Incidence and Clinical Features of Pseudoprogression in Brain Metastases After Immune-Checkpoint Inhibitor Therapy: A Retrospective Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Inclusion and Exclusion Criteria
2.3. Collected Data
2.4. Nomenclature of Scan Time-Points and Lesions
2.5. Definitive Diagnosis of Included Lesions
2.6. Clinical Variables at the Progression and Definitive Diagnosis Scans
2.7. Target, Non-Target, and New Lesions
2.8. MRI Protocols and Imaging Analysis
2.9. Statistical Analysis
3. Results
3.1. Patient and Lesion Characteristics
3.2. Incidence of PsP Versus TP
3.3. Timing of PsP and TP
3.4. Clinical Differences Between PsP and TP
3.5. Summed Target Lesion Changes at the Progression and Definitive Diagnosis Scans
3.6. Survival Differences Between PsP and TP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SRT | stereotactic radiotherapy |
ICI | immune-checkpoint inhibitor |
NSCLC | non-small cell lung cancer |
TP | tumour progression |
PsP | pseudoprogression |
RANO-BM | response assessment in neuro-oncology brain metastases |
WBRT | whole-brain-radiotherapy |
IQR | interquartile range |
MPRAGE | magnetisation prepared–rapid gradient echo |
SPACE | sampling perfection with application-optimised contrasts using different flip-angle evolutions |
SE | spin echo |
TFE | turbo field echo |
OR | odds ratio |
CR | complete response |
PR | partial response |
SD | stable disease |
References
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Posner, J.B.; Chernik, N.L. Intracranial metastases from systemic cancer. Adv. Neurol. 1978, 19, 579–592. [Google Scholar]
- Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E.; et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: A population-based study. Neuro Oncol. 2017, 19, 1511–1521. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Chao, S.T.; Sneed, P.K.; Luo, X.; Suh, J.; Roberge, D.; Bhatt, A.; Jensen, A.W.; Brown, P.D.; Shih, H.; et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: A multi-institutional analysis of 4259 patients. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 655–661. [Google Scholar] [CrossRef]
- Aizer, A.A.; Lamba, N.; Ahluwalia, M.S.; Aldape, K.; Boire, A.; Brastianos, P.K.; Brown, P.D.; Camidge, D.R.; Chiang, V.L.; Davies, M.A.; et al. Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro Oncol. 2022, 24, 1613–1646. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Forsyth, P.A.; Algazi, A.; Hamid, O.; Hodi, F.S.; Moschos, S.J.; Khushalani, N.I.; Lewis, K.; Lao, C.D.; Postow, M.A.; et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 2018, 379, 722–730. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Forsyth, P.A.; Hodi, F.S.; Algazi, A.P.; Hamid, O.; Lao, C.D.; Moschos, S.J.; Atkins, M.B.; Lewis, K.; Postow, M.A.; et al. Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): Final results of an open-label, multicentre, phase 2 study. Lancet Oncol. 2021, 22, 1692–1704. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.B.; Schalper, K.A.; Gettinger, S.N.; Mahajan, A.; Herbst, R.S.; Chiang, A.C.; Lilenbaum, R.; Wilson, F.H.; Omay, S.B.; Yu, J.B.; et al. Pembrolizumab for management of patients with NSCLC and brain metastases: Long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2020, 21, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Brandsma, D.; Stalpers, L.; Taal, W.; Sminia, P.; van den Bent, M.J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008, 9, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of brain tumors. J. Magn. Reson. Imaging 2018, 48, 571–589. [Google Scholar] [CrossRef]
- Lin, N.U.; Lee, E.Q.; Aoyama, H.; Barani, I.J.; Barboriak, D.P.; Baumert, B.G.; Brown, P.D.; Camidge, D.R.; Chang, S.M.; Dancey, J.; et al. Response assessment criteria for brain metastases: Proposal from the RANO group. Lancet Oncol. 2015, 16, e270–e278. [Google Scholar] [CrossRef]
- Melian, M.; Lorente, D.; Aparici, F.; Juan, O. Lung brain metastasis pseudoprogression after nivolumab and ipilimumab combination treatment. Thorac. Cancer 2018, 9, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.V.; Alomari, A.K.; Vortmeyer, A.O.; Jilaveanu, L.B.; Goldberg, S.B.; Mahajan, A.; Chiang, V.L.; Kluger, H.M. Melanoma brain metastasis pseudoprogression after pembrolizumab treatment. Cancer Immunol. Res. 2016, 4, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.K.; Jao, K.; Shepherd, F.A.; Hazrati, L.-N.; Leighl, N.B. Central nervous system pseudoprogression in a patient treated with PD-1 checkpoint inhibitor. J. Thorac. Oncol. 2015, 10, e100–e101. [Google Scholar] [CrossRef] [PubMed]
- Van der Jagt, T.A.; Davis, L.E.; Thakur, M.D.; Franz, C.; Pollock, J.M. Pseudoprogression of CNS metastatic disease of alveolar soft part sarcoma during anti-PDL1 treatment. Radiol. Case Rep. 2018, 13, 882–885. [Google Scholar] [CrossRef]
- Bol, K.F.; Peeters, E.; van Herpen, C.M.L.; Westdorp, H.; Aarntzen, E.H.J.G. Case Report: Imaging immune checkpoint inhibitor-induced yin-yang effects in the brain. Front. Immunol. 2023, 14, 1199282. [Google Scholar] [CrossRef]
- Okada, H.; Weller, M.; Huang, R.; Finocchiaro, G.; Gilbert, M.R.; Wick, W.; Ellingson, B.M.; Hashimoto, N.; Pollack, I.F.; Brandes, A.A.; et al. Immunotherapy response assessment in neuro-oncology: A report of the RANO working group. Lancet Oncol. 2015, 16, e534–e542. [Google Scholar] [CrossRef]
- Urban, H.; Steidl, E.; Hattingen, E.; Filipski, K.; Meissner, M.; Sebastian, M.; Koch, A.; Strzelczyk, A.; Forster, M.-T.; Baumgarten, P.; et al. Immune checkpoint inhibitor-induced cerebral pseudoprogression: Patterns and categorization. Front. Immunol. 2022, 12, 798811. [Google Scholar] [CrossRef]
- Hendriks, L.E.L.; Henon, C.; Auclin, E.; Mezquita, L.; Ferrara, R.; Audigier-Valette, C.; Mazieres, J.; Lefebvre, C.; Rabeau, A.; Le Moulec, S.; et al. Outcome of patients with non–small cell lung cancer and brain metastases treated with checkpoint inhibitors. J. Thorac. Oncol. 2019, 14, 1244–1254. [Google Scholar] [CrossRef]
- Patel, K.R.; Shoukat, S.; Oliver, D.E.; Chowdhary, M.; Rizzo, M.; Lawson, D.H.; Khosa, F.; Liu, Y.; Khan, M.K. Ipilimumab and stereotactic radiosurgery versus stereotactic radiosurgery alone for newly diagnosed melanoma brain metastases. Am. J. Clin. Oncol. 2017, 40, 444–450. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Abuodeh, Y.A.; Echevarria, M.I.; Arrington, J.A.; Stallworth, D.G.; Hogue, C.; Naghavi, A.O.; Kim, S.; Kim, Y.; Patel, B.G.; et al. Clinical outcomes of melanoma brain metastases treated with stereotactic radiosurgery and anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK inhibitors, BRAF inhibitor, or conventional chemotherapy. Ann. Oncol. 2016, 27, 2288–2294. [Google Scholar] [CrossRef]
- Minniti, G.; Clarke, E.; Lanzetta, G.; Osti, M.F.; Trasimeni, G.; Bozzao, A.; Romano, A.; Enrici, R.M. Stereotactic radiosurgery for brain metastases: Analysis of outcome and risk of brain radionecrosis. Radiat. Oncol. 2011, 6, 48. [Google Scholar] [CrossRef]
- Sayan, M.; Mustafayev, T.Z.; Balmuk, A.; Mamidanna, S.; Kefelioglu, E.S.S.; Gungor, G.; Chundury, A.; Ohri, N.; Karaarslan, E.; Ozyar, E.; et al. Management of symptomatic radiation necrosis after stereotactic radiosurgery and clinical factors for treatment response. Radiat. Oncol. J. 2020, 38, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Trommer-Nestler, M.; Marnitz, S.; Kocher, M.; Rueß, D.; Schlaak, M.; Theurich, S.; Von Bergwelt-Baildon, M.; Morgenthaler, J.; Jablonska, K.; Celik, E.; et al. Robotic stereotactic radiosurgery in melanoma patients with brain metastases under simultaneous anti-PD-1 treatment. Int. J. Mol. Sci. 2018, 19, 2653. [Google Scholar] [CrossRef] [PubMed]
- Rauch, M.; Tausch, D.; Stera, S.; Blanck, O.; Wolff, R.; Meissner, M.; Urban, H.; Hattingen, E. MRI characteristics in treatment for cerebral melanoma metastasis using stereotactic radiosurgery and concomitant checkpoint inhibitors or targeted therapeutics. J. Neurooncol. 2021, 153, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.; Cortes, A.; Niemierko, A.; Oh, K.S.; Flaherty, K.T.; Lawrence, D.P.; Sullivan, R.J.; Shih, H.A. The impact of timing of immunotherapy with cranial irradiation in melanoma patients with brain metastases: Intracranial progression, survival and toxicity. J. Neurooncol. 2018, 138, 299–306. [Google Scholar] [CrossRef]
- Umemura, Y.; Wang, D.; Peck, K.K.; Flynn, J.; Zhang, Z.; Fatovic, R.; Anderson, E.; Beal, K.; Kaley, T.; Young, R. DCE-MRI perfusion predicts pseudoprogression in metastatic melanoma treated with immunotherapy. J. Neurooncol. 2020, 146, 339–346. [Google Scholar] [CrossRef]
- Skeie, B.S.; Enger, P.Ø.; Knisely, J.; Pedersen, P.-H.; Heggdal, J.I.; Eide, G.E.; Skeie, G.O. A simple score to estimate the likelihood of pseudoprogression vs. recurrence following stereotactic radiosurgery for brain metastases: The Bergen Criteria. Neurooncol. Adv. 2020, 2, vdaa026. [Google Scholar] [CrossRef]
TP (N = 41) | NC (N = 170) | PsP (N = 22) | Mann–Whitney U p-Value TP–PsP | |
---|---|---|---|---|
Age at progression scan (years), median (IQR) | 60.8 (51.9–65.4) | 59.1 (51.9–67.1) | 52.7 (50.4–68.7) | 0.44 |
Male sex, n (%) | 20 (48.8) | 109 (64.1) | 16 (72.7) | - |
Primary tumour type, n (%) | - | |||
Melanoma | 32 (78.0) | 145 (85.3) | 20 (90.9) | |
NSCLC | 9 | 25 | 2 | |
Adenocarcinoma | 7 | 24 | 2 | |
Unknown subtype | 2 | 1 | 0 | |
Prior resection, n (%) | 1 (2.4) | 3 (1.8) | 0 (0.0) | - |
Prior radiotherapy, n (%) | 13 (31.7) | 22 (12.9) | 10 (45.5) | - |
SRT | 9 (22.0) | 13 (7.6) | 9 (40.9) | |
WBRT | 3 (7.3) | 8 (4.7) | 1 (4.5) | |
SRT (2x) 1 | 0 (0.0) | 1 (0.6) | 0 (0.0) | |
SRT + WBRT | 1 (2.4) | 0 (0.0) | 0 (0.0) | |
Total prior SRT dose administered, n (% of SRT courses) | - | |||
1 × 20 Gy | 8 (80.0) | 12 (80.0) | 9 (100.0) | |
1 × 18 Gy | 0 (0.0) | 1 (6.7) | 0 (0.0) | |
3 × 8 Gy | 2 (20.0) | 1 (6.7) | 0 (0.0) | |
Unknown 2 | 0 (0.0) | 1 (6.7) | 0 (0.0) | |
Total prior WBRT dose administered, n (% of WBRT courses) | ||||
5 × 4 Gy | 4 (100.0) | 8 (100.0) | 1 (100.0) | |
Prior systemic or targeted therapy, n (%) 3 | - | |||
Yes | 24 (58.5) | 127 (74.7) | 14 (63.6) | |
Number of separate lines of ICI therapy given prior to progression scan, n (%) | - | |||
1 | 33 | 146 | 21 | |
2 | 8 (19.5) | 24 (14.1) | 1 (4.5) | |
Type of ICI therapy, n (%) | - | |||
1st line of therapy given | ||||
Ipilimumab | 10 (24.3) | 39 (22.9) | 6 (27.3) | |
Pembrolizumab | 8 (19.5) | 34 (20.0) | 2 (9.1) | |
Nivolumab | 14 (34.1) | 40 (23.5) | 9 (40.9) | |
Nivolumab/ipilimumab + nivolumab | 0 (0.0) | 1 (0.6) | 2 (9.1) | |
Nivolumab/ipilimumab | 6 (14.6) | 51 (30.0) | 3 (13.6) | |
Durvulumab | 1 (2.4) | 4 (2.4) | 0 (0.0) | |
Atezolizumab | 2 (4.9) | 1 (0.6) | 0 (0.0) | |
2nd line of therapy given | ||||
Ipilimumab | 0 (0.0) | 0 (0.0) | 1 (4.5) | |
Pembrolizumab | 2 (4.9) | 13 (7.6) | 0 (0.0) | |
Nivolumab | 6 (14.6) | 7 (4.1) | 0 (0.0) | |
Nivolumab/ipilimumab | 0 (0.0) | 4 (2.4) | 0 (0.0) | |
Number of ICI infusions prior to progression scan, median (IQR) | 5 (3–13) | 3 (2–5) | 4 (2–6) | 0.34 |
ICI therapy duration prior to progression scan (months), median (IQR) | 3.50 (1.39–7.04) | 2.07 (0.70–2.93) | 2.07 (0.81–2.94) | 0.25 |
ICI therapy duration total (months), median (IQR) | 3.80 (2.05–8.60) | 2.07 (0.70–4.28) | 3.42 (1.76–9.13) | 0.83 |
TP (N = 41) | NC (N = 170) | PsP (N = 22) | Mann–Whitney U/Fisher’s Exact p-Value TP-PsP | |
---|---|---|---|---|
Lesion type, n (%) | 0.29 | |||
De novo | 17 (41.5) | 80 (47.1) | 6 (27.3) | |
Pre-existent | 24 (58.5) | 90 (52.9) | 16 (72.7) | |
Emergence of new lesions, n (%) | 0.19 | |||
At progression scan | 22 (53.7) | 109 (64.1) | 8 (36.4) | |
Prior to progression scan | 1 (2.4) | 11 (6.5) | 2 (9.1) | |
Both prior to and at progression scan | 3 (7.3) | 6 (3.5) | 0 (0.0) | |
Emergence of new lesions, n (%) | 0.53 1 | |||
At definitive diagnosis scan | 7 (17.1) | 12 (7.1) | 4 (18.2) | |
Prior to definitive diagnosis scan | 0 (0.0) | 21 (12.4) | 1 (4.5) | |
Both prior to and at definitive diagnosis scan | 1 (2.4) | 2 (1.2) | 1 (4.5) | |
Pattern of progression prior to progression scan and starting ICI therapy, n (%) | ||||
Yes | 6 (24.9) | 14 (8.2) | 3 (23.2) | >0.99 (<1.00) |
Longest transverse diameter (mm), median (IQR) | ||||
Baseline | 7 (5–14) | 5 (3–8) | 7 (6–11) | 0.80 |
Nadir | 6 (5–13) | 5 (3–7) | 7 (4–11) | 0.88 |
Progression | 19 (12–32) | 13 (11–18) | 15 (11–18) | 0.06 |
Definitive diagnosis | 23 (19–30) | 10 (5–16) | 9 (4–11) | <0.01 |
Longest sagittal diameter (mm), median (IQR) | ||||
Baseline | 8 (5–16) | 5 (3–8) | 8 (5–10) | 0.70 |
Nadir | 6 (4–14) | 5 (3–7) | 7 (4–10) | 0.82 |
Progression | 18 (12–31) | 14 (11–19) | 14 (11–19) | 0.12 |
Definitive diagnosis | 23 (19–29) | 10 (5–16) | 9 (4–11) | <0.01 |
Longest sum transverse diameter target lesions (mm), median (IQR) | ||||
Baseline | 18 (8–34) | 19 (6–31) | 26 (7–50) | 0.82 |
Nadir | 16 (8–31) | 15 (5–30) | 24 (7–39) | 0.93 |
Progression | 31 (19–48) | 38 (17–75) | 32 (17–60) | 0.79 |
Definitive diagnosis | 34 (22–66) | 24 (10–40) | 12 (7–21) | <0.01 |
Longest sum sagittal diameter target lesions (mm), median (IQR) | ||||
Baseline | 19 (8–31) | 19 (6–34) | 29 (7–49) | 0.69 |
Nadir | 16 (8–30) | 15 (6–34) | 25 (7–42) | 0.71 |
Progression | 31 (18–54) | 37 (16–75) | 33 (16–55) | 0.82 |
Definitive diagnosis | 35 (22–68) | 23 (11–41) | 12 (7–23) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govaerts, C.W.; Kramer, M.C.A.; Bosma, I.; Kruyt, F.A.E.; Bensch, F.; van Dijk, J.M.C.; Jalving, M.; van der Hoorn, A. Incidence and Clinical Features of Pseudoprogression in Brain Metastases After Immune-Checkpoint Inhibitor Therapy: A Retrospective Study. Cancers 2025, 17, 2425. https://doi.org/10.3390/cancers17152425
Govaerts CW, Kramer MCA, Bosma I, Kruyt FAE, Bensch F, van Dijk JMC, Jalving M, van der Hoorn A. Incidence and Clinical Features of Pseudoprogression in Brain Metastases After Immune-Checkpoint Inhibitor Therapy: A Retrospective Study. Cancers. 2025; 17(15):2425. https://doi.org/10.3390/cancers17152425
Chicago/Turabian StyleGovaerts, Chris W., Miranda C. A. Kramer, Ingeborg Bosma, Frank A. E. Kruyt, Frederike Bensch, J. Marc C. van Dijk, Mathilde Jalving, and Anouk van der Hoorn. 2025. "Incidence and Clinical Features of Pseudoprogression in Brain Metastases After Immune-Checkpoint Inhibitor Therapy: A Retrospective Study" Cancers 17, no. 15: 2425. https://doi.org/10.3390/cancers17152425
APA StyleGovaerts, C. W., Kramer, M. C. A., Bosma, I., Kruyt, F. A. E., Bensch, F., van Dijk, J. M. C., Jalving, M., & van der Hoorn, A. (2025). Incidence and Clinical Features of Pseudoprogression in Brain Metastases After Immune-Checkpoint Inhibitor Therapy: A Retrospective Study. Cancers, 17(15), 2425. https://doi.org/10.3390/cancers17152425