Diagnostic System for Early In Situ Melanoma Detection Using Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging
Simple Summary
Abstract
1. Introduction
2. Diagnostic System
2.1. Acoustic Microscopy
2.2. Infrared Spectroscopic Mapping Imaging
2.3. Data Processing
- Randomly initialize the degrees of membership, , such that .
- Determine the cluster centroids, , using the equation
- Calculate the Euclidean distance, , of each data vector from each cluster centroid. Update the degree of membership of each data vector to each cluster, using the equation
- Go to the second step unless a predefined number of iterations have been reached or the change in the value of is negligible.
3. Application of the Combined Use of Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging to the Investigation of Melanoma
3.1. Experimental Animal Model of Human Melanoma
3.2. Application of the Diagnostic Modalities
3.3. System Evaluation and Results
3.3.1. Histological Results
3.3.2. Acoustic Microscopy Results
3.3.3. IR Spectroscopic Mapping Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Bolick, N.L.; Geller, A.C. Epidemiology of Melanoma. Hematol. Clin. N. Am. 2021, 35, 57–72. [Google Scholar] [CrossRef]
- Ahmed, B.; Qadir, M.I.; Ghafoor, S. Malignant Melanoma: Skin Cancer—Diagnosis, Prevention, and Treatment. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 291–297. [Google Scholar] [CrossRef]
- Tímár, J.; Ladányi, A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int. J. Mol. Sci. 2022, 23, 5384. [Google Scholar] [CrossRef]
- Catalano, O.; Corvino, A. Ultrasound of skin cancer: What we need to know. In Seminars in Ultrasound, CT and MRI; WB Saunders: Philadelphia, PA, USA, 2023. [Google Scholar] [CrossRef]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Linos, E.; Swetter, S.M.; Cockburn, M.G.; Colditz, G.A.; Clarke, C.A. Increasing burden of melanoma in the United States. J. Investig. Dermatol. 2009, 129, 1666–1674. [Google Scholar] [CrossRef]
- Rigel, D.S. Epidemiology of melanoma. In Seminars in Cutaneous Medicine and Surgery; WB Saunders: Philadelphia, PA, USA, 2010; Volume 29, pp. 204–209. [Google Scholar]
- Zaharna, M.; Brodell, R.T. It’s time for a “change” in our approach to early detection of malignant melanoma. Clin. Dermatol. 2003, 21, 456–458. [Google Scholar] [CrossRef]
- Ruocco, E.; Argenziano, G.; Pellacani, G.; Seidenari, S. Noninvasive imaging of skin tumors. Dermatol. Surg. 2004, 30, 301–310. [Google Scholar] [PubMed]
- Foster, F.S.; Lockwood, G.; Ryan, L.; Harasiewicz, K.; Berube, L.; Rauth, A. Principles and applications of ultrasound backscatter microscopy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1993, 40, 608–617. [Google Scholar] [CrossRef]
- Semple, J.L.; Gupta, A.K.; From, L.; Harasiewicz, K.A.; Sauder, D.N.; Foster, F.S.; Turnbull, D.H. Does High-Frequency (40–60 MHz) Ultrasound Imaging Play a Role in the Clinical Management of Cutaneous Melanoma? Ann. Plast. Surg. 1995, 34, 599–606. [Google Scholar] [CrossRef]
- Passmann, C.; Ermert, H. A 100-MHz ultrasound imaging system for dermatologic and ophthalmologic diagnostics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 545–552. [Google Scholar] [CrossRef]
- El Gammal, S.; El Gammal, C.; Kaspar, K.; Pieck, C.; Altmeyer, P.; Vogt, M.; Ermert, H. Sonography of the Skin at 100 MHz Enables In Vivo Visualization of Stratum Corneum and Viable Epidermis in Palmar Skin and Psoriatic Plaquesy1. J. Investig. Dermatol. 1999, 113, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Knspik, D.; Starkoski, B.; Pavlin, C.J.; Foster, F.S. A 100–200 MHz ultrasound biomicroscope. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 1540–1549. [Google Scholar] [CrossRef] [PubMed]
- Strohm, E.M.; Kolios, M.C. Measuring the mechanical properties of cells using acoustic microscopy. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, Minneapolis, MN, USA, 3–6 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 6042–6045. [Google Scholar]
- Oh, J.T.; Li, M.L.; Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J. Biomed. Opt. 2006, 11, 034032. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851. [Google Scholar] [CrossRef]
- Ntziachristos, V.; Razansky, D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 2010, 110, 2783–2794. [Google Scholar] [CrossRef]
- McCormack, D.R.; Bhattacharyya, K.; Kannan, R.; Katti, K.; Viator, J.A. Enhanced photoacoustic detection of melanoma cells using gold nanoparticles. Lasers Surg. Med. 2011, 43, 333–338. [Google Scholar] [CrossRef]
- Youssef, S.; Seviaryna, I.; Shum, D.; Maeva, E.; Malyarenko, E.; Rahman, N.; Maev, R.G. High-resolution quantitative acoustic microscopy of cutaneous carcinoma and melanoma: Comparison with histology. Ski. Res. Technol. 2019, 25, 662–671. [Google Scholar] [CrossRef]
- Fedorov Kukk, A.; Wu, D.; Gaffal, E.; Panzer, R.; Emmert, S.; Roth, B. Multimodal system for optical biopsy of melanoma with integrated ultrasound, optical coherence tomography and Raman spectroscopy. J. Biophotonics 2022, 15, e202200129. [Google Scholar] [CrossRef]
- Kratkiewicz, K.; Manwar, R.; Rajabi-Estarabadi, A.; Fakhoury, J.; Meiliute, J.; Daveluy, S.; Mehregan, D.; Avanaki, K.M. Photoacoustic/Ultrasound/Optical Coherence Tomography Evaluation of Melanoma Lesion and Healthy Skin in a Swine Model. Sensors 2019, 19, 2815. [Google Scholar] [CrossRef]
- Kukk, A.F.; Wu, D.; Gaffal, E.; Panzer, R.; Emmert, S.; Roth, B. Multimodal imaging system with ultrasound, photoacoustics, and optical coherence tomography for optical biopsy of melanoma. In Multimodal Biomedical Imaging XVIII; Azar, F.S., Intes, X., Fang, Q., Eds.; SPIE International Society for Optics and Photonics: Bellingham, WA, USA, 2023; Volume 12371, p. 1237107. [Google Scholar] [CrossRef]
- Karagiannis, T.; Athanassopoulos, E.; Amanatiadis, S.; Karagiannis, G.T. Design and operation analysis of a fabricated spectracoustic probe for tissue classification in microscopic level. In Multiscale Imaging and Spectroscopy II; Campagnola, P.J., Maitland, K.C., Roblyer, D.M., Eds.; SPIE International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11622. [Google Scholar] [CrossRef]
- Bezugly, A.; Rembielak, A. The use of high frequency skin ultrasound in non-melanoma skin cancer. J. Contemp. Brachytherapy 2021, 13, 483–491. [Google Scholar] [CrossRef]
- Belfiore, M.P.; Reginelli, A.; Russo, A.; Russo, G.M.; Rocco, M.P.; Moscarella, E.; Ferrante, M.; Sica, A.; Grassi, R.; Cappabianca, S. Usefulness of High-Frequency Ultrasonography in the Diagnosis of Melanoma: Mini Review. Front. Oncol. 2021, 11, 673026. [Google Scholar] [CrossRef]
- Wang, C.; Guo, L.; Wang, G.; Ye, T.; Wang, B.; Xiao, J.; Liu, X. In-vivo imaging of melanoma with simultaneous dual-wavelength acoustic-resolution-based photoacoustic/ultrasound microscopy. Appl. Opt. 2021, 60, 3772–3778. [Google Scholar] [CrossRef] [PubMed]
- Kukk, A.F.; Scheling, F.; Panzer, R.; Emmert, S.; Roth, B. Non-invasive 3D imaging of human melanocytic lesions by combined ultrasound and photoacoustic tomography: A pilot study. Sci. Rep. 2024, 14, 2768. [Google Scholar] [CrossRef] [PubMed]
- Kukk, A.F.; Scheling, F.; Panzer, R.; Emmert, S.; Roth, B. Combined ultrasound and photoacoustic C-mode imaging system for skin lesion assessment. Sci. Rep. 2023, 13, 17947. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, B.C.; Lee, B.C.; Seo, Y.C.; Kim, J.H.; Kim, D.J.; Lee, H.J.; Moon, H.; Lee, S. Drug delivery by sonosensitive liposome and microbubble with acoustic-lens attached ultrasound: An in vivo feasibility study in a murine melanoma model. Sci. Rep. 2023, 13, 15798. [Google Scholar] [CrossRef]
- Zhang, F.; Niu, G.; Lu, G.; Chen, X. Preclinical lymphatic imaging. Mol. Imaging Biol. 2011, 13, 599–612. [Google Scholar] [CrossRef]
- Lavarello, R.J.; Ridgway, W.R.; Sarwate, S.S.; Oelzeb, M.L. Characterization of thyroid cancer in mouse models using high-frequency quantitative ultrasound techniques. Ultrasound Med. Biol. 2013, 39, 2333–2341. [Google Scholar] [CrossRef]
- Li, L.; Mori, S.; Sakamoto, M.; Takahashi, S.; Kodama, T. Mouse model of lymph node metastasis via afferent lymphatic vessels for development of imaging modalities. PLoS ONE 2013, 8, e55797. [Google Scholar] [CrossRef]
- Liu, Q. Role of optical spectroscopy using endogenous contrasts in clinical cancer diagnosis. World J. Clin. Oncol. 2011, 2, 50. [Google Scholar] [CrossRef]
- Zonios, G.; Dimou, A.; Bassukas, I.; Galaris, D.; Tsolakidis, A.; Kaxiras, E. Melanin absorption spectroscopy: New method for noninvasive skin investigation and melanoma detection. J. Biomed. Opt. 2008, 13, 014017. [Google Scholar] [CrossRef]
- Bodén, I.; Nilsson, D.; Naredi, P.; Lindholm-Sethson, B. Characterization of healthy skin using near infrared spectroscopy and skin impedance. Med. Biol. Eng. Comput. 2008, 46, 985–995. [Google Scholar] [CrossRef]
- AŠAmar, O.M.; Bigio, I.J. Spectroscopy for the Assessment of Melanomas. In Reviews in Fluorescence 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 359–386. [Google Scholar]
- Sigurdsson, S.; Philipsen, P.A.; Hansen, L.K.; Larsen, J.; Gniadecka, M.; Wulf, H.C. Detection of skin cancer by classification of Raman spectra. IEEE Trans. Biomed. Eng. 2004, 51, 1784–1793. [Google Scholar] [CrossRef]
- Ly, E.; Cardot-Leccia, N.; Ortonne, J.P.; Benchetrit, M.; Michiels, J.F.; Manfait, M.; Piot, O. Histopathological characterization of primary cutaneous melanoma using infrared microimaging: A proof-of-concept study. Br. J. Dermatol. 2010, 162, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- D Pallua, J.; Pezzei, C.; Schaefer, G.; Zelger, B.; Brunner, A.; Kloss-Brandstaetter, A.; Kloss, F.; Klocker, H.; Bartsch, G.; A Huck-Pezzei, V.; et al. Advanced vibrational spectroscopic imaging of human tissue in life science. Curr. Proteom. 2012, 9, 132–142. [Google Scholar] [CrossRef]
- Çetingül, M.P.; Herman, C. The assessment of melanoma risk using the dynamic infrared imaging technique. J. Therm. Sci. Eng. Appl. 2011, 3, 031006. [Google Scholar] [CrossRef]
- Stępień, E.; Kamińska, A.; Surman, M.; Karbowska, D.; Wróbel, A.; Przybyło, M. Fourier-Transform InfraRed (FT-IR) spectroscopy to show alterations in molecular composition of EV subpopulations from melanoma cell lines in different malignancy. Biochem. Biophys. Rep. 2021, 25, 100888. [Google Scholar] [CrossRef]
- Kyriakidou, M.; Anastassopoulou, J.; Tsakiris, A.; Koui, M.; Theophanides, T. FT-IR Spectroscopy Study in Early Diagnosis of Skin Cancer. In Vivo 2017, 31, 1131–1137. [Google Scholar] [CrossRef]
- Shakya, B.R.; Teppo, H.R.; Rieppo, L. Discrimination of melanoma cell lines with Fourier Transform Infrared (FTIR) spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 254, 119665. [Google Scholar] [CrossRef]
- Shakya, B.R.; Teppo, H.R.; Rieppo, L. Optimization of measurement mode and sample processing for FTIR microspectroscopy in skin cancer research. Analyst 2022, 147, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Srisongkram, T.; Weerapreeyakul, N.; Thumanu, K. Evaluation of Melanoma (SK-MEL-2) Cell Growth between Three-Dimensional (3D) and Two-Dimensional (2D) Cell Cultures with Fourier Transform Infrared (FTIR) Microspectroscopy. Int. J. Mol. Sci. 2020, 21, 4141. [Google Scholar] [CrossRef] [PubMed]
- Khristoforova, Y.; Bratchenko, L.; Bratchenko, I. Raman-Based Techniques in Medical Applications for Diagnostic Tasks: A Review. Int. J. Mol. Sci. 2023, 24, 15605. [Google Scholar] [CrossRef]
- Maziak, D.E.; Do, M.T.; Shamji, F.M.; Sundaresan, S.R.; Perkins, D.G.; Wong, P.T. Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: An exploratory study. Cancer Detect. Prev. 2007, 31, 244–253. [Google Scholar] [CrossRef]
- Patel, J.K.; Konda, S.; Perez, O.A.; Amini, S.; Elgart, G.; Berman, B. Newer technologies/techniques and tools in the diagnosis of melanoma. Eur. J. Dermatol. 2008, 18, 617–631. [Google Scholar]
- Harland, C.; Kale, S.; Jackson, P.; Mortimer, P.; Bamber, J. Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound. Br. J. Dermatol. 2000, 143, 281–289. [Google Scholar] [CrossRef]
- Teresa Pietrzak, A.; Dybiec, E.; Adamczyk, M.; Michalska-Jakubus, M.; Wawrzycki, B.; Lotti, T.; Rutkowski, P.; Krasowska, D. High Frequency Ultrasonography of the Skin and Its Role as an Auxillary Tool in Diagnosis of Benign and Malignant Cutaneous Tumors—A Comparison of Two Clinical Cases. Acta Dermatovenerol. Croat. 2015, 23, 43. [Google Scholar]
- Machet, L.; Belot, V.; Naouri, M.; Boka, M.; Mourtada, Y.; Giraudeau, B.; Laure, B.; Perrinaud, A.; Machet, M.C.; Vaillant, L. Preoperative measurement of thickness of cutaneous melanoma using high-resolution 20 MHz ultrasound imaging: A monocenter prospective study and systematic review of the literature. Ultrasound Med. Biol. 2009, 35, 1411–1420. [Google Scholar] [CrossRef]
- Douplik, A.; Saiko, G.; Schelkanova, I.; Tuchin, V. 3—The response of tissue to laser light. In Lasers for Medical Applications; Jelínková, H., Ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2013; pp. 47–109. [Google Scholar] [CrossRef]
- Arimoto, H.; Egawa, M. Imaging wavelength and light penetration depth for water content distribution measurement of skin. Ski. Res. Technol. 2015, 21, 94–100. [Google Scholar] [CrossRef]
- Finlayson, L.; Barnard, I.R.M.; McMillan, L.; Ibbotson, S.H.; Brown, C.T.A.; Eadie, E.; Wood, K. Depth Penetration of Light into Skin as a Function of Wavelength from 200 to 1000 nm. Photochem. Photobiol. 2022, 98, 974–981. [Google Scholar] [CrossRef]
- Gananathan, P.; Rao, A.; Singaravelu, G.; Manickam, E. Review of Laser in Nanophotonics ? A Literature Study for Cellular Mechanism. J. Cancer Biol. 2017, 5, 1094. [Google Scholar]
- Francisco, M.D.; Chen, W.F.; Pan, C.T.; Lin, M.C.; Wen, Z.H.; Liao, C.F.; Shiue, Y.L. Competitive Real-Time Near Infrared (NIR) Vein Finder Imaging Device to Improve Peripheral Subcutaneous Vein Selection in Venipuncture for Clinical Laboratory Testing. Micromachines 2021, 12, 373. [Google Scholar] [CrossRef] [PubMed]
- Ash, C.; Dubec, M.; Donne, K.; Tim, B. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 2017, 32, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Henderson, T.A. Can infrared light really be doing what we claim it is doing? Infrared light penetration principles, practices, and limitations. Front. Neurol. 2024, 15, 1398894. [Google Scholar] [CrossRef]
- Henderson, T.A.; Morries, L.D. Near-infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain? Neuropsychiatr. Dis. Treat. 2015, 11, 2191–2208. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.P. Near Infrared Light Penetration in Human Tissue: An Analysis of Tissue Structure and Heterogeneities. Master’s Thesis, Marquette University, Milwaukee, WI, USA, 2022. Available online: https://epublications.marquette.edu/theses_open/739 (accessed on 23 June 2025).
- Barolet, D.; Christiaens, F.; Hamblin, M.R. Infrared and skin: Friend or foe. J. Photochem. Photobiol. B Biol. 2016, 155, 78–85. [Google Scholar] [CrossRef]
- Horton, L.; Brady, J.; Kincaid, C.M.; Torres, A.E.; Lim, H.W. The effects of infrared radiation on the human skin. Photodermatol. Photoimmunol. Photomed. 2023, 39, 549–555. [Google Scholar] [CrossRef]
- Scientific Committee on Emerging. Newly identified health risks. In Health Effects of Artificial Light; European Union: Brussels, Belgium, 2012. [Google Scholar]
- Stolik, S.; Delgado, J.; Pérez, A.; Anasagasti, L. Measurement of the penetration depths of red and near infrared light in human? ex vivo? tissues. J. Photochem. Photobiol. B Biol. 2000, 57, 90–93. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tsunemi, Y.; Kawashima, M.; Nishida, H. The Impact of Near-infrared in Plastic Surgery. Plast. Surg. Int. J. 2013, 2013, 973073. [Google Scholar] [CrossRef]
- Michael, A.; Liakat, S.; Bors, K.; Gmachl, C. In vivo measurement of mid-infrared light scattering from human skin. Biomed. Opt. Express 2013, 4, 520–530. [Google Scholar] [CrossRef]
- Briggs, A.; Briggs, G.; Kolosov, O. Acoustic Microscopy; Oxford University Press: Oxford, UK, 1995; Volume 1. [Google Scholar]
- Briggs, A.; Briggs, G.; Kolosov, O. Acoustic Microscopy; Oxford University Press: Oxford, UK, 1996; Volume 2. [Google Scholar]
- Wilhelm, K.P.; Elsner, P.; Berardesca, E.; Maibach, H. Bioengineering of the Skin: Skin Imaging & Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Griffiths, P.R.; De Haseth, J.A. Fourier Transform Infrared Spectrometry; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 171. [Google Scholar]
- Karagiannis, G.; Alexiadis, D.; Damtsios, A.; Sergiadis, G.; Salpistis, C. Diffuse reflectance spectroscopic mapping imaging applied to art objects materials determination from 200 up to 5000 nm. Rev. Sci. Instruments 2010, 81, 113104. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, G. Non destructive identification of art objects using multispectral images, spectra and acoustic microscopy. In Proceedings of the 9th EMAS Conference: Electron Probe Microanalysis of Materials Today—Practical Aspects, with Emphasis on Cultural Heritage Application, Amsterdam, The Netherlands, 25–28 April 2010. [Google Scholar] [CrossRef]
- Grivas, I.; Karagiannis, G.; Tsingotjidou, A.; Dori, I.; Grigoriadou, I.; Wesarg, S.; Georgoulias, P. Experimental model for the study of melanoma Diagnostic approach with the combined use of acoustic microscopy and infrared spectroscopy, evaluated by histological analysis. In Proceedings of the Joint HSBLAS-ESLAV-ECLAM Meeting Abstract Book, Athens, Greece, 22–23 September 2014. [Google Scholar]
- Zanyar Movasaghi, S.R.; ur Rehman, D.I. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Aksoy, C.; Severcan, F. Role of Vibrational Spectroscopy in Stem Cell Research. Spectrosc. Int. J. 2012, 27, 167–184. [Google Scholar] [CrossRef]
- Karagiannis, G.T.; Grivas, I.; Tsingotjidou, A.; Apostolidis, G.K.; Grigoriadou, I.; Dori, I.; Poulatsidou, K.N.; Doumas, A.; Wesarg, S.; Georgoulias, P. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy. In Proceedings of the SPIE BiOS, International Society for Optics and Photonics, San Francisco, CA, USA, 7–9 February 2015; p. 93232T. [Google Scholar]
- Anastassopoulou, J.; Boukaki, E.; Conti, C.; Ferraris, P.; Giorgini, E.; Rubini, C.; Sabbatini, S.; Theophanides, T.; Tosi, G. Microimaging FT-IR spectroscopy on pathological breast tissues. Vib. Spectrosc. 2009, 51, 270–275. [Google Scholar] [CrossRef]
- Dovbeshko, G.I.; Gridina, N.Y.; Kruglova, E.B.; Pashchuk, O.P. FTIR spectroscopy studies of nucleic acid damage. Talanta 2000, 53, 233–246. [Google Scholar] [CrossRef]
- Slapničar, G.; Wang, W.; Luštrek, M. Feasibility of Remote Blood Pressure Estimation via Narrow-band Multi-wavelength Pulse Transit Time. ACM Trans. Sen. Netw. 2024, 20, 1–21. [Google Scholar] [CrossRef]
- Ruddell, A.; Croft, A.; Kelly-Spratt, K.; Furuya, M.; Kemp, C.J. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads. BMC Cancer 2014, 14, 354. [Google Scholar] [CrossRef]
Normal Skin | Melanoma A | Melanoma B | Literature | |
---|---|---|---|---|
1239 | 1246 | 1250 | [77] | |
1060 | 1076 | 1079 | ||
a-helix DNA | 1648 and 934 | Decreased at 1648 and 934 | Decreased at 1648 and 934 | [78] |
Stretching vibration of C-O bond in deoxyribose in nucleic acids | 1015 and 1060 | Reduced at 1015 | Reduced at 1015 | [50] |
H-bonding absorbance | 1680 and 2600 | Band at 1680 is shifted | Band at 1680 is shifted | H-bonding changes in case of cancer |
Tumors (A1, B2, C1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days Taken Post Engraftment for the Development of the Tumor | Dimensions in mm: D1 (Max Width), D2(Min Width) and H (Height) | |||||||||||
A1 | B2 | C1 | A1 | B2 | C1 | |||||||
D1 (mm) | D2 (mm) | Height | D1 (mm) | D2 (mm) | Height | D1 (mm) | D2 (mm) | Height | ||||
Mouse 2 | 49 | 41 | 34 | 3.4 | 3.3 | 0.7777 | 2 | 1.18 | 0.6314 | |||
Mouse 3 | 35 | 15 | 3.55 | 1.89 | 0.7623 | 3.73 | 1.89 | 0.7931 | ||||
Mouse 4 | 40 | 34 | 5.28 | 4.1 | 1.4861 | 4.18 | 3.53 | 1.4168 | ||||
Mouse 5 | 34 | 23 | 18 | 4.1 | 2.29 | 1.078 | 2.6 | 1.26 | 0.7623 | |||
Mouse 6 | 29 | 24 | 2.47 | 1.21 | 0.7546 | 2.12 | 1.26 | 0.4543 | ||||
Mouse 7 | 40 | 35 | 30 | 1.8 | 1.55 | 0.8547 | 2.7 | 1.76 | 0.6853 | 2.55 | 1.53 | 0.3696 |
Mouse 8 | 34 | 19 | 3.43 | 2.62 | 1.2936 | 2.83 | 2.75 | 1.078 | ||||
Mouse 9 | 17 | 3.1 | 1.4 | 0.6622 | ||||||||
Mouse 10 | 25 | 17 | 10 | 1.4 | 2.87 | 0.2695 | 1.32 | 1.29 | 0.0693 | 1 | 0.39 | 0.0666 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karagiannis, G.t.; Grivas, I.; Tsingotjidou, A.; Apostolidis, G.; Tsardaka, E.; Dori, I.; Poulatsidou, K.-N.; Tsougos, I.; Wesarg, S.; Doumas, A.; et al. Diagnostic System for Early In Situ Melanoma Detection Using Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging. Cancers 2025, 17, 2599. https://doi.org/10.3390/cancers17152599
Karagiannis Gt, Grivas I, Tsingotjidou A, Apostolidis G, Tsardaka E, Dori I, Poulatsidou K-N, Tsougos I, Wesarg S, Doumas A, et al. Diagnostic System for Early In Situ Melanoma Detection Using Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging. Cancers. 2025; 17(15):2599. https://doi.org/10.3390/cancers17152599
Chicago/Turabian StyleKaragiannis, Georgios th, Ioannis Grivas, Anastasia Tsingotjidou, Georgios Apostolidis, Eirini Tsardaka, Ioanna Dori, Kyriaki-Nefeli Poulatsidou, Ioannis Tsougos, Stefan Wesarg, Argyrios Doumas, and et al. 2025. "Diagnostic System for Early In Situ Melanoma Detection Using Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging" Cancers 17, no. 15: 2599. https://doi.org/10.3390/cancers17152599
APA StyleKaragiannis, G. t., Grivas, I., Tsingotjidou, A., Apostolidis, G., Tsardaka, E., Dori, I., Poulatsidou, K.-N., Tsougos, I., Wesarg, S., Doumas, A., & Georgoulias, P. (2025). Diagnostic System for Early In Situ Melanoma Detection Using Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging. Cancers, 17(15), 2599. https://doi.org/10.3390/cancers17152599