Ki67 and TNFRII as Potential Clinical Markers for Effective Clinical Staging of Advanced Prostate Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Collection
2.3. Analysis of Apoptotic and Inflammatory Mediators
2.4. Histological Analysis
2.5. Immunohistochemistry
2.6. TUNEL Assay
2.7. Computer Analysis of Immunohistochemistry
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Patients
3.2. Analysis of Proliferation and Apoptotic Index
3.3. Markers of Inflammation
3.4. Markers of Apoptosis
3.5. Correlations Between Selected Parameters
4. Discussion
5. Clinical Implications
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Ghazawi, M.; Salameh, H.; Amo-Afful, S.; Khasawneh, S.; Ghanem, R. An In-Depth Look Into the Epidemiological and Etiological Aspects of Prostate Cancer: A Literature Review. Cureus 2023, 15, e48252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schafer, E.J.; Laversanne, M.; Sung, H.; Soerjomataram, I.; Briganti, A.; Dahut, W.; Bray, F.; Jemal, A. Recent Patterns and Trends in Global Prostate Cancer Incidence and Mortality: An Update. Eur. Urol. 2025, 87, 302–313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Lu, B.; He, M.; Wang, Y.; Wang, Z.; Du, L. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019. Front. Public Health 2022, 10, 811044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McKenney, J.K.; Wei, W.; Hawley, S.; Auman, H.; Newcomb, L.F.; Boyer, H.D.; Fazli, L.; Simko, J.; Hurtado-Coll, A.; Troyer, D.A.; et al. Histologic grading of prostatic adenocarcinoma can be further optimized: Analysis of the relative prognostic strength of individual architectural patterns in 1275 patients from the Canary retrospective cohort. Am. J. Surg. Pathol. 2016, 40, 1439–1456. [Google Scholar] [CrossRef]
- McNally, C.J.; Ruddock, M.W.; Moore, T.; McKenna, D.J. Biomarkers That Differentiate Benign Prostatic Hyperplasia from Prostate Cancer: A Literature Review. Cancer Manag. Res. 2020, 12, 5225–5241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kotb, A.; Tanguay, S.; Luz, M.; Kassouf, W.; Aprikian, A. Relationship between initial PSA density with future PSA kinetics and repeat biopsies in men with prostate cancer on active surveillance. Prostate Cancer Prostatic Dis. 2011, 14, 53–57. [Google Scholar] [CrossRef]
- Madu, C.O.; Lu, Y. Novel diagnostic biomarkers for prostate cancer. J. Cancer 2010, 1, 150–177. [Google Scholar] [CrossRef] [PubMed]
- Wolny-Rokicka, E.; Petrasz, P.; Krajewski, W.; Sulimiera Michalak, S.; Tukiendorf, A. Analysis of Serum Markers with Regard to Treatment Procedures in Advanced Stage Prostate Cancer Patients. Med. Sci. Monit. 2020, 26, e925860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, X.; Kaufman, P.D. Ki-67: More than a proliferation marker. Chromosoma 2018, 127, 175–186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goltz, D.; Montani, M.; Braun, M.; Perner, S.; Wernert, N.; Jung, K.; Dietel, M.; Stephan, C.; Kristiansen, G. Prognostic relevance of proliferation markers (Ki-67, PHH3) within the cross-relation of ERG translocation and androgen receptor expression in prostate cancer. Pathology 2015, 47, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Verhoven, B.; Yan, Y.; Ritter, M.; Khor, L.Y.; Hammond, E.; Jones, C.; Amin, M.; Bahary, J.P.; Zeitzer, K.; Pollack, A. Ki-67 Is an Independent Predictor of Metastasis and Cause-Specific Mortality for Prostate Cancer Patients Treated on Radiation Therapy Oncology Group (RTOG) 94–08. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 317–323. [Google Scholar] [CrossRef]
- Byun, S.S.; Lee, M.; Hong, S.K.; Lee, H. Elevated Ki-67 (MIB-1) expression as an independent predictor for unfavorable pathologic outcomes and biochemical recurrence after radical prostatectomy in patients with localized prostate cancer: A propensity score matched study. PLoS ONE 2019, 14, e0224671. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, C.; Zhou, D.; Liu, J.; Qian, X.; Zhang, J. Changes in Ki-67 in Residual Tumor and Outcome of Primary Inflammatory Breast Cancer Treated With Trimodality Therapy. Clin. Breast Cancer 2022, 22, e655–e663. [Google Scholar] [CrossRef]
- Gerdes, J.; Lemke, H.; Baisch, H.; Wacker, H.H.; Schwab, U.; Stein, H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 1984, 133, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Nishimukai, A.; Yagi, T.; Yanai, A.; Miyagawa, Y.; Enomoto, Y.; Murase, K.; Imamura, M.; Takatsuka, Y.; Sakita, I.; Hatada, T.; et al. High Ki-67 Expression and Low Progesterone Receptor Expression Could Independently Lead to a Worse Prognosis for Postmenopausal Patients with Estrogen Receptor-Positive and HER2-Negative Breast Cancer. Clin. Breast Cancer 2015, 15, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Inwald, E.C.; Klinkhammer-Schalke, M.; Hofstädter, F.; Zeman, F.; Koller, M.; Gerstenhauer, M.; Ortmann, O. Ki-67 is a prognostic parameter in breast cancer patients: Results of a large population-based cohort of a cancer registry. Breast Cancer Res. Treat. 2013, 139, 539–552. [Google Scholar] [CrossRef]
- Warth, A.; Cortis, J.; Soltermann, A.; Meister, M.; Budczies, J.; Stenzinger, A.; Goeppert, B.; Thomas, M.; Herth, F.J.; Schirmacher, P.; et al. Tumour cell proliferation (Ki-67) in non-small cell lung cancer: A critical reappraisal of its prognostic role. Br. J. Cancer 2014, 111, 1222–1229. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, V.; Singh, J.; Verma, M.; Gupta, G.; Gupta, S.; Sen, R.; Ralli, M. Significance of p53 and ki-67 expression in prostate cancer. Urol. Ann. 2015, 7, 488–493. [Google Scholar] [CrossRef]
- Rashed, H.E.; Kateb, M.I.; Ragab, A.A.; Shaker, S.S. Evaluation of minimal prostate cancer in needle biopsy specimens using AMACR (p504s), p63 and Ki-67. Life Sci. 2012, 9, 12–21. [Google Scholar]
- Pollack, A.; DeSilvio, M.; Khor, L.Y.; Li, R.; Al-Saleem, T.I.; Hammond, M.E.; Venkatesan, V.; Lawton, C.A.; Roach, M., 3rd; Shipley, W.U.; et al. Ki-67 staining is a strong predictor of distant metastasis and mortality for men with prostate cancer treated with radiotherapy plus androgen deprivation: Radiation Therapy Oncology Group Trial 92-02. J. Clin. Oncol. 2004, 22, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Mesko, S.; Kupelian, P.; Demanes, D.J.; Huang, J.; Wang, P.C.; Kamrava, M. Quantifying the ki-67 heterogeneity profile in prostate cancer. Prostate Cancer 2013, 2013, 717080. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bettencourt, M.C.; Bauer, J.J.; Sesterhenn, I.A.; Mostofi, F.K.; McLeod, D.G.; Moul, J.W. Ki-67 expression is a prognostic marker of prostate cancer recurrence after radical prostatectomy. J. Urol. 1996, 156, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Skingen, V.E.; Salberg, U.B.; Hompland, T.; Fjeldbo, C.S.; Helgeland, H.; Frikstad, K.M.; Ragnum, H.B.; Vlatkovic, L.; Hole, K.H.; Seierstad, T.; et al. Spatial analysis of microRNA regulation at defined tumor hypoxia levels reveals biological traits of aggressive prostate cancer. J. Pathol. 2024, 264, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.L.; Peehl, D.M. Molecular and cellular pathogenesis of benign prostatic hyperplasia. J. Urol. 2004, 172, 1784–1791. [Google Scholar] [CrossRef]
- Gavrieli, Y.; Sherman, Y.; Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 1992, 119, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Rode, H.D.; Eisel, D.; Frost, I. Apoptosis, Cell Death and Cell Proliferation, 3rd ed.; Roche Applied Science: London, UK, 2004. [Google Scholar]
- Fang, Y.; Zhao, L.; Xiao, H.; Cook, K.M.; Bai, Q.; Herrick, E.J.; Chen, X.; Qin, C.; Zhu, Z.; Wakefield, M.R.; et al. IL-33 acts as a foe to MIA PaCa-2 pancreatic cancer. Med. Oncol. 2017, 34, 23. [Google Scholar] [CrossRef] [PubMed]
- Calcinotto, A.; Spataro, C.; Zagato, E.; Di Mitri, D.; Gil, V.; Crespo, M.; De Bernardis, G.; Losa, M.; Mirenda, M.; Pasquini, E.; et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 2018, 559, 363–369. [Google Scholar] [CrossRef]
- Escamilla, J.; Schokrpur, S.; Liu, C.; Priceman, S.J.; Moughon, D.; Jiang, Z.; Pouliot, F.; Magyar, C.; Sung, J.L.; Xu, J.; et al. CSF1 receptor targeting in prostate cancer reverses macrophage mediated resistance to androgen blockade therapy. Cancer Res. 2015, 75, 950–962. [Google Scholar] [CrossRef]
- Coussens, L.M.; Zitvogel, L.; Palucka, A.K. Neutralizing tumor-promoting chronic inflammation: Amagic bullet? Science 2013, 339, 286–291. [Google Scholar] [CrossRef]
- Shacter, E.; Weitzman, S.A. Chronic inflammationand cancer. Oncology 2002, 16, 217–226, 229; discussion 230–232. [Google Scholar]
- de Bono, J.S.; Guo, C.; Gurel, B.; De Marzo, A.M.; Sfanos, K.S.; Mani, R.S.; Gil, J.; Drake, C.G.; Alimonti, A. Prostate carcinogenesis: Inflammatory storms. Nat. Rev. Cancer 2020, 20, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Al-Lamki, R.S. Tumor necrosis factor receptor 2: Its contribution to acute cellular rejection and clear cell renal carcinoma. Bio. Med. Res. Int. 2013, 2013, 821310. [Google Scholar] [CrossRef]
- Facciabene, A.; Motz, G.T.; Coukos, G. T-regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Res. 2012, 72, 2162–2171. [Google Scholar] [CrossRef] [PubMed]
- Cari, L.; Nocentini, G.; Migliorati, G.; Riccardi, C. Potential effect of tumor-specific Treg-targeted antibodies in the treatment of human cancers: A bioinformatics analysis. Oncoimmunology 2018, 7, e1387705. [Google Scholar] [CrossRef]
- Byrne, W.L.; Mills, K.H.; Lederer, J.A.; O’Sullivan, G.C. Targeting regulatory T cells in cancer. Cancer Res. 2011, 71, 6915–6920. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Li, F.; Qin, Z. TNF Receptor 2 Makes Tumor Necrosis Factor a Friend of Tumors. Front. Immunol. 2018, 9, 1170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Merten, M.; Thiagarajan, P. P-selectin expression on platelets determines size and stability of platelets aggregates. Circulation 2000, 102, 1931–1936. [Google Scholar] [CrossRef]
- Dymicka-Piekarska, V.; Matowicka-Karna, J.; Gryko, M.; Kemona-Chetnik, I.; Kemona, H. Relationship between soluble P-selectin and inflammatory factors (interleukin-6 and C-reactive protein) in colorectal cancer. Throm. Res. 2007, 120, 585–590. [Google Scholar] [CrossRef]
- Dymicka-Piekarska, V.; Matowicka-Karna, J.; Osada, J.; Kemona, H.; Butkiewicz, A.M. Changes in platelet CD 62P expression and soluble P-selectin concentration in surgically treated colorectal carcinoma. Adv. Med. Sci. 2006, 51, 304–308. [Google Scholar]
- Pace, G.; Di Massimo, C.; De Amicis, D.; Vicentini, C.; Ciancarelli, M.G. Endothelial inflammation and activation in benign prostatic hyperplasia and prostate cancer. Int. Braz. J. Urol. 2011, 37, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Matsubara, H. Recent advances in p53 research and cancer treatment. J. Biomed. Biotechnol. 2011, 2011, 978312. [Google Scholar] [CrossRef]
- Fiandalo, M.V.; Schwarze, S.R.; Kyprianou, N. Proteasomal regulation of caspase-8 in cancer cell apoptosis. Apoptosis 2013, 18, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.; Potter, M.W.; McDade, T.P.; Ricciardi, R.; Perugini, R.A.; Elliott, P.J.; Adams, J.; Callery, M.P. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J. Cell Biochem. 2001, 82, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Yeung, B.H.; Huang, D.C.; Sinicrope, F.A. PS-341 (bortezomib) induces lysosomal cathepsin B release and a caspase-2-dependent mitochondrial permeabilization and apoptosis in human pancreatic cancer cells. J. Biol. Chem. 2006, 281, 11923–11932. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, J.A.; Christian, P.A.; Schwarze, S.R. Proteasome inhibition blocks caspase-8 degradation and sensitizes prostate cancer cells to death receptor-mediated apoptosis. Prostate 2008, 68, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.O. DNA methylation changes in prostate cancer: Current developments and future clinical implementation. Expert Rev. Mol. Diagn. 2009, 9, 243–257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Phé, V.; Cussenot, O.; Rouprêt, M. Methylated genes as potential biomarkers in prostate cancer. BJU Int. 2010, 105, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Lee, S.C.; Lim, B.; Shin, S.H.; Kim, M.Y.; Kim, S.Y.; Lim, H.; Charton, C.; Shin, D.; Moon, H.W.; et al. DNA methylation biomarkers distinguishing early-stage prostate cancer from benign prostatic hyperplasia. Prostate Int. 2023, 11, 113–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alarcón-Zendejas, A.P.; Scavuzzo, A.; Jiménez-Ríos, M.A.; Álvarez-Gómez, R.M.; Montiel-Manríquez, R.; Castro-Hernández, C.; Jiménez-Dávila, M.A.; Pérez-Montiel, D.; González-Barrios, R.; Jiménez-Trejo, F.; et al. The promising role of new molecular biomarkers in prostate cancer: From coding and non-coding genes to artificial intelligence approaches. Prostate Cancer Prostatic Dis. 2022, 25, 431–443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DE Nunzio, C.; Giglio, S.; Baldassarri, V.; Cirombella, R.; Mallel, G.; Nacchia, A.; Tubaro, A.; Vecchione, A. Impairment of autophagy may represent the molecular mechanism behind the relationship between obesity and inflammation in patients with BPH and LUTS. Minerva Urol. Nephrol. 2021, 73, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.W.; Tidwell, R.S.; Pilie, P.G.; Yu, Y.; Liu, J.; Surasi, D.S.; Titus, M.; Zhang, J.; Venkatesh, N.; Panaretakis, T.; et al. Body composition as a determinant of the therapeutic index with androgen signaling inhibition. Prostate Cancer Prostatic Dis. 2024, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wilt, T.J.; Brawer, M.K.; Jones, K.M.; Barry, M.J.; Aronson, W.J.; Fox, S.; Gingrich, J.R.; Wei, J.T.; Gilhooly, P.; Grob, B.M.; et al. Radical prostatectomy versus observation for localized prostate cancer. N. Engl. J. Med. 2012, 367, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Wiegel, T.; Bartkowiak, D.; Bottke, D.; Bronner, C.; Steiner, U.; Siegmann, A.; Golz, R.; Störkel, S.; Willich, N.; Semjonow, A.; et al. Adjuvant radiotherapy versus wait-and-see after radical prostatectomy: 10-year follow-up of the ARO 96-02/AUO AP 09/95 trial. Eur. Urol. 2014, 66, 243–250. [Google Scholar] [CrossRef]
Parameter | BPH (n = 34) Median (Range) X ± SD | PCa Surgical (n = 35) Median (Range) X ± SD | PCa Palliative (n = 19) Median (Range) X ± SD |
---|---|---|---|
Age (years) | 70 (51–82) 68.2 ± 7.6 | 67 (53–82) 67.1 ± 5.9 | 68 (55–88) 68.3 ± 8.2 |
PSA (ng/mL) | 3.0 (0.2–14.0) 3.6 ± 2.9 | 8.0 (4.2–67.0) 11.1 a ± 11.7 | 24.0 (4.4–616.0) 93.0 a ± 146.0 |
Pvol (cm3) | 64.0 (20.0–100.0) 63.9 ± 21.2 | 41.0 (17.0–80.0) 45.4 a ± 17.0 | 43.0 (20.0–84.0) 45.3 b ± 19.4 |
Parameter | PCa Surgical Number of Patients (%) | PCa Palliative Number of Patients (%) |
---|---|---|
Gleason score | ||
1–6 | 15 (42.9%) | 5 (26.3%) |
7 | 14 (40.0%) | 5 (26.3%) |
8–10 | 6 (17.1%) | 9 (47.4%) |
Pathological stage | ||
T1a | 0 (0.0%) | 0 (0.0%) |
T1b | 0 (0.0%) | 0 (0.0%) |
T1c | 7 (20.0%) | 1 (5.3%) |
T2a | 7 (20.0%) | 0 (0.0%) |
T2b | 12 (34.3%) | 1 (5.3%) |
T2c | 6 (17.1%) | 11 (57.8%) |
T3a | 3 (8.6%) | 2 (10.5%) |
T3b | 0 (0%) | 1 (5.3%) |
T4 | 0 (0%) | 3 (15.8%) |
N0 | 35 (100.0%) | 10 (52.6%) |
N1 | 0 (0.0%) | 9 (47.4%) |
M0 | 35 (100.0%) | 0 (0.0%) |
M1a | 0 (0.0%) | 0 (0.0%) |
M1b | 0 (0.0%) | 19 (100%) |
M1c | 0 (0.0%) | 0 (0.0%) |
Parameter | PCa Surgical | PCa Palliative |
---|---|---|
Gleason score | rs = 0.885 p < 0.001 | rs = 0.839 p < 0.001 |
Pathological stage | rs = 0.086 p = 0.621 | rs = 0.203 p = 0.450 |
Range [% of Ki67-Positive Cells] | |||
---|---|---|---|
Gleason score | ≤6 | 7 | >7 |
PCa palliative | 4.77–7.53 | 7.60–9.86 | 9.14–24.12 |
PCa surgical and palliative | 1.87–7.53 | 2.50–9.86 | 4.11–24.12 |
Parameter | BPH Median (Range) X ± SD | PCa Surgical Median (Range) X ± SD | PCa Palliative Median (Range) X ± SD |
---|---|---|---|
CRP | 3.4 (0.4–16.7) 4.6 ± 4.2 | 6.6 (1.6–12.9) 6.8 b ± 3.4 | 9.2 (2.0–13.7) 9.1 a ± 3.7 |
P-selectins | 14.2 (0.9–22.9) 14.7 ± 3.9 | 13.7 (6.5–21.7) 13.9 ± 3.8 | 12.2 (7.4–18.9) 12.2 b ± 3.2 |
TNFα | 235.6 (37.3–1247.9) 383.1 ± 363.5 | 229.3 (0.7–721.5) 266.6 ± 164.9 | 278.6 (145.3–1663.9) 557.5 ± 552.0 |
TNFRI | 55.3 (49.3–514.3) 86.3 ± 114.8 | 51.3 (46.3–110.3) 57.0 ± 16.1 | 51.8 (48.3–59.3) 52.0 ± 3.1 |
TNFRII | 1337.4 (1100.3–2101.7) 1368.4 ± 240.4 | 1157.4 (806.0–1368.9) 1128.0 b,c ± 150.1 | 1485.3 (1101.7–1957.4) 1507.3 ± 248.4 |
Fas L | 0.11 (0.09–0.16) 0.12 ± 0.01 | 0.12 (0.11–0.29) 0.13 ± 0.04 | 0.11 (0.10–0.17) 0.12 ± 0.02 |
Parameter | BPH Median (Range) X ± SD | PCa Surgical Median (Range) X ± SD | PCa Palliative Median (Range) X ± SD |
---|---|---|---|
TRIAL | 110.86 (95.86–121.57) 180.89 ± 8.55 | 110.14 (83.00–1153.00) 160.25 ± 209.98 | 110.14 (87.29–240.14) 118.71 ± 37.99 |
Caspase 8 | 0.113 (0.105–0.123) 0.114 ± 0.005 | 0.109 a (0.105–0.119) 0.111 ± 0.004 | 0.112 (0.104–0.134) 0.114 ± 0.007 |
Caspase 9 | 5.48 (4.14–9.54) 6.07 ± 1.56 | 5.90 (4.46–47.94) 7.54 ± 8.45 | 5.96 (4.67–9.33) 6.37 ± 1.50 |
cfDNA | 828.0 (668.0–1564.0) 855.8 ± 180.2 | 864.5 (512.0–1248.0) 863.0 ± 131.0 | 787.0 (602.0–1450.0) 880.6 ± 275.3 |
met-DNA | 73.50 (61.77–79.74) 72.08 ± 5.22 | 69.23 (51.91–81.50) 69.09 ± 5.77 | 66.47 a (57.87–85.58) 67.73 ± 6.52 |
Parameter | BPH | PCa Surgical | PCa Palliative |
---|---|---|---|
Gleason score | - | rs = −0.099 p = 0.572 | rs = 0.402 p = 0.088 |
Pathological stage | - | rs = −0.194 p = 0.263 | rs = 0.101 p = 0.708 |
Ki67 | rs = 0.323 p = 0.062 | rs = −0.147 p = 0.398 | rs = 0.426 p = 0.069 |
PSA | rs = 0.140 p = 0.429 | rs = 0.089 p = 0.613 | rs = −0.020 p = 0.936 |
CRP | rs = −0.287 p = 0.100 | rs = 0.199 p = 0.274 | rs = −0.163 p = 0.578 |
P-selectins | rs = 0.204 p = 0.247 | rs = −0.021 p = 0.910 | rs = −0.163 p = 0.579 |
TNFα | rs = 0.515 p = 0.041 | rs = −0.056 p = 0.789 | rs = −0.336 p = 0.241 |
TNFRI | rs = −0.416 p = 0.108 | rs = 0.360 p = 0.077 | rs = −0.232 p = 0.424 |
TNFRII | rs = 0.305 p = 0.251 | rs = 0.126 p = 0.548 | rs = −0.445 p = 0.110 |
Fas L | rs = −0.048 p = 0.861 | rs = −0.165 p = 0.431 | rs = −0.267 p = 0.357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolny-Rokicka, E.I.; Grabowska, M. Ki67 and TNFRII as Potential Clinical Markers for Effective Clinical Staging of Advanced Prostate Cancer. Cancers 2025, 17, 2638. https://doi.org/10.3390/cancers17162638
Wolny-Rokicka EI, Grabowska M. Ki67 and TNFRII as Potential Clinical Markers for Effective Clinical Staging of Advanced Prostate Cancer. Cancers. 2025; 17(16):2638. https://doi.org/10.3390/cancers17162638
Chicago/Turabian StyleWolny-Rokicka, Edyta Idalia, and Marta Grabowska. 2025. "Ki67 and TNFRII as Potential Clinical Markers for Effective Clinical Staging of Advanced Prostate Cancer" Cancers 17, no. 16: 2638. https://doi.org/10.3390/cancers17162638
APA StyleWolny-Rokicka, E. I., & Grabowska, M. (2025). Ki67 and TNFRII as Potential Clinical Markers for Effective Clinical Staging of Advanced Prostate Cancer. Cancers, 17(16), 2638. https://doi.org/10.3390/cancers17162638