Cancer Chemopreventive Properties of Glutelin Hydrolysate from Riceberry Bran Residues Against the Early Stage of Liver and Colon Carcinogenesis Induced by Chemicals in Rats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparations of Proteins and Their Hydrolysates
2.3. Animals
2.4. Evaluation of Preneoplastic Lesions in the Liver and Colon
2.4.1. Measurement of Glutathione S-Transferase Placental Form-Positive Foci in Liver Tissue by Immunohistochemistry
2.4.2. Measurement of Aberrant Crypt Foci in Colon by Methylene Blue Staining
2.5. Immunohistochemistry of PCNA in Liver and Colon Tissues
2.6. Determination of Apoptosis by Terminal Deoxynucleotidyl Transferase dUTP Nick-End Labeling (TUNEL) Assay in Liver and Colon Tissues
2.7. Determination of Apoptotic Gene Expression by Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) in the Liver and Colon Tissues
2.8. Statistical Analysis
3. Results
3.1. Effects of GTL, GTLH, and TPH on Rat Body Weight and Diet and Water Consumption
3.2. Effects of GTL, GTLH, and TPH on Preneoplastic Lesions in Liver and Colon of Rats
3.3. Effects of GTL, GTLH, and TPH on Cell Proliferation in the Liver and the Colon of Rats
3.4. Effects of GTL, GTLH, and TPH on Apoptosis in the Liver and the Colon of Rats
3.5. Effect of GTLH on Expressions of Apoptotic Genes in the Livers and Colons of Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, S.M.; Arnold, L.L. Chemical Carcinogenesis. Toxicol. Sci. 2011, 120 (Suppl. 1), S76–S92. [Google Scholar] [CrossRef] [PubMed]
- George, B.P.; Chandran, R.; Abrahamse, H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants 2021, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Madia, F.; Worth, A.; Whelan, M.; Corvi, R. Carcinogenicity Assessment: Addressing the Challenges of Cancer and Chemicals in the Environment. Environ. Int. 2019, 128, 417–429. [Google Scholar] [CrossRef]
- Liu, S.; Saunders, M.; Mak, T.W. Chemical Carcinogens: Implications for Cancer Treatment. J. Clin. Investig. 2023, 133, e174319. [Google Scholar] [CrossRef]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Barsouk, A.; Thandra, K.C.; Saginala, K.; Rawla, P.; Barsouk, A. Chemical Risk Factors of Primary Liver Cancer: An Update. Hepat. Med. 2021, 12, 179–188. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Chen, W.; Li, J.; Yi, J.; Song, X.; Ni, Y.; Zhu, S.; Zhang, Z.; Nie, S.; et al. Associations of Ultraprocessed Food Consumption with Mortality among Participants with a History of Cancer: A Prospective Cohort Analysis. Am. J. Clin. Nutr. 2024, 120, 471–480. [Google Scholar] [CrossRef]
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in Liver Cancer and Possible Treatment Approaches. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188314. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zheng, M.-C.; Yang, X.; Chen, T.-L.; Zhang, J.-E. Patient Delay to Diagnosis and Its Predictors among Colorectal Cancer Patients: A Cross-Sectional Study Based on the Theory of Planned Behavior. Eur. J. Oncol. Nurs. 2022, 60, 102174. [Google Scholar] [CrossRef]
- Boretti, A. Natural Products as Cancer Chemo Preventive Agents: Where We Stand. Nat. Prod. Commun. 2022, 17, 1934578X221144579. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Guo, W.; Liu, J.; Lao, W.; Hu, P.; Lin, Y.; Chen, H. Laminaria Japonica Peptides Suppress Liver Cancer by Inducing Apoptosis: Possible Signaling Pathways and Mechanism. Mar. Drugs 2022, 20, 704. [Google Scholar] [CrossRef] [PubMed]
- Chinnadurai, R.K.; Khan, N.; Meghwanshi, G.K.; Ponne, S.; Althobiti, M.; Kumar, R. Current Research Status of Anti-Cancer Peptides: Mechanism of Action, Production, and Clinical Applications. Biomed. Pharmacother. 2023, 164, 114996. [Google Scholar] [CrossRef] [PubMed]
- López-García, G.; Dublan-García, O.; Arizmendi-Cotero, D.; Gómez Oliván, L.M. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022, 27, 1343. [Google Scholar] [CrossRef] [PubMed]
- Tamaru, S.; Kurayama, T.; Sakono, M.; Fukuda, N.; Nakamori, T.; Furuta, H.; Nagata, Y.; Tanaka, K. Dietary Soybean Peptides Containing a Low-Molecular Fraction Can Lower Serum and Liver Triglyceride Levels in Rats. J. Nutr. Sci. Vitaminol. 2014, 60, 436–442. [Google Scholar] [CrossRef]
- Yuan, L.; Chu, Q.; Yang, B.; Zhang, W.; Sun, Q.; Gao, R. Purification and Identification of Anti-Inflammatory Peptides from Sturgeon (Acipenser schrenckii) Cartilage. Food Sci. Hum. Wellness 2023, 12, 2175–2183. [Google Scholar] [CrossRef]
- Vadevoo, S.M.P.; Gurung, S.; Lee, H.-S.; Gunassekaran, G.R.; Lee, S.-M.; Yoon, J.-W.; Lee, Y.-K.; Lee, B. Peptides as Multifunctional Players in Cancer Therapy. Exp. Mol. Med. 2023, 55, 1099–1109. [Google Scholar] [CrossRef]
- Luna Vital, D.A.; González de Mejía, E.; Dia, V.P.; Loarca-Piña, G. Peptides in Common Bean Fractions Inhibit Human Colorectal Cancer Cells. Food Chem. 2014, 157, 347–355. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Xia, S.; Ding, X. Finding and Isolation of Novel Peptides with Anti-Proliferation Ability of Hepatocellular Carcinoma Cells from Mung Bean Protein Hydrolysates. J. Funct. Foods 2019, 62, 103557. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Wu, C.-H.; Peng, S.-H.; Chang, C.-H. Seed-Derived Peptide Lunasin Suppressed Breast Cancer Cell Growth by Regulating Inflammatory Mediators, Aromatase, and Estrogen Receptors. Food Nutr. Res. 2023, 67, 8991. [Google Scholar] [CrossRef]
- Gong, X.; An, Q.; Le, L.; Geng, F.; Jiang, L.; Yan, J.; Xiang, D.; Peng, L.; Zou, L.; Zhao, G.; et al. Prospects of Cereal Protein-Derived Bioactive Peptides: Sources, Bioactivities Diversity, and Production. Crit. Rev. Food Sci. Nutr. 2022, 62, 2855–2871. [Google Scholar] [CrossRef]
- Jeong, H.J.; Lee, J.R.; Jeong, J.B.; Park, J.H.; Cheong, Y.; de Lumen, B.O. The Cancer Preventive Seed Peptide Lunasin from Rye Is Bioavailable and Bioactive. Nutr. Cancer 2009, 61, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Oliveira, J.; Saúde, F.; Mota, J.; Ferreira, R.B. Proteins in Soy Might Have a Higher Role in Cancer Prevention than Previously Expected: Soybean Protein Fractions Are More Effective MMP-9 Inhibitors Than Non-Protein Fractions, Even in Cooked Seeds. Nutrients 2017, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Phongthai, S.; Lim, S.-T.; Rawdkuen, S. Optimization of Microwave-Assisted Extraction of Rice Bran Protein and Its Hydrolysates Properties. J. Cereal Sci. 2016, 70, 146–154. [Google Scholar] [CrossRef]
- Ortiz-Martinez, M.; Gonzalez de Mejia, E.; García-Lara, S.; Aguilar, O.; Lopez-Castillo, L.M.; Otero-Pappatheodorou, J.T. Antiproliferative Effect of Peptide Fractions Isolated from a Quality Protein Maize, a White Hybrid Maize, and Their Derived Peptides on Hepatocarcinoma Human HepG2 Cells. J. Funct. Foods 2017, 34, 36–48. [Google Scholar] [CrossRef]
- Fan, X.; Guo, H.; Teng, C.; Zhang, B.; Blecker, C.; Ren, G. Anti-Colon Cancer Activity of Novel Peptides Isolated from In Vitro Digestion of Quinoa Protein in Caco-2 Cells. Foods 2022, 11, 194. [Google Scholar] [CrossRef]
- Heo, S.; Hettiarachy, N.; Park, J.-S.; Kim, H.-I.; Paik, H.-D.; Yun, M.-S.; Lee, S.-K. Purification and Evaluation of Rice Bran Hydrolysates with Antimutagenicity. Food Sci. Biotechnol. 2007, 16, 285–289. [Google Scholar]
- Thamnarathip, P.; Jangchud, K.; Nitisinprasert, S.; Vardhanabhuti, B. Identification of Peptide Molecular Weight from Rice Bran Protein Hydrolysate with High Antioxidant Activity. J. Cereal Sci. 2016, 69, 329–335. [Google Scholar] [CrossRef]
- Hunsakul, K.; Laokuldilok, T.; Sakdatorn, V.; Klangpetch, W.; Brennan, C.S.; Utama-ang, N. Optimization of Enzymatic Hydrolysis by Alcalase and Flavourzyme to Enhance the Antioxidant Properties of Jasmine Rice Bran Protein Hydrolysate. Sci. Rep. 2022, 12, 12582. [Google Scholar] [CrossRef]
- Wattayagorn, V.; Kongsema, M.; Tadakittisarn, S.; Chumnanpuen, P. Riceberry Rice Bran Protein Hydrolyzed Fractions Induced Apoptosis, Senescence and G1/S Cell Cycle Arrest in Human Colon Cancer Cell Lines. bioRxiv 2021. [Google Scholar] [CrossRef]
- Pharapirom, A.; Setthaya, P.; Vachiraarunwong, A.; Jongjareonrak, A.; Sato, K.; Wongpoomchai, R.; Ruangsuriya, J. Identification of Novel Cancer Chemopreventive Peptides from Bran Residue of Riceberry Cultivated in Northern Thailand. J. Funct. Foods 2024, 120, 106391. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.-H.; Tavano, O.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Use of Alcalase in the Production of Bioactive Peptides: A Review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yu, S.; Han, Y.; Chen, L.; An, J.; Li, H.; Liu, X. Systematic Sequence Characterization of Enzymatic-Derived Soybean Peptides for Precision Enhancement of Anti-Inflammatory Properties. Food Biosci. 2024, 60, 104292. [Google Scholar] [CrossRef]
- Thumvijit, T.; Taya, S.; Punvittayagul, C.; Peerapornpisal, Y.; Wongpoomchai, R. Cancer Chemopreventive Effect of Spirogyra Neglecta (Hassall) Kützing on Diethylnitrosamine-Induced Hepatocarcinogenesis in Rats. Asian Pac. J. Cancer Prev. 2014, 15, 1611–1616. [Google Scholar] [CrossRef]
- Clapper, M.L.; Chang, W.-C.L.; Cooper, H.S. Dysplastic Aberrant Crypt Foci: Biomarkers of Early Colorectal Neoplasia and Response to Preventive Intervention. Cancer Prev. Res. 2020, 13, 229–240. [Google Scholar] [CrossRef]
- Punvittayagul, C.; Chariyakornkul, A.; Sankam, P.; Wongpoomchai, R. Inhibitory Effect of Thai Purple Rice Husk Extract on Chemically Induced Carcinogenesis in Rats. Molecules 2021, 26, 360. [Google Scholar] [CrossRef] [PubMed]
- González-Magaña, A.; Blanco, F.J. Human PCNA Structure, Function and Interactions. Biomolecules 2020, 10, 570. [Google Scholar] [CrossRef]
- Chariyakornkul, A.; Inboot, N.; Taya, S.; Wongpoomchai, R. Low-Polar Extract from Seed of Cleistocalyx Nervosum Var. Paniala Modulates Initiation and Promotion Stages of Chemically-Induced Carcinogenesis in Rats. Biomed. Pharmacother. 2021, 133, 110963. [Google Scholar] [CrossRef]
- Punvittayagul, C.; Luangsuphabool, T.; Wongpoomchai, R. Protocatechuic Acid as a Potent Anticarcinogenic Compound in Purple Rice Bran against Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis. Sci. Rep. 2022, 12, 10548. [Google Scholar] [CrossRef]
- Adebiyi, A.; Adebiyi, A.; Hasegawa, Y.; Ogawa, T.; Muramoto, K. Isolation and Characterization of Protein Fractions from Deoiled Rice Bran. Eur. Food Res. Technol. 2009, 228, 391–401. [Google Scholar] [CrossRef]
- Chanput, W.; Theerakulkait, C.; Nakai, S. Antioxidative Properties of Partially Purified Barley Hordein, Rice Bran Protein Fractions and Their Hydrolysates. J. Cereal Sci. 2009, 49, 422–428. [Google Scholar] [CrossRef]
- Xia, N.; Wang, J.-M.; Gong, Q.; Yang, X.-Q.; Yin, S.-W.; Qi, J.-R. Characterization and In Vitro Digestibility of Rice Protein Prepared by Enzyme-Assisted Microfluidization: Comparison to Alkaline Extraction. J. Cereal Sci. 2012, 56, 482–489. [Google Scholar] [CrossRef]
- Halim, N.R.A.; Yusof, H.M.; Sarbon, N.M. Functional and Bioactive Properties of Fish Protein Hydolysates and Peptides: A Comprehensive Review. Trends Food Sci. Technol. 2016, 51, 24–33. [Google Scholar] [CrossRef]
- Ortizo, R.G.G.; Sharma, V.; Tsai, M.-L.; Wang, J.-X.; Sun, P.-P.; Nargotra, P.; Kuo, C.-H.; Chen, C.-W.; Dong, C.-D. Extraction of Novel Bioactive Peptides from Fish Protein Hydrolysates by Enzymatic Reactions. Appl. Sci. 2023, 13, 5768. [Google Scholar] [CrossRef]
- Aderinola, T.A.; Duodu, K.G. Production, Health-promoting Properties and Characterization of Bioactive Peptides from Cereal and Legume Grains. Biofactors 2022, 48, 972–992. [Google Scholar] [CrossRef]
- Yang, J.; Kornet, R.; Ntone, E.; Meijers, M.G.J.; van den Hoek, I.A.F.; Sagis, L.M.C.; Venema, P.; Meinders, M.B.J.; Berton-Carabin, C.C.; Nikiforidis, C.V.; et al. Plant Protein Aggregates Induced by Extraction and Fractionation Processes: Impact on Techno-Functional Properties. Food Hydrocoll. 2024, 155, 110223. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Dai, C.; He, R.; Ma, H. Alkali Extraction of Rice Residue Protein Isolates: Effects of Alkali Treatment Conditions on Lysinoalanine Formation and Structural Characterization of Lysinoalanine-Containing Protein. Food Chem. 2018, 261, 176–183. [Google Scholar] [CrossRef]
- Gomes, P.M.; Sá, R.W.M.; Aguiar, G.L.; Paes, M.H.S.; Alzamora, A.C.; Lima, W.G.; de Oliveira, L.B.; Stocker, S.D.; Antunes, V.R.; Cardoso, L.M. Chronic High-Sodium Diet Intake after Weaning Lead to Neurogenic Hypertension in Adult Wistar Rats. Sci. Rep. 2017, 7, 5655. [Google Scholar] [CrossRef]
- De Luca, L.A., Jr.; Menani, J.V.; Johnson, A.K. (Eds.) Neurobiology of Body Fluid Homeostasis: Transduction and Integration; CRC Press: Boca Raton, FL, USA, 2013; ISBN 978-0-429-09832-1. [Google Scholar]
- Denayer, T.; Stöhr, T.; Van Roy, M. Animal Models in Translational Medicine: Validation and Prediction. New Horiz. Transl. Med. 2014, 2, 5–11. [Google Scholar] [CrossRef]
- Sakai, M.; Muramatsu, M. Regulation of Glutathione Transferase P: A Tumor Marker of Hepatocarcinogenesis. Biochem. Biophys. Res. Commun. 2007, 357, 575–578. [Google Scholar] [CrossRef]
- Bing, S.-J.; Chen, X.-S.; Zhong, X.; Li, Y.-Q.; Sun, G.-J.; Wang, C.-Y.; Liang, Y.; Zhao, X.-Z.; Hua, D.-L.; Chen, L.; et al. Structural, Functional and Antioxidant Properties of Lentinus Edodes Protein Hydrolysates Prepared by Five Enzymes. Food Chem. 2024, 437, 137805. [Google Scholar] [CrossRef]
- Fu, Z.; Akula, S.; Thorpe, M.; Hellman, L. Marked Difference in Efficiency of the Digestive Enzymes Pepsin, Trypsin, Chymotrypsin, and Pancreatic Elastase to Cleave Tightly Folded Proteins. Biol. Chem. 2021, 402, 861–867. [Google Scholar] [CrossRef]
- Cho, S.-J. Changes in the Antioxidant Properties of Rice Bran Protein Isolate upon Simulated Gastrointestinal Digestion. LWT 2020, 126, 109206. [Google Scholar] [CrossRef]
- Chanput, W.; Lawyer, R. The Potential of Fractionated Rice Bran Protein Hydrolysates as Antioxidative and Anti-Inflammatory Agents. J. Nutr. Sci. Vitaminol. 2020, 66, S349–S355. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Jin, Y.; Abdullah; Hussain, M.; Liu, X.; Feng, F.; Guan, R. Recent Advances of Hepatoprotective Peptides: Production, Structure, Mechanisms, and Interactions with Intestinal Microbiota. Food Biosci. 2024, 58, 103744. [Google Scholar] [CrossRef]
- Shirako, S.; Kojima, Y.; Tomari, N.; Nakamura, Y.; Matsumura, Y.; Ikeda, K.; Inagaki, N.; Sato, K. Pyroglutamyl Leucine, a Peptide in Fermented Foods, Attenuates Dysbiosis by Increasing Host Antimicrobial Peptide. npj Sci. Food 2019, 3, 18. [Google Scholar] [CrossRef]
- Kiyono, T.; Hirooka, K.; Yamamoto, Y.; Kuniishi, S.; Ohtsuka, M.; Kimura, S.; Park, E.Y.; Nakamura, Y.; Sato, K. Identification of Pyroglutamyl Peptides in Japanese Rice Wine (Sake): Presence of Hepatoprotective PyroGlu-Leu. J. Agric. Food Chem. 2013, 61, 11660–11667. [Google Scholar] [CrossRef] [PubMed]
- Kannan, A.; Hettiarachchy, N.; Narayan, S. Colon and Breast Anti-Cancer Effects of Peptide Hydrolysates Derived from Rice Bran. Open Bioact. Compd. J. 2009, 2, 17–20. [Google Scholar] [CrossRef]
- Du, X.; Xiao, S.; Luo, Q.; Liu, X.; Liu, J. Laminaria Japonica Cyclic Peptides Exert Anti-Colorectal Carcinoma Effects through Apoptosis Induction in Vitro and in Vivo. J. Pept. Sci. 2022, 28, e3385. [Google Scholar] [CrossRef] [PubMed]
- McKerchar, H.; Dyer, J.M.; Gerrard, J.A.; Maes, E.; Clerens, S.; Dobson, R.C.J. Characterizing Lysinoalanine Crosslinks in Food Systems: Discovery of a Diagnostic Ion in Model Peptides Using MALDI Mass Spectrometry. Food Chem. X 2023, 19, 100800. [Google Scholar] [CrossRef]
- Kannan, A.; Hettiarachchy, N.; Johnson, M.G.; Nannapaneni, R. Human Colon and Liver Cancer Cell Proliferation Inhibition by Peptide Hydrolysates Derived from Heat-Stabilized Defatted Rice Bran. J. Agric. Food Chem. 2008, 56, 11643–11647. [Google Scholar] [CrossRef]
- Kannan, A.; Hettiarachchy, N.S.; Lay, J.O.; Liyanage, R. Human Cancer Cell Proliferation Inhibition by a Pentapeptide Isolated and Characterized from Rice Bran. Peptides 2010, 31, 1629–1634. [Google Scholar] [CrossRef]
- Karanam, G.; Arumugam, M.K.; Sirpu Natesh, N. Anticancer Effect of Marine Sponge-Associated Bacillus Pumilus AMK1 Derived Dipeptide Cyclo (-Pro-Tyr) in Human Liver Cancer Cell Line Through Apoptosis and G2/M Phase Arrest. Int. J. Pept. Res. Ther. 2020, 26, 445–457. [Google Scholar] [CrossRef]
- Miranda, P.M.; De Palma, G.; Serkis, V.; Lu, J.; Louis-Auguste, M.P.; McCarville, J.L.; Verdu, E.F.; Collins, S.M.; Bercik, P. High Salt Diet Exacerbates Colitis in Mice by Decreasing Lactobacillus Levels and Butyrate Production. Microbiome 2018, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Boise, L.H.; Shanmugam, M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers 2019, 11, 1144. [Google Scholar] [CrossRef]
- Lopez, J.; Tait, S.W.G. Mitochondrial Apoptosis: Killing Cancer Using the Enemy Within. Br. J. Cancer 2015, 112, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, B.A.; El-Deiry, W.S. Targeting Apoptosis in Cancer Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef]
- He, Z.; Lin, J.; Peng, D.; Zeng, J.; Pan, X.; Zheng, R.; Li, P.; Du, B. Peptide Fractions from Sacha Inchi Induced Apoptosis in HepG2 Cells via P53 Activation and a Mitochondria-Mediated Pathway. J. Sci. Food Agric. 2023, 103, 7621–7630. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.X.; Cheng, A.S.L.; To, K.F.; Tong, J.H.M.; Li, M.S.; Shen, J.; Wong, C.C.M.; Zhang, L.; Chan, R.L.Y.; Wang, X.J.; et al. Host Immune Defense Peptide LL-37 Activates Caspase-Independent Apoptosis and Suppresses Colon Cancer. Cancer Res. 2012, 72, 6512–6523. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Wang, J.; Fan, L.; Mu, W.; Jin, Y.; Wang, Z. Small-Molecular Cyclic Peptide Exerts Viability Suppression Effects on HepG2 Cells via Triggering P53 Apoptotic Pathways. Chem.-Biol. Interact. 2023, 382, 110633. [Google Scholar] [CrossRef]
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Punvittayagul, C.; Chariyakornkul, A.; Chewonarin, T.; Jarukamjorn, K.; Wongpoomchai, R. Augmentation of Diethylnitrosamine-Induced Early Stages of Rat Hepatocarcinogenesis by 1,2-Dimethylhydrazine. Drug Chem. Toxicol. 2019, 42, 641–648. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer Sequence | Primer Length |
---|---|---|
BAX | Forward-5′-TTCATC CAGGATCGAGCAGA-3′ | 21 |
Reverse-5′-GCAAAGTAGAAGGCAACG-3′ | 18 | |
CASP 3 | Forward-5′-GGACCCGTCAATTTGAAAAA-3′ | 21 |
Reverse-5′-CACCACGACTCCTACTGTAC-3′ | 20 | |
Β-Actin | Forward-5′-ACAGGATGCAGAAGGAGATTAC-3′ | 22 |
Reverse-5′-ACAGTGAGGCCAGGATAGA-3′ | 19 |
Groups | Treatment | Body Weight (g) | Water Intake (mL/rat/day) | Diet Intake (g/rat/day) |
---|---|---|---|---|
1 | NSS+DW | 410.0 ± 31.8 | 26.8 ± 2.6 | 21.6 ± 3.0 |
2 | NSS+GTL 500 mg/kg bw | 441.0 ± 8.9 | 28.5 ± 4.1 | 22.0 ± 1.1 |
3 | NSS+GTLH 500 mg/kg bw | 417.0 ± 5.7 | 25.8 ± 2.8 | 20.4 ± 1.7 |
4 | NSS+TPH 500 mg/kg bw | 422.0 ± 25.1 | 29.8 ± 2.5 | 20.3 ± 1.6 |
5 | DEN+DMH+DW | 418.5 ± 33.0 | 25.7 ± 4.1 | 21.1 ± 1.8 |
6 | DEN+DMH+GTL 500 mg/kg bw | 385.0 ± 32.6 | 27.4 ± 5.3 | 22.9 ± 2.7 |
7 | DEN+DMH+GTLH 500 mg/kg bw | 391.9 ± 44.1 | 28.5 ± 3.5 | 23.9 ± 2.3 |
8 | DEN+DMH+TPH 500 mg/kg bw | 385.6 ± 34.4 | 31.0 ± 4.5 ** | 21.6 ± 0.8 |
Groups | Treatment | Relative Organ Weight | ||
---|---|---|---|---|
Liver | Kidneys | Spleen | ||
1 | NSS+DW | 3.56 ± 0.53 | 0.66 ± 0.10 | 0.16 ± 0.02 |
2 | NSS+GTL 500 mg/kg bw | 3.47 ± 0.47 | 0.59 ± 0.05 | 0.16 ± 0.02 |
3 | NSS+GTLH 500 mg/kg bw | 3.72 ± 0.43 | 0.65 ± 0.07 | 0.18 ± 0.02 |
4 | NSS+TPH 500 mg/kg bw | 3.55 ± 0.29 | 0.60 ± 0.05 | 0.16 ± 0.01 |
5 | DEN+DMH+DW | 3.94 ± 0.17 | 0.64 ± 0.04 | 0.20 ± 0.03 |
6 | DEN+DMH+GTL 500 mg/kg bw | 4.29 ± 0.54 | 0.74 ± 0.15 ** | 0.19 ± 0.03 |
7 | DEN+DMH+GTLH 500 mg/kg bw | 4.05 ± 0.41 | 0.73 ± 0.11 ** | 0.19 ± 0.04 |
8 | DEN+DMH+TPH 500 mg/kg bw | 4.15 ± 0.52 | 0.73 ± 0.10 ** | 0.19 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pharapirom, A.; Taya, S.; Vachiraarunwong, A.; Phannasorn, W.; Singai, C.; Wongpoomchai, R.; Ruangsuriya, J. Cancer Chemopreventive Properties of Glutelin Hydrolysate from Riceberry Bran Residues Against the Early Stage of Liver and Colon Carcinogenesis Induced by Chemicals in Rats. Cancers 2025, 17, 2666. https://doi.org/10.3390/cancers17162666
Pharapirom A, Taya S, Vachiraarunwong A, Phannasorn W, Singai C, Wongpoomchai R, Ruangsuriya J. Cancer Chemopreventive Properties of Glutelin Hydrolysate from Riceberry Bran Residues Against the Early Stage of Liver and Colon Carcinogenesis Induced by Chemicals in Rats. Cancers. 2025; 17(16):2666. https://doi.org/10.3390/cancers17162666
Chicago/Turabian StylePharapirom, Aroonrat, Sirinya Taya, Arpamas Vachiraarunwong, Warunyoo Phannasorn, Chonikarn Singai, Rawiwan Wongpoomchai, and Jetsada Ruangsuriya. 2025. "Cancer Chemopreventive Properties of Glutelin Hydrolysate from Riceberry Bran Residues Against the Early Stage of Liver and Colon Carcinogenesis Induced by Chemicals in Rats" Cancers 17, no. 16: 2666. https://doi.org/10.3390/cancers17162666
APA StylePharapirom, A., Taya, S., Vachiraarunwong, A., Phannasorn, W., Singai, C., Wongpoomchai, R., & Ruangsuriya, J. (2025). Cancer Chemopreventive Properties of Glutelin Hydrolysate from Riceberry Bran Residues Against the Early Stage of Liver and Colon Carcinogenesis Induced by Chemicals in Rats. Cancers, 17(16), 2666. https://doi.org/10.3390/cancers17162666