhanced Cytotoxic Effects in Head and Neck Cancer Cells. Biomedicines 2024, 12, 1359. [Google Scholar] [CrossRef]
- Caeiro, L.D.; Nakata, Y.; Borges, R.L.; Zha, M.; Garcia-Martinez, L.; Bañuelos, C.P.; Stransky, S.; Liu, T.; Chan, H.L.; Brabson, J.; et al. Methylation of Histone H3 Lysine 36 Is a Barrier for Therapeutic Interventions of Head and Neck Squamous Cell Carcinoma. Genes Dev. 2024, 38, 46–69. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Perez, R.E.; Calhoun, S.; Maki, C.G. Inhibitors of Jumonji C Domain-Containing Histone Lysine Demethylases Overcome Cisplatin and Paclitaxel Resistance in Non-Small Cell Lung Cancer through APC/Cdh1-Dependent Degradation of CtIP and PAF15. Cancer Biol. Ther. 2022, 23, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.M.; Klotz, D.M.; Yang, R.; Brux, M.; Buchholz, F.; Harb, H.; Link, T.; Wimberger, P.; Theis, M.; Kuhlmann, J.D. Methylstat Sensitizes Ovarian Cancer Cells to PARP-Inhibition by Targeting the Histone Demethylases JMJD1B/C. Cancer Gene Ther. 2025, 32, 286–296. [Google Scholar] [CrossRef]
- Tao, L.; Zhou, Y.; Pan, X.; Luo, Y.; Qiu, J.; Zhou, X.; Chen, Z.; Li, Y.; Xu, L.; Zhou, Y.; et al. Repression of LSD1 Potentiates Homologous Recombination-Proficient Ovarian Cancer to PARP Inhibitors through down-Regulation of BRCA1/2 and RAD51. Nat. Commun. 2023, 14, 7430. [Google Scholar] [CrossRef]
- Benyoucef, A.; Haigh, K.; Cuddihy, A.; Haigh, J.J. JAK/BCL2 Inhibition Acts Synergistically with LSD1 Inhibitors to Selectively Target ETP-ALL. Leukemia 2022, 36, 2802–2816. [Google Scholar] [CrossRef]
- Grimm, J.; Bhayadia, R.; Gack, L.; Heckl, D.; Klusmann, J.-H. Combining LSD1 and JAK-STAT Inhibition Targets Down Syndrome-Associated Myeloid Leukemia at Its Core. Leukemia 2022, 36, 1926–1930. [Google Scholar] [CrossRef]
- Du, L.; Yang, H.; Ren, Y.; Ding, Y.; Xu, Y.; Zi, X.; Liu, H.; He, P. Inhibition of LSD1 Induces Ferroptosis through the ATF4-xCT Pathway and Shows Enhanced Anti-Tumor Effects with Ferroptosis Inducers in NSCLC. Cell Death Dis. 2023, 14, 716. [Google Scholar] [CrossRef]
- Lu, C.; Cai, Y.; Liu, W.; Peng, B.; Liang, Q.; Yan, Y.; Liang, D.; Xu, Z. Aberrant Expression of KDM1A Inhibits Ferroptosis of Lung Cancer Cells through Up-Regulating c-Myc. Sci. Rep. 2022, 12, 19168. [Google Scholar] [CrossRef] [PubMed]
- Yashar, W.M.; Curtiss, B.M.; Coleman, D.J.; VanCampen, J.; Kong, G.; Macaraeg, J.; Estabrook, J.; Demir, E.; Long, N.; Bottomly, D.; et al. Disruption of the MYC Superenhancer Complex by Dual Targeting of FLT3 and LSD1 in Acute Myeloid Leukemia. Mol. Cancer Res. 2023, 21, 631–647. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, M.; Han, W.; Wang, Z.; Han, D.; Patalano, S.; Macoska, J.A.; Balk, S.P.; He, H.H.; Corey, E.; et al. LSD1 Inhibition Disrupts Super-Enhancer–Driven Oncogenic Transcriptional Programs in Castration-Resistant Prostate Cancer. Cancer Res. 2023, 83, 1684–1698. [Google Scholar] [CrossRef] [PubMed]
- Sang, N.; Zhong, X.; Gou, K.; Liu, H.; Xu, J.; Zhou, Y.; Zhou, X.; Liu, Y.; Chen, Z.; Zhou, Y.; et al. Pharmacological Inhibition of LSD1 Suppresses Growth of Hepatocellular Carcinoma by Inducing GADD45B. MedComm 2023, 4, e269. [Google Scholar] [CrossRef]
- Zhu, W.; Ding, Y.; Huang, W.; Guo, N.; Ren, Q.; Wang, N.; Ma, X. Synergistic Effects of the KDM4C Inhibitor SD70 and the Menin Inhibitor MI-503 against MLL::AF9-Driven Acute Myeloid Leukaemia. Br. J. Haematol. 2024, 205, 568–579. [Google Scholar] [CrossRef]
- Wang, K.; Gong, Z.; Chen, Y.; Zhang, M.; Wang, S.; Yao, S.; Liu, Z.; Huang, Z.; Fei, B. KDM4C-Mediated Senescence Defense Is a Targetable Vulnerability in Gastric Cancer Harboring TP53 Mutations. Clin. Epigenetics 2023, 15, 163. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, P.; Qiang, Y.; Fan, J.; Xing, Y.; Zhang, Y.; Yang, F.; Li, F.; Xiong, J. Targeting the Transcription Factor YY1 Is Synthetic Lethal with Loss of the Histone Demethylase KDM5C. EMBO Rep. 2024, 25, 5408–5428. [Google Scholar] [CrossRef]
- Smith, T.; White, T.; Chen, Z.; Stewart, L.V. The KDM5 Inhibitor PBIT Reduces Proliferation of Castration-Resistant Prostate Cancer Cells via Cell Cycle Arrest and the Induction of Senescence. Exp. Cell Res. 2024, 437, 113991. [Google Scholar] [CrossRef]
- Brown, L.K.; Kanagasabai, T.; Li, G.; Celada, S.I.; Rumph, J.T.; Adunyah, S.E.; Stewart, L.V.; Chen, Z. Co-Targeting SKP2 and KDM5B Inhibits Prostate Cancer Progression by Abrogating AKT Signaling with Induction of Senescence and Apoptosis. Prostate 2024, 84, 877–887. [Google Scholar] [CrossRef]
- Treis, D.; Lundberg, K.I.; Bell, N.; Polychronopoulos, P.A.; Tümmler, C.; Åkerlund, E.; Aliverti, S.; Lilienthal, I.; Pepich, A.; Seashore-Ludlow, B.; et al. Targeted Inhibition of WIP1 and Histone H3K27 Demethylase Activity Synergistically Suppresses Neuroblastoma Growth. Cell Death Dis. 2025, 16, 318. [Google Scholar] [CrossRef]
- Lazaro-Navarro, J.; Alcon, C.; Dorel, M.; Alasfar, L.; Bastian, L.; Baldus, C.; Astrahantseff, K.; Yaspo, M.-L.; Montero, J.; Eckert, C. Inhibiting H3K27 Demethylases Downregulates CREB-CREBBP, Overcoming Resistance in Relapsed Acute Lymphoblastic Leukemia. Cancer Med. 2025, 14, e70596. [Google Scholar] [CrossRef]
- Zhou, Q.; Guan, Y.; Zhao, P.; Chu, H.; Xi, Y. Combined Anti-Leukemic Effect of Gilteritinib and GSK-J4 in FLT3-ITD+ Acute Myeloid Leukemia. Transl. Oncol. 2025, 52, 102271. [Google Scholar] [CrossRef]
- Nguyen, A.; Nuñez, C.G.; Tran, T.A.; Girard, L.; Peyton, M.; Catalan, R.; Guerena, C.; Avila, K.; Drapkin, B.J.; Chandra, R.; et al. Jumonji Histone Demethylases Are Therapeutic Targets in Small Cell Lung Cancer. Oncogene 2024, 43, 2885–2899. [Google Scholar] [CrossRef]
- Chou, P.-Y.; Lai, M.-J.; Tsai, K.K.; Cheng, L.-H.; Wu, Y.-W.; Chen, M.-C.; Pan, S.-L.; Ho, H.-O.; Nepali, K.; Liou, J.-P. Syntheses of LSD1/HDAC Inhibitors with Demonstrated Efficacy against Colorectal Cancer: In Vitro and In Vivo Studies Including Patient-Derived Organoids. J. Med. Chem. 2024, 67, 17207–17225. [Google Scholar] [CrossRef]
- Bulut, I.; Lee, A.; Cevatemre, B.; Ruzic, D.; Belle, R.; Kawamura, A.; Gul, S.; Nikolic, K.; Ganesan, A.; Acilan, C. Dual LSD1 and HDAC6 Inhibition Induces Doxorubicin Sensitivity in Acute Myeloid Leukemia Cells. Cancers 2022, 14, 6014. [Google Scholar] [CrossRef] [PubMed]
- Le, M.; Lu, W.; Tan, X.; Luo, B.; Yu, T.; Sun, Y.; Guo, Z.; Huang, P.; Zhu, D.; Wu, Q.; et al. Design, Synthesis, and Biological Evaluation of Potent EZH2/LSD1 Dual Inhibitors for Prostate Cancer. J. Med. Chem. 2024, 67, 15586–15605. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Yu, T.; Jin, L.; Zhang, S.; Shi, X.; Zhang, Y.; Zhou, N.; Xu, Y.; Lu, W.; Zhou, H.; et al. Discovery of Novel, Potent, and Orally Bioavailable HDACs Inhibitors with LSD1 Inhibitory Activity for the Treatment of Solid Tumors. Eur. J. Med. Chem. 2023, 254, 115367. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-J.; Zhou, H.-M.; Zhou, X.-X.; Li, S.-J.; Zheng, M.-J.; Xu, Z.; Dai, W.-J.; Ban, Y.-B.; Zhang, M.-Y.; Zhang, Y.-Z.; et al. Discovery of Novel 5-Cyano-3-Phenylindole-Based LSD1/HDAC Dual Inhibitors for Colorectal Cancer Treatment. J. Med. Chem. 2024, 67, 20172–20202. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Ma, T.; Wang, S.; Guo, Y.; Song, Q.; Liu, H.; Yu, B.; Feng, S. Discovery of WS-384, a First-in-Class Dual LSD1 and DCN1-UBC12 Protein-Protein Interaction Inhibitor for the Treatment of Non-Small Cell Lung Cancer. Biomed. Pharmacother. 2024, 173, 116240. [Google Scholar] [CrossRef]
- Tang, D.-W.; Chen, I.-C.; Chou, P.-Y.; Lai, M.-J.; Liu, Z.-Y.; Tsai, K.K.; Cheng, L.-H.; Zhao, J.-X.; Cho, E.-C.; Chang, H.-H.; et al. HSP90/LSD1 Dual Inhibitors against Prostate Cancer as Well as Patient-Derived Colorectal Organoids. Eur. J. Med. Chem. 2024, 278, 116801. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, M.; Zhang, R.; Wang, L.; Yang, L.; Shan, C.; Lin, J. Discovery of Novel Dual-Target Inhibitors of LSD1/EGFR for Non-Small Cell Lung Cancer Therapy. Acta Pharmacol. Sin. 2025, 46, 1030–1044. [Google Scholar] [CrossRef]
- Zhang, J.; He, P.; Wang, W.; Wang, Y.; Yang, H.; Hu, Z.; Song, Y.; Chang, J.; Yu, B. Structure-Based Design of New LSD1/EGFRL858R/T790M Dual Inhibitors for Treating EGFR Mutant NSCLC Cancers. J. Med. Chem. 2025, 68, 5954–5972. [Google Scholar] [CrossRef]
- Yuan, X.-Y.; Song, C.-H.; Liu, X.-J.; Wang, X.; Jia, M.-Q.; Wang, W.; Liu, W.-B.; Fu, X.-J.; Jin, C.-Y.; Song, J.; et al. Discovery of Novel N-Benzylarylamide-Dithiocarbamate Based Derivatives as Dual Inhibitors of Tubulin Polymerization and LSD1 That Inhibit Gastric Cancers. Eur. J. Med. Chem. 2023, 252, 115281. [Google Scholar] [CrossRef]
- Ji, J.-W.; Liu, X.-J.; Wu, J.; Wang, Z.-Y.; Niu, J.-B.; Song, J.; Zhang, S.-Y. Discovery of Novel 1,2,3-Triazole Arylamide Derivatives Bearing Dithiocarbamate Moiety as Dual Inhibitors of Tubulin and LSD1 with Potent Anticancer Activity. Eur. J. Med. Chem. 2025, 296, 117879. [Google Scholar] [CrossRef]
- Sasaki, Y.; Higashijima, Y.; Suehiro, J.-I.; Sugasawa, T.; Oguri-Nakamura, E.; Fukuhara, S.; Nagai, N.; Hirakawa, Y.; Wada, Y.; Nangaku, M.; et al. Lysine Demethylase 2B Regulates Angiogenesis via Jumonji C Dependent Suppression of Angiogenic Transcription Factors. Biochem. Biophys. Res. Commun. 2022, 605, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tu, Y.; Huang, B.; Xiao, J.; Xiao, J.; Wang, J.; Pei, Y.; Yang, R.; Feng, J.; Li, J.; et al. Histone Demethylase KDM2A Suppresses EGF-TSPAN8 Pathway to Inhibit Breast Cancer Cell Migration and Invasion in Vitro. Biochem. Biophys. Res. Commun. 2022, 628, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chen, Z.; Xin, B.; Shi, Y.; Yao, Y.; Yang, J.; Wang, X.; Hu, X. LSD1 Inhibits the Invasion and Migration of Breast Cancer through Exosomes. Sci. Rep. 2024, 14, 20817. [Google Scholar] [CrossRef]
- Yamakado, N.; Okuda, S.; Tobiume, K.; Uetsuki, R.; Ono, S.; Mizuta, K.; Nakagawa, T.; Aikawa, T. Chemical Inhibition of LSD1 Leads to Epithelial to Mesenchymal Transition in Vitro of an Oral Squamous Cell Carcinoma OM-1 Cell Line via Release from LSD1-Dependent Suppression of ZEB1. Biochem. Biophys. Res. Commun. 2023, 647, 23–29. [Google Scholar] [CrossRef]
- Xie, Q.; Hu, Y.; Zhang, C.; Zhang, C.; Qin, J.; Zhao, Y.; An, Q.; Zheng, J.; Shi, C. Curcumin Blunts Epithelial-Mesenchymal Transition to Alleviate Invasion and Metastasis of Prostate Cancer through the JARID1D Demethylation. Cancer Cell Int. 2024, 24, 303. [Google Scholar] [CrossRef]
- Zou, L.; Cao, D.; Sun, Q.; Yu, W.; Li, B.; Xu, G.; Zhou, L. The Histone Demethylase KDM5C Enhances the Sensitivity of Acute Myeloid Leukemia Cells to Lenalidomide by Stabilizing Cereblon. Cell. Mol. Biol. Lett. 2025, 30, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, C.; Tang, J.; Wang, K.; Cheng, H.; Yao, S.; Huang, Z.; Fei, B. LSD1 Is a Targetable Vulnerability in Gastric Cancer Harboring TP53 Frameshift Mutations. Clin. Epigenetics 2025, 17, 26. [Google Scholar] [CrossRef]
- Yoshihama, Y.; LaBella, K.A.; Kim, E.; Bertolet, L.; Colic, M.; Li, J.; Shang, X.; Wu, C.-J.; Spring, D.J.; Wang, Y.A.; et al. AR-Negative Prostate Cancer Is Vulnerable to Loss of JMJD1C Demethylase. Proc. Natl. Acad. Sci. USA 2021, 118, e2026324118. [Google Scholar] [CrossRef]
- Staehle, A.M.; Peeken, J.C.; Vladimirov, G.; Hoeness, M.E.; Bojtine Kovacs, S.; Karantzelis, N.; Gruender, A.; Koellerer, C.; Jutzi, J.S.; Pahl, H.L.; et al. The Histone Demethylase JMJD2C Constitutes a Novel NFE2 Target Gene That Is Required for the Survival of JAK2V617F Mutated Cells. Leukemia 2023, 37, 919–923. [Google Scholar] [CrossRef]
- Sarno, F.; Jacob, J.J.; Eilers, R.E.; Nebbioso, A.; Altucci, L.; Rots, M.G. Epigenetic Editing and Epi-Drugs: A Combination Strategy to Simultaneously Target KDM4 as a Novel Anticancer Approach. Clin. Epigenetics 2025, 17, 105. [Google Scholar] [CrossRef]
Name of Compound | Target KDM | Biological Effects | Reference |
---|---|---|---|
Apigenin | LSD1 | Apigenin reduced LSD1 expression; reduced hepatocellular cancer cell viability, proliferation, migration, and invasion | [15] |
Arborinine | LSD1 | Reduced LSD1 expression and increased H3K4me1 in ovarian cancer cell line; reduced cell viability, proliferation, migration, and invasion; decreased tumor volume and weight in mouse xenografts | [16] |
Reduced LSD1 activity with concomitant increased H3K4me1/2 and H3K9me1/2 in clear-cell renal cell carcinoma cell lines; decreased cell viability, colony formation, invasion, and migration; induced apoptosis and S-phase cell cycle arrest | [17] | ||
Reduced LSD1 activity and increased K3K4me1 and H3K9me1/2; decreased gastric cancer cell viability, also in adriamycin-resistant and vincristin-resistant cells; reduced tumor weight in a mouse xenograft model | [18] | ||
Demethylzeylasteral (T-96) | LSD1 | Reduced LSD1 protein level, and elevated H3K4me2 and H3K9me2 levels; reduced cell viability, and diminished tumor growth in a xenograft model of triple-negative breast cancer | [19] |
Higenamine | LSD1 | Decreased LSD1 activity followed by enhanced H3K4me1/2; activation of apoptosis and induction of cell differentiation in acute myeloid leukemia cell lines; weak inhibition of cell proliferation—higenamine could be used as a pharmacophore for the development of more selective and potent LSD1 inhibitors | [20] |
A higenamine-derived LSD1 inhibitor, FY-56, presents improved effects in vitro; in the mouse acute myeloid leukemia model, FY-56 decreased the number of leukemia cells in peripheral blood and spleen, followed by an increased survival rate of leukemic mice | [21] | ||
Isoforsythiaside | LSD1 | Isoforsythiaside is an LSD1 covalent inhibitor; increased the level of H3K4me1/2; reduced breast cancer cells metastasis to lung (mouse MDA-MB-231 cells xenograft) | [22] |
Kawain | LSD1 | Prevented urothelial carcinogenesis induced by OH-BBN *; increased H3K4me1/2 in cancer cell lines | [23] |
Sanguinarine | LSD1 | LSD1 reversible inhibition by competition with the FAD site; increased H3K4me2 and H3K9me2 levels; decreased lung cancer cell viability, clonogenicity, and migration; induced apoptosis | [24] |
Viscosalactone B | LSD1 | Inhibition of LSD1 with increased H3K4me1 and H3K9me1/2; reduced prostate cancer cell viability; decreased tumor volume and weight in a mouse xenograft model without causing toxicity towards major organs, e.g., heart, liver, and kidney | [25] |
Caffeic acid | KDM4C | Reduced expression of KDM4C and clonal sphere-forming ability in lung squamous cell carcinoma (LSCC) cells; effects improved by co-inhibition of SOX (shRNA against SOX) | [26] |
Genkwanin | KDM4C | Triple-negative breast cancer cells: reduced cell migration, invasion, and self-renewal, decreased expression of SOX2, MMP9, and MMP2; enhanced sensitivity to paclitaxel; reduced cholesterol level | [27] |
Kaempferol | KDM4C | Decreased expression of KDM4C and β-catenin in colorectal cancer (CRC) cell lines; reduced CRC cell proliferation and migration; in mouse SW620 CRC cells xenograft kaempferol suppressed lung metastasis and inhibited Wnt/β-catenin signaling pathway | [28] |
Luteolin | KDM4C | Luteolin affected the stemness of ovarian cancer stem cells by binding to KDM4C and suppressing KDM4C-mediated H3K9 demethylation in PPP2CA promoter region and subsequent inhibition of Hippo/YAP signaling pathway | [29] |
Tanshinone I | KDM4D | In gastric cancer cell lines, tanshinone I activated ferroptosis by the inhibition of KDM4D and upregulation of p53 expression | [30] |
Myricetin | KDM4 | Myricetin is a pan-KDM4 inhibitor; cytotoxicity towards androgen-dependent and androgen-independent prostate cancer cells; enhanced anti-tumor effects in combination with enzalutamide (androgen receptor inhibitor) in vivo | [31] |
Myricetin and its analog increased H3K9me3 in head and neck squamous cell carcinoma (HNSCC) cells, and downregulated ferrochelatase expression by modulating KDM4C, leading to reduced cancer cells dissemination in vivo | [32] |
Name of KDMi | Potentiator | Biological Effects | Reference |
---|---|---|---|
SP2509 (LSD1 inh.) | Verteporfin (photosensitizer) | Enhanced reduction in the growth of tongue tumors induced by 4NQO in mice | [33] |
Anti-PD-1 antibody | |||
Ruxolitinib (JAK/STAT inh.) | In vivo sensitization of early T cell progenitor acute lymphoblastic leukemia (ETP-ALL) with induction of apoptosis | [209] | |
ABT-199 (BCL2 inh.) | |||
2-Deoxyglucose (glycolysis inh.) | Significant reduction in pancreatic ductal adenocarcinoma tumor growth (mice xenograft) by impairment of glucose and lipid energy metabolism | [137] | |
SP-2577 (seclidemstat— LSD1 inh.) | Encorafenib (BRAF inh.) | SP-2577 sensitized colorectal cancer cells to encorafenib, or encorafenib + EGFRi treatment; SP-2577 enhanced the reduction in tumor growth caused by BRAFi + EGFRi in an orthotopic model of CRC | [183] |
GSK-LSD1 (LSD1 inh.) | Sacituzumab govitecan (anti-TROP-2 antibody plus SN-38) | Enhancement of the effects in triple-negative breast cancer cells | [138] |
T-3775440 (LSD1 inh.) | Ruxolitinib (JAK/STAT inh.) | Synergistic reduction in viability of Down syndrome-associated myeloid leukemia patient-derived cells | [210] |
ORY-1001 (LSD1 inh.) | 1S,3R-RSL3 (glutathione peroxidase 4 inh.) | Viability reduction and ferroptosis induction in A549 and H1975 non-small cell lung cancer cells in vitro; significant reduction in mouse xenograft tumor growth compared to single inhibitors | [211] |
shRNA against LSD1 | siRNA against cMYC | Activation of ferroptosis in lung cancer H1299 and A549 cell lines | [212] |
GSK2879552 (LSD1 inh.) | Quizartinib (FLT3 inh.) | In vitro reduction in FLT3-ITD+ acute myeloid leukemia cells viability with reduced MYC expression and activity | [213] |
i-BET762 (BET proteins inh.) | In vivo reduction in tumor volume of mouse castration-resistant prostate cancer cells xenograft; decreased MYC signaling | [214] | |
ZY0511 (LSD1 inh.) | DTP3 (small molecular peptide binding to MAPK kinase 7) | Synergistic viability reduction and apoptosis induction in HepG2 and Hep3B hepatocellular carcinoma cells; the best tumor volume reduction (mice xenograft) for co-treatment | [215] |
IOX1 (KDM3A/4C/2A inh.) | ATRA (retinoid agonist) | Synergistic effects on apoptosis induction and decreased cell invasion in bladder cancer cells; reduced metastasis in vivo | [57] |
Bevacizumab (anti-VEGF ab) | Enhanced reduction in tumor growth in colorectal cancer cell xenografts, enhanced infiltration with activated CD4+ and CD8+ T cells | [83] | |
SD70 (KDM4C inh.) | MI-503 (menin-MLL inh.) | The combination synergistically reduced viability in AML cells with MLL-AF9 rearrangements, induced cell differentiation, reduced the expression of MYC-target genes; the combination effectively reduced leukemia burden in experimental mice | [216] |
QC6352 (KDM4C inh.) | Senolytic agent SSK1 | The best reduction in tumor volume and weight in the mouse NCI-N87 gastric cancer cells xenograft with the TP53 gene mutation | [217] |
shRNA against KDM5C | shRNA against Yin Yang 1 (YY1) KDM5C-interacting protein | Synergistic reduction in tumor weight in mouse ACHN renal cancer cells xenograft | [218] |
PBIT (KDM5 inh.) | 15d-PGJ2 (PPARγ agonist) | Synergy in C4-2B and PC-3 castration-resistant prostate cancer cells viability reduction | [219] |
SKP2 (S-phase kinase associated protein 2 inh.) | Potentiated reduction in proliferation, migration, AKT signaling pathway activity, and induction of senescence and apoptosis of C4-2B and PC-3 castration-resistant prostate cancer cells | [220] | |
GSK-J4 (KDM6A/B inh.) | Hesperetin | Reduction in prostate cancer cell viability; inhibition of TGFβ-induced cell migration and invasion | [70] |
SL-176 (WIP1 inh.) | The combination showed synergistic cytotoxicity towards neuroblastoma cells in vitro, and caused enhancement of apoptosis, especially in p53-wild type cells; the combination reduced neuroblastoma growth in zebrafish xenografts | [221] | |
Venetoclax Navitoclax (Bcl-2 inh.) | The combination of GSK-J4 with venetoclax or navitoclax showed synergistic anti-cancer effects in acute lymphoblastic leukemia | [222] | |
Gilteritinib (FLT3 inh.) | Synergistic reduction in FLT3-ITD+ acute myeloid leukemia cells viability; in vivo (mice xenograft), better tumor volume and weight reduction, and apoptosis induction | [223] | |
Daminozide (PHF8 inh.) | Anti-PD-1 antibody | Synergistic reduction in CRC tumor growth; increased infiltration with activated T cells | [117] |
JIB-04 (pan-KDM inh.) | Samotolisib (mTOR signaling inh.) | Sensitization of small cell lung cancer cells H2171 and H524 to mTOR signaling inhibitors | [224] |
Torkinib (mTOR signaling inh.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paluszczak, J.; Kleszcz, R. The Targeted Inhibition of Histone Lysine Demethylases as a Novel Promising Anti-Cancer Therapeutic Strategy—An Update on Recent Evidence. Cancers 2025, 17, 2798. https://doi.org/10.3390/cancers17172798
Paluszczak J, Kleszcz R. The Targeted Inhibition of Histone Lysine Demethylases as a Novel Promising Anti-Cancer Therapeutic Strategy—An Update on Recent Evidence. Cancers. 2025; 17(17):2798. https://doi.org/10.3390/cancers17172798
Chicago/Turabian StylePaluszczak, Jarosław, and Robert Kleszcz. 2025. "The Targeted Inhibition of Histone Lysine Demethylases as a Novel Promising Anti-Cancer Therapeutic Strategy—An Update on Recent Evidence" Cancers 17, no. 17: 2798. https://doi.org/10.3390/cancers17172798
APA StylePaluszczak, J., & Kleszcz, R. (2025). The Targeted Inhibition of Histone Lysine Demethylases as a Novel Promising Anti-Cancer Therapeutic Strategy—An Update on Recent Evidence. Cancers, 17(17), 2798. https://doi.org/10.3390/cancers17172798