CT-Based Pericardial Composition Change as an Imaging Biomarker for Radiation-Induced Cardiotoxicity
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Data
2.2. Image Analysis
- Batch1: Both baseline and follow-up CTs without contrast enhancement;
- Batch2: Both baseline and follow-up CTs with contrast enhancement;
- Batch3: Baseline CT with and follow-up CT without contrast enhancement; and
- Batch4: Follow-up CT with and baseline CT without contrast enhancement.
3. Results
3.1. Registration
3.2. Data Harmonization
3.3. Biomarker 1: Volume Associated to an HU Change
3.4. Biomarker 2: Tissue Mass Change
3.5. Biomarker 3: Tissue Volume Change
3.6. Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computed tomography |
CVD | Cardiovascular diseases |
EQD2 | Equivalent Dose in 2 Gy fractions |
fx | fraction |
HU | Hounsfield unit |
ICD10 | International Classification of Diseases, 10th Revision |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RT | Radiotherapy |
Appendix A
Appendix B
Manufacturer | Machine—Reconstruction Kernel/Method |
---|---|
GE Medical Systems | Revolution Apex—Standard |
Revolution CT—Standard | |
Discovery LS—Standard | |
Revolution CT—STND# | |
Discovery MI—Standard | |
Discovery 710—Lung | |
Discovery 710—Standard | |
Philips | GEMINI TF TOF 64—C |
GEMINI TF TOF 64—B | |
GEMINI TF TOF 64—D | |
GEMINI TF TOF 64T—B | |
GEMINI TF TOF 16—B | |
Brilliance 16P—C | |
Brilliance 64—L | |
Brilliance 64—C | |
Brilliance 64—D | |
Brilliance 64—B | |
Brilliance 64—UB | |
Brilliance 64—YA | |
Precedence 16p—B | |
iCT 256—B | |
iCT 256—C | |
Mx8000 IDT 16—C | |
Iqon—Spectral CT—C | |
Toshiba | Aquilion—FC11 |
Aquilion—FC12 | |
Aquilion—FC50 | |
Aquilion—FC51 | |
Aquilion PRIME—FC56 | |
Aquilion PRIME—FC0B | |
Aquilion ONE—FC0B | |
Aquilion ONE—FC51 | |
Aquilion ONE—FC56 | |
Siemens | Biograph 40—B40f |
Biograph 40—B30f | |
Biograph 40—B19f | |
Biograph 40—B20f | |
Biograph 64—B40f | |
Biograph 64—[‘130f’,’3’] | |
Biograph 64—B30f | |
Biograph 64—B19f | |
Biograph 64—B70f | |
Sensation 16—B40f | |
Sensation 64—B30f | |
SOMATOM Definition—B60f | |
SOMATOM Definition Flash—B50f | |
SOMATOM Definition Flash—[‘j70h’,’3’] | |
SOMATOM Definition Flash—[‘170f’,’3’] | |
SOMATOM Definition Flash—[‘130f’,’2’] | |
SOMATOM Definition Edge—[‘170f’,’3’] | |
SOMATOM Definition Edge—B40f | |
SOMATOM Force—[‘Bv40d’,’3’] | |
SOMATOM Force—[‘Qr40d’,’3’] | |
SOMATOM Definition AS—B30f |
Appendix C
Appendix D
Appendix E
Covariate | p Value | HR (95% Confidence Interval) | Median Survival Months |
---|---|---|---|
Mean pericardium dose | 0.0207 | 0.751 (0.583–0.969) | (≤mean) = 36.7 (>mean) = 26.6 |
Mean heart dose | 0.0206 | 0.745 (0.571–0.971) | (≤mean) = 35.4 (>mean) = 26.7 |
Baseline—follow-up mass change in Fat HU range (%) | 0.023 | 1.32 (1.04–1.67) | (≤mean) = 28.0 (>mean) = 36.7 |
Baseline—follow-up volume change in Fluid HU range (%) | 0.0424 | 1.3 (0.994–1.7) | (≤0) = 28.3 (>0) = 36.0 |
Baseline—follow-up volume change in Heme HU range (%) | 0.0101 | 1.38 (1.06–1.8) | (≤0) = 26.9 (>0) = 36.7 |
Baseline—follow-up volume change in Fibrous HU range (%) | 0.0242 | 0.76 (0.598–0.965) | (≤mean) = 39.7 (>mean) = 28.6 |
Pre-RT CVD events (yes = 1) | 0.0056 | 0.673 (0.488–0.926) | (≤0) = 36.7 (>0) = 24.1 |
Number of CVD events before the end of RT | 0.0056 | 0.673 (0.488–0.926) | (≤0) = 36.7 (>0) = 24.1 |
Patient sex (female = 1) | 0.00472 | 1.41 (1.1–1.8) | (≤0) = 26.7333 (>0) = 41.4667 |
Post-RT CVD events (yes = 1) | 0.168 | 1.68 (0.932–3.03) | (≤0) = 31.4 (>0) = 69.1 |
Number of CVD events after the end of RT | 0.168 | 1.68 (0.932–3.03) | (≤0) = 31.4 (>0) = 69.1 |
Covariate | p Value | HR (95% Confidence Interval) | Median Months to Post-RT CVD |
---|---|---|---|
Baseline—follow-up mass change in Fluid HU range (%) | 0.0027 | 11 (0.0217–5.58 × 103) | (≤mean) = 8.7 (>mean) = 38.0 |
Baseline—follow-up mass change in Heme HU range (%) | 0.0027 | 11 (0.0217–5.58 × 103) | (≤mean) = 8.7 (>mean) = 38.0 |
Baseline—follow-up mass change in Fibrous HU range (%) | 0.139 | 2.82 (0.292–27.1) | (≤mean) = 16.7 (>mean) = 38.0 |
Skewness in HU-change histogram for the heart | 0.0197 | 0.296 (0.0675–1.29) | (≤mean) = 48.4 (>mean) = 22.3 |
Mean in HU-change histogram for pericardium | 0.0544 | 2.89 (0.591–14.2) | (≤median) = 16.7 (>median) = 41.5 |
References
- Aboumsallem, J.P.; Moslehi, J.; De Boer, R.A. Reverse Cardio-Oncology: Cancer Development in Patients With Cardiovascular Disease. J. Am. Heart Assoc. 2020, 9, e013754. [Google Scholar] [CrossRef] [PubMed]
- Belzile-Dugas, E.; Eisenberg, M.J. Radiation-Induced Cardiovascular Disease: Review of an Underrecognized Pathology. J. Am. Heart Assoc. 2021, 10, e021686. [Google Scholar] [CrossRef] [PubMed]
- Koelwyn, G.J.; Aboumsallem, J.P.; Moore, K.J.; De Boer, R.A. Reverse cardio-oncology: Exploring the effects of cardiovascular disease on cancer pathogenesis. J. Mol. Cell. Cardiol. 2022, 163, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pouvreau, P.; Taleb, I.; Fontaine, A.; Edouard, L.; Gibson, N.; Yaouanq, M.; Boudoussier, A.; Petit, A.; Vinh-Hung, V.; Sargos, P.; et al. Heart is a heavy burden: Cardiac toxicity in radiation oncology. Support. Care Cancer 2024, 32, 769. [Google Scholar] [CrossRef]
- Stoltzfus, K.C.; Zhang, Y.; Sturgeon, K.; Sinoway, L.I.; Trifiletti, D.M.; Chinchilli, V.M.; Zaorsky, N.G. Fatal heart disease among cancer patients. Nat. Commun. 2020, 11, 2011. [Google Scholar] [CrossRef]
- Logotheti, S.; Pavlopoulou, A.; Rudsari, H.K.; Galow, A.-M.; Kafalı, Y.; Kyrodimos, E.; Giotakis, A.I.; Marquardt, S.; Velalopoulou, A.; Verginadis, I.I.; et al. Intercellular pathways of cancer treatment-related cardiotoxicity and their therapeutic implications: The paradigm of radiotherapy. Pharmacol. Ther. 2024, 260, 108670. [Google Scholar] [CrossRef]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Brønnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef]
- Lancellotti, P.; Nkomo, V.T.; Badano, L.P.; Bergler-Klein, J.; Bogaert, J.; Davin, L.; Cosyns, B.; Coucke, P.; Dulgheru, R.; Edvardsen, T.; et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: A report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J.-Cardiovasc. Imaging 2013, 14, 721–740. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; De Marco, G.; Natale, G.; Patanè, V.; De Chiara, M.; Buono, M.; Russo, G.M.; Monti, R.; Balestrucci, G.; et al. Role of Cardiac Biomarkers in Non-Small Cell Lung Cancer Patients. Diagnostics 2023, 13, 400. [Google Scholar] [CrossRef]
- Velusamy, R.; Nolan, M.; Murphy, A.; Thavendiranathan, P.; Marwick, T.H. Screening for Coronary Artery Disease in Cancer Survivors. JACC CardioOncol. 2023, 5, 22–38. [Google Scholar] [CrossRef]
- Abravan, A.; Faivre-Finn, C.; Gomes, F.; Van Herk, M.; Price, G. Comorbidity in patients with cancer treated at The Christie. Br. J. Cancer 2024, 131, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, E.; Zhang, S.; Zakariaee, R.; Guthier, C.V.; Hakimian, B.; Mirhadi, A.; Kamrava, M.; Padda, S.K.; Lewis, J.H.; Nikolova, A.; et al. Left Anterior Descending Coronary Artery Radiation Dose Association With All-Cause Mortality in NRG Oncology Trial RTOG 0617. Int. J. Radiat. Oncol. 2023, 115, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, J.; Yegya-Raman, N.; Kegelman, T.P.; Kallan, M.J.; Roshkovan, L.; Katz, S.; Ky, B.; Fradley, M.; Xiao, Y.; Lee, S.H.; et al. Cardiovascular Substructure Dose and Cardiac Events following Proton- and Photon-Based Chemoradiotherapy for Non-Small Cell Lung Cancer. Adv. Radiat. Oncol. 2023, 8, 101235. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Reddy, Y.N.V. The Role of the Pericardium in Heart Failure. JACC Heart Fail. 2019, 7, 574–585. [Google Scholar] [CrossRef]
- Klein, A.L.; Ming Wang, T.K.; Reyaldeen, R. Mortality and the Pericardial Sac: Are We Only Scratching the Surface? J. Am. Coll. Cardiol. 2020, 76, 2632–2634. [Google Scholar] [CrossRef]
- Lorenzo-Esteller, L.; Ramos-Polo, R.; Pons Riverola, A.; Morillas, H.; Berdejo, J.; Pernas, S.; Pomares, H.; Asiain, L.; Garay, A.; Martínez Pérez, E.; et al. Pericardial Disease in Patients with Cancer: Clinical Insights on Diagnosis and Treatment. Cancers 2024, 16, 3466. [Google Scholar] [CrossRef]
- Mori, S.; Bertamino, M.; Guerisoli, L.; Stratoti, S.; Canale, C.; Spallarossa, P.; Porto, I.; Ameri, P. Pericardial effusion in oncological patients: Current knowledge and principles of management. Cardio-Oncol. 2024, 10, 8. [Google Scholar] [CrossRef]
- Sigvardt, F.L.; Hansen, M.L.; Kristensen, S.L.; Gustafsson, F.; Ghanizada, M.; Schou, M.; Køber, L.; Torp-Pedersen, C.; Gislason, G.H.; Madelaire, C. Risk Factors for Morbidity and Mortality Following Hospitalization for Pericarditis. J. Am. Coll. Cardiol. 2020, 76, 2623–2631. [Google Scholar] [CrossRef]
- Søgaard, K.K.; Farkas, D.K.; Ehrenstein, V.; Bhaskaran, K.; Bøtker, H.E.; Sørensen, H.T. Pericarditis as a Marker of Occult Cancer and a Prognostic Factor for Cancer Mortality. Circulation 2017, 136, 996–1006. [Google Scholar] [CrossRef]
- Thor, M.; Deasy, J.O.; Hu, C.; Gore, E.; Bar-Ad, V.; Robinson, C.; Wheatley, M.; Oh, J.H.; Bogart, J.; Garces, Y.I.; et al. Modeling the Impact of Cardiopulmonary Irradiation on Overall Survival in NRG Oncology Trial RTOG 0617. Clin. Cancer Res. 2020, 26, 4643–4650. [Google Scholar] [CrossRef]
- Xue, J.; Han, C.; Jackson, A.; Hu, C.; Yao, H.; Wang, W.; Hayman, J.; Chen, W.; Jin, J.; Kalemkerian, G.P.; et al. Doses of radiation to the pericardium, instead of heart, are significant for survival in patients with non-small cell lung cancer. Radiother. Oncol. 2019, 133, 213–219. [Google Scholar] [CrossRef]
- Chang, L.-K.; Kuo, Y.-W.; Wu, S.-G.; Chung, K.-P.; Shih, J.-Y. Recurrence of pericardial effusion after different procedure modalities in patients with non-small-cell lung cancer. ESMO Open 2022, 7, 100354. [Google Scholar] [CrossRef]
- Wang, K.; Eblan, M.J.; Deal, A.M.; Lipner, M.; Zagar, T.M.; Wang, Y.; Mavroidis, P.; Lee, C.B.; Jensen, B.C.; Rosenman, J.G.; et al. Cardiac Toxicity After Radiotherapy for Stage III Non–Small-Cell Lung Cancer: Pooled Analysis of Dose-Escalation Trials Delivering 70 to 90 Gy. J. Clin. Oncol. 2017, 35, 1387–1394. [Google Scholar] [CrossRef]
- Heine, M.; Agrawal, A.; Wensink, E.; Wang, T.K.M.; Klein, A. The Role of the Advanced Practice Provider in a Pericardial Center of Excellence. Curr. Cardiol. Rep. 2025, 27, 69. [Google Scholar] [CrossRef]
- Kivity, S.; Baran, T.Z.; Reuveni, M.M.; Irony, A.; Adler, L.; Alder, Y.; Parikh, R.; Kivity, S. The Longitudinal Incidence of Pericarditis in 1.6 Million Patients: A 20-Year Study. Am. J. Cardiol. 2024, 223, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.L.; Wang, T.K.M.; Cremer, P.C.; Abbate, A.; Adler, Y.; Asher, C.; Brucato, A.; Chetrit, M.; Hoit, B.; Jellis, C.L.; et al. Pericardial Diseases. JACC Cardiovasc. Imaging 2024, 17, 937–988. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, S.M.; Williams, P.L.; Williams, M.P.; Edwards, A.J.; Roobottom, C.A.; Morgan-Hughes, G.J.; Manghat, N.E. Imaging the pericardium: Appearances on ECG-gated 64-detector row cardiac computed tomography. Br. J. Radiol. 2010, 83, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Szpakowski, N.; Desai, M.Y. Radiation-Associated Pericardial Disease. Curr. Cardiol. Rep. 2019, 21, 97. [Google Scholar] [CrossRef]
- Tarsitano, M.G.; Pandozzi, C.; Muscogiuri, G.; Sironi, S.; Pujia, A.; Lenzi, A.; Giannetta, E. Epicardial Adipose Tissue: A Novel Potential Imaging Marker of Comorbidities Caused by Chronic Inflammation. Nutrients 2022, 14, 2926. [Google Scholar] [CrossRef]
- Marandi, R. PERSIMUNE Health Informatics. Available online: https://github.com/PERSIMUNE (accessed on 1 July 2025).
- Keszei, A.P.; Berkels, B.; Deserno, T.M. Survey of Non-Rigid Registration Tools in Medicine. J. Digit. Imaging 2017, 30, 102–116. [Google Scholar] [CrossRef]
- Smith, A.G.; Han, E.; Petersen, J.; Olsen, N.A.F.; Giese, C.; Athmann, M.; Dresbøll, D.B.; Thorup-Kristensen, K. RootPainter: Deep learning segmentation of biological images with corrective annotation. New Phytol. 2022, 236, 774–791. [Google Scholar] [CrossRef] [PubMed]
- Wasserthal, J.; Breit, H.-C.; Meyer, M.T.; Pradella, M.; Hinck, D.; Sauter, A.W.; Heye, T.; Boll, D.T.; Cyriac, J.; Yang, S.; et al. TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol. Artif. Intell. 2023, 5, e230024. [Google Scholar] [CrossRef] [PubMed]
- Orlhac, F.; Eertink, J.J.; Cottereau, A.-S.; Zijlstra, J.M.; Thieblemont, C.; Meignan, M.; Boellaard, R.; Buvat, I. A Guide to ComBat Harmonization of Imaging Biomarkers in Multicenter Studies. J. Nucl. Med. 2022, 63, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, L.; Rajiah, P.; Ahn, R.; Rassouli, N.; Xi, Y.; Soesbe, T.C.; Lewis, M.A.; Lenkinski, R.E.; Leyendecker, J.R.; Abbara, S. Spectral detector CT-derived virtual non-contrast images: Comparison of attenuation values with unenhanced CT. Abdom. Radiol. 2017, 42, 702–709. [Google Scholar] [CrossRef]
- Cetin, M.S. Effectiveness of computed tomography attenuation values in characterization of pericardial effusion. Anatol. J. Cardiol. 2017, 17, 322–327. [Google Scholar] [CrossRef]
- Haseltine, J.M.; Apte, A.; Jackson, A.; Yorke, E.; Yu, A.F.; Plodkowski, A.; Wu, A.; Peleg, A.; Al-Sadawi, M.; Iocolano, M.; et al. Association of cardiac calcium burden with overall survival after radiotherapy for non-small cell lung cancer. Phys. Imaging Radiat. Oncol. 2023, 25, 100410. [Google Scholar] [CrossRef]
- Hoey, E.T.D.; Shahid, M.; Watkin, R.W. Computed tomography and magnetic resonance imaging evaluation of pericardial disease. Quant. Imaging Med. Surg. 2016, 6, 274–284. [Google Scholar] [CrossRef]
- Wang, K.; Malkin, H.E.; Patchett, N.D.; Pearlstein, K.A.; Heiling, H.M.; McCabe, S.D.; Deal, A.M.; Mavroidis, P.; Oakey, M.; Fenoli, J.; et al. Coronary Artery Calcifications and Cardiac Risk After Radiation Therapy for Stage III Lung Cancer. Int. J. Radiat. Oncol. 2022, 112, 188–196. [Google Scholar] [CrossRef]
- Carlsson, M.; Cain, P.; Holmqvist, C.; Stahlberg, F.; Lundback, S.; Arheden, H. Total heart volume variation throughout the cardiac cycle in humans. Am. J. Physiol.-Heart Circ. Physiol. 2004, 287, H243–H250. [Google Scholar] [CrossRef]
- Carlsson, M.; Rosengren, A.; Ugander, M.; Ekelund, U.; Cain, P.A.; Arheden, H. Center of volume and total heart volume variation in healthy subjects and patients before and after coronary bypass surgery. Clin. Physiol. Funct. Imaging 2005, 25, 226–233. [Google Scholar] [CrossRef]
- Smooth Noisy Data in MATLAB. Available online: https://www.mathworks.com/help/matlab/ref/smoothdata.html (accessed on 10 June 2025).
- Creed, J.; Gerke, T.; Berglund, A. MatSurv: Survival analysis and visualization in MATLAB. J. Open Source Softw. 2020, 5, 1830. [Google Scholar] [CrossRef]
- Dhore-Patil, A.; Urina-Jassir, D.; Samson, R.; Le Jemtel, T.H.; Oparil, S. Epicardial Adipose Tissue Thickness and Preserved Ejection Fraction Heart Failure. Curr. Hypertens. Rep. 2024, 26, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Hussain, K.; Shlofmitz, E. Pericardial Calcification. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK538342/ (accessed on 6 May 2025).
- Ling, L.H.; Oh, J.K.; Breen, J.F.; Schaff, H.V.; Danielson, G.K.; Mahoney, D.W.; Seward, J.B.; Tajik, A.J. Calcific Constrictive Pericarditis: Is It Still with Us? Ann. Intern. Med. 2000, 132, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Shimony, A.; Fox, B.D.; Langleben, D.; Rudski, L.G. Incidence and Significance of Pericardial Effusion in Patients With Pulmonary Arterial Hypertension. Can. J. Cardiol. 2013, 29, 678–682. [Google Scholar] [CrossRef]
- Welch, T.D. Constrictive pericarditis: Diagnosis, management and clinical outcomes. Heart 2018, 104, 725–731. [Google Scholar] [CrossRef]
- Yeneneh, B.T.; Allen, S.; Panse, P.; Mookadam, F.; Rule, W. Constrictive Pericarditis 5 Months after Radiation Therapy in a 62-Year-Old Woman with Esophageal Cancer. Tex. Heart Inst. J. 2017, 44, 411–415. [Google Scholar] [CrossRef]
- Vemireddy, L.P.; Jain, N.; Aqeel, A.; Jeelani, H.M.; Shayuk, M. Lung Adenocarcinoma Presenting as Malignant Pericardial Effusion/Tamponade. Cureus 2021, 13, e13762. [Google Scholar] [CrossRef]
- Milevoj Kopcinovic, L.; Culej, J. Pleural, peritoneal and pericardial effusions—A biochemical approach. Biochem. Medica 2014, 24, 123–137. [Google Scholar] [CrossRef]
- Nardi-Agmon, I.; Zer, A.; Peysakhovich, Y.; Margalit, I.; Kornowski, R.; Peled, N.; Iakobishvili, Z. Development of Pericardial Effusion in Non-small Cell Lung Cancer Is Associated with the Presence of EGFR/ALK Mutations. Isr. Med. Assoc. J. IMAJ 2022, 24, 135–139. [Google Scholar]
- de Jesus, M.; Chanda, A.; Grabauskas, T.; Kumar, M.; Kim, A.S. Cardiovascular disease and lung cancer. Front. Oncol. 2024, 14, 1258991. [Google Scholar] [CrossRef]
- Forbes, N.; Terrones-Campos, C.; Smith, A.; Reekie, J.; Darkner, S.; Maraldo, M.; Pøhl, M.; Risumlund, S.; Specht, L.; Bentzen, S.M.; et al. Cardiac dose-volume analysis of 9,411 patients with registry data for cardiovascular disease and overall survival. medRxiv 2024. [Google Scholar] [CrossRef]
- Walls, G.M.; Bergom, C.; Mitchell, J.D.; Rentschler, S.L.; Hugo, G.D.; Samson, P.P.; Robinson, C.G. Cardiotoxicity following thoracic radiotherapy for lung cancer. Br. J. Cancer 2025, 132, 311–325. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Yang, J.; Zhang, S.; Zhang, P.; Yang, Y. Lung cancer and risk of cardiovascular mortality. Front. Cardiovasc. Med. 2025, 11, 1491912. [Google Scholar] [CrossRef]
- Roberts, W.C. Pericardial heart disease: Its morphologic features and its causes. Proc. Bayl. Univ. Med. Cent. 2005, 18, 38–55. [Google Scholar] [CrossRef]
Characteristic | n | Characteristic | n | Characteristic | n |
---|---|---|---|---|---|
Sex | Mean heart dose | Patients with | |||
Female | 266 | >10 Gy | 68 | History of RT for other primary cancers 3 | 0 |
Male | 210 | <1 Gy | 188 | History of previous primary cancers | 178 |
Age at treatment 1 | Max heart dose 2 | Pre-RT cardiovascular diseases | 91 | ||
≥65 | 381 | >15 Gy | 292 | Post-RT cardiovascular diseases | 11 |
Diagnosis | Mean pericardium dose | Survival ≤2 years post-RT | 171 | ||
SCLC | 63 | >10 Gy | 87 | Survival >5 years post-RT | 28 |
NSCLC | 413 | <1 Gy | 159 | Image contrast enhancement | |
RT fractions | Contrast enhanced baseline CTs | 260 | |||
≤8 | 183 | Contrast enhanced follow-up CTs | 426 |
Tissue Composition/s | HU Range | Label |
---|---|---|
Calcification, calcified constrictive tissue, malignancy | HU ≥ 130 | Calcification |
Fibrosis, constrictive tissue, adjacent myocardial tissue | 129 ≥ HU ≥ 65 | Fibrous |
Normal pericardium, thickened pericardium, hemopericardium | 64 ≥ HU ≥ 13 | Heme |
Effusion, normal fluid | 12 ≥ HU ≥ −5 | Fluid |
Fat (including normal fatty tissue) | HU ≤ −6 | Fat |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modiri, A.; Vogelius, I.R.; Campos, C.T.; Kutnar, D.; Jeudy, J.; Pohl, M.; Dickfeld, T.-M.L.; Bentzen, S.M.; Sawant, A.; Petersen, J. CT-Based Pericardial Composition Change as an Imaging Biomarker for Radiation-Induced Cardiotoxicity. Cancers 2025, 17, 2635. https://doi.org/10.3390/cancers17162635
Modiri A, Vogelius IR, Campos CT, Kutnar D, Jeudy J, Pohl M, Dickfeld T-ML, Bentzen SM, Sawant A, Petersen J. CT-Based Pericardial Composition Change as an Imaging Biomarker for Radiation-Induced Cardiotoxicity. Cancers. 2025; 17(16):2635. https://doi.org/10.3390/cancers17162635
Chicago/Turabian StyleModiri, Arezoo, Ivan R. Vogelius, Cynthia Terrones Campos, Denis Kutnar, Jean Jeudy, Mette Pohl, Timm-Michael L. Dickfeld, Soren M. Bentzen, Amit Sawant, and Jens Petersen. 2025. "CT-Based Pericardial Composition Change as an Imaging Biomarker for Radiation-Induced Cardiotoxicity" Cancers 17, no. 16: 2635. https://doi.org/10.3390/cancers17162635
APA StyleModiri, A., Vogelius, I. R., Campos, C. T., Kutnar, D., Jeudy, J., Pohl, M., Dickfeld, T.-M. L., Bentzen, S. M., Sawant, A., & Petersen, J. (2025). CT-Based Pericardial Composition Change as an Imaging Biomarker for Radiation-Induced Cardiotoxicity. Cancers, 17(16), 2635. https://doi.org/10.3390/cancers17162635