Prognostic Differences of Adjuvant Radiotherapy in Breast Cancer Cohorts Based on PRLR Genotypes, Expression, and Transcriptional Network Regulation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genotyping of PRLR Single Nucleotide Polymorphisms
2.3. Variables
2.4. Statistical Analyses
2.5. Public Cohort Analyses
3. Results
3.1. Clinicopathological Characteristics
3.2. PRLR Genotype Survival Analyses and Systemic Adjuvant Therapies
3.3. Combined PRLR Genotype Survival Analyses and Adjuvant Radiotherapy
3.4. Competing Risk and Sensitivity Analyses
3.5. PRLR Expression and Radiotherapy Response in METABRIC Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; et al. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N. Engl. J. Med. 2017, 377, 1836–1846. [Google Scholar] [CrossRef]
- Pak, L.M.; Morrow, M. Addressing the Problem of Overtreatment in Breast Cancer. Expert Rev. Anticancer Ther. 2022, 22, 535–548. [Google Scholar] [CrossRef]
- Hofmarcher, T.; Lindgren, P.; Wilking, N.; Jönsson, B. The Cost of Cancer in Europe 2018. Eur. J. Cancer 2020, 129, 41–49. [Google Scholar] [CrossRef]
- Regionala Cancercentrum I Samverkan Bröstcancer Nationellt Vårdprogram (National Clinical Cancer Care Guidelines). Available online: https://kunskapsbanken.cancercentrum.se/diagnoser/brostcancer/vardprogram/ (accessed on 30 May 2024).
- Sharman, R.; Harris, Z.; Ernst, B.; Mussallem, D.; Larsen, A.; Gowin, K. Lifestyle Factors and Cancer: A Narrative Review. Mayo Clin. Proc. Innov. Qual. Outcomes 2024, 8, 166–183. [Google Scholar] [CrossRef]
- Hartman, M.; Lindström, L.; Dickman, P.W.; Adami, H.-O.; Hall, P.; Czene, K. Is Breast Cancer Prognosis Inherited? Breast Cancer Res. 2007, 9, R39. [Google Scholar] [CrossRef]
- Wiechec, E.; Hansen, L.L. The Effect of Genetic Variability on Drug Response in Conventional Breast Cancer Treatment. Eur. J. Pharmacol. 2009, 625, 122–130. [Google Scholar] [CrossRef]
- Mladenov, E.; Magin, S.; Soni, A.; Iliakis, G. DNA Double-Strand Break Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy. Front. Oncol. 2013, 3, 113. [Google Scholar] [CrossRef]
- Wang, L.; Lynch, C.; Pitroda, S.P.; Piffkó, A.; Yang, K.; Huser, A.K.; Liang, H.L.; Weichselbaum, R.R. Radiotherapy and Immunology. J. Exp. Med. 2024, 221, e20232101. [Google Scholar] [CrossRef]
- Yonezawa, T.; Chen, K.-H.E.; Ghosh, M.K.; Rivera, L.; Dill, R.; Ma, L.; Villa, P.A.; Kawaminami, M.; Walker, A.M. Anti-Metastatic Outcome of Isoform-Specific Prolactin Receptor Targeting in Breast Cancer. Cancer Lett. 2015, 366, 84–92. [Google Scholar] [CrossRef]
- Sutherland, A.; Forsyth, A.; Cong, Y.; Grant, L.; Juan, T.-H.; Lee, J.K.; Klimowicz, A.; Petrillo, S.K.; Hu, J.; Chan, A.; et al. The Role of Prolactin in Bone Metastasis and Breast Cancer Cell-Mediated Osteoclast Differentiation. J. Natl. Cancer Inst. 2016, 108, djv338. [Google Scholar] [CrossRef]
- Arden, K.C.; Boutin, J.M.; Djiane, J.; Kelly, P.A.; Cavenee, W.K. The Receptors for Prolactin and Growth Hormone Are Localized in the Same Region of Human Chromosome 5. Cytogenet. Cell Genet. 1990, 53, 161–165. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Meng, J.; Dufau, M.L. Isolation and Characterization of Two Novel Forms of the Human Prolactin Receptor Generated by Alternative Splicing of a Newly Identified Exon 11. J. Biol. Chem. 2001, 276, 41086–41094. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-Z.; Zhuang, L.; Meng, J.; Tsai-Morris, C.-H.; Dufau, M.L. Complex 5′ Genomic Structure of the Human Prolactin Receptor: Multiple Alternative Exons 1 and Promoter Utilization. Endocrinology 2002, 143, 2139–2142. [Google Scholar] [CrossRef] [PubMed]
- Gorvin, C.M. The Prolactin Receptor: Diverse and Emerging Roles in Pathophysiology. J. Clin. Transl. Endocrinol. 2015, 2, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Bole-Feysot, C.; Goffin, V.; Edery, M.; Binart, N.; Kelly, P.A. Prolactin (PRL) and Its Receptor: Actions, Signal Transduction Pathways and Phenotypes Observed in PRL Receptor Knockout Mice. Endocr. Rev. 1998, 19, 225–268. [Google Scholar] [CrossRef]
- Musey, V.C.; Collins, D.C.; Musey, P.I.; Martino-Saltzman, D.; Preedy, J.R. Long-Term Effect of a First Pregnancy on the Secretion of Prolactin. N. Engl. J. Med. 1987, 316, 229–234. [Google Scholar] [CrossRef]
- Jernström, H.; Lubinski, J.; Lynch, H.T.; Ghadirian, P.; Neuhausen, S.; Isaacs, C.; Weber, B.L.; Horsman, D.; Rosen, B.; Foulkes, W.D.; et al. Breast-Feeding and the Risk of Breast Cancer in BRCA1 and BRCA2 Mutation Carriers. J. Natl. Cancer Inst. 2004, 96, 1094–1098. [Google Scholar] [CrossRef]
- Lööf-Johanson, M.; Brudin, L.; Sundquist, M.; Rudebeck, C.E. Breastfeeding Associated with Reduced Mortality in Women with Breast Cancer. Breastfeed. Med. 2016, 11, 321–327. [Google Scholar] [CrossRef]
- Kwan, M.L.; Bernard, P.S.; Kroenke, C.H.; Factor, R.E.; Habel, L.A.; Weltzien, E.K.; Castillo, A.; Gunderson, E.P.; Maxfield, K.S.; Stijleman, I.J.; et al. Breastfeeding, PAM50 Tumor Subtype, and Breast Cancer Prognosis and Survival. J. Natl. Cancer Inst. 2015, 107, djv087. [Google Scholar] [CrossRef]
- Iskandar, I.; As’ad, S.; Mappaware, N.; Alasiry, E.; Hendarto, H.; Budu; Hatta, M.; Juliaty, A.; Ahmad, M.; Syam, A. Gene Prolactine Receptor (PRLR) and Signal Transducer and Activator of Transcription 5 (STAT5) on Milk Production. Med. Clínica Práctica 2021, 4, 100223. [Google Scholar] [CrossRef]
- Gustbée, E.; Anesten, C.; Markkula, A.; Simonsson, M.; Rose, C.; Ingvar, C.; Jernström, H. Excessive Milk Production during Breast-Feeding Prior to Breast Cancer Diagnosis Is Associated with Increased Risk for Early Events. Springerplus 2013, 2, 298. [Google Scholar] [CrossRef]
- Imada, K.; Leonard, W.J. The Jak-STAT Pathway. Mol. Immunol. 2000, 37, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kavarthapu, R.; Anbazhagan, R.; Dufau, M.L. Crosstalk between PRLR and EGFR/HER2 Signaling Pathways in Breast Cancer. Cancers 2021, 13, 4685. [Google Scholar] [CrossRef] [PubMed]
- Kavarthapu, R.; Dufau, M.L. Prolactin Receptor Gene Transcriptional Control, Regulatory Modalities Relevant to Breast Cancer Resistance and Invasiveness. Front. Endocrinol. 2022, 13, 949396. [Google Scholar] [CrossRef] [PubMed]
- Maranto, C.; Udhane, V.; Hoang, D.T.; Gu, L.; Alexeev, V.; Malas, K.; Cardenas, K.; Brody, J.R.; Rodeck, U.; Bergom, C.; et al. STAT5A/B Blockade Sensitizes Prostate Cancer to Radiation through Inhibition of RAD51 and DNA Repair. Clin. Cancer Res. 2018, 24, 1917–1931. [Google Scholar] [CrossRef]
- Amos, C.I.; Dennis, J.; Wang, Z.; Byun, J.; Schumacher, F.R.; Gayther, S.A.; Casey, G.; Hunter, D.J.; Sellers, T.A.; Gruber, S.B.; et al. The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiol. Biomark. Prev. 2017, 26, 126–135. [Google Scholar] [CrossRef]
- Myers, T.A.; Chanock, S.J.; Machiela, M.J. LDlinkR: An R Package for Rapidly Calculating Linkage Disequilibrium Statistics in Diverse Populations. Front. Genet. 2020, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Downs-Kelly, E.; Pettay, J.; Hicks, D.; Skacel, M.; Yoder, B.; Rybicki, L.; Myles, J.; Sreenan, J.; Roche, P.; Powell, R.; et al. Analytical Validation and Interobserver Reproducibility of EnzMet GenePro: A Second-Generation Bright-Field Metallography Assay for Concomitant Detection of HER2 Gene Status and Protein Expression in Invasive Carcinoma of the Breast. Am. J. Surg. Pathol. 2005, 29, 1505–1511. [Google Scholar] [CrossRef]
- Sandén, E.; Khazaei, S.; Tryggvadottir, H.; Borgquist, S.; Isaksson, K.; Jirström, K.; Jernström, H. Re-Evaluation of HER2 Status in 606 Breast Cancers-Gene Protein Assay on Tissue Microarrays versus Routine Pathological Assessment. Virchows Arch. 2020, 477, 317–320. [Google Scholar] [CrossRef]
- Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves Using “Ggplot2”; CRAN: Vienna, Austria, 2016. [Google Scholar] [CrossRef]
- Therneau, T.M. Survival: Survival Analysis; CRAN: Vienna, Austria, 2001. [Google Scholar] [CrossRef]
- Gray, R.J. Cmprsk: Subdistribution Analysis of Competing Risks; CRAN: Vienna, Austria, 2001. [Google Scholar]
- Dupont, W.D.; Plummer, W.D. Power and Sample Size Calculations for Studies Involving Linear Regression. Control Clin. Trials 1998, 19, 589–601. [Google Scholar] [CrossRef]
- Curtis, C.; Shah, S.P.; Chin, S.-F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The Genomic and Transcriptomic Architecture of 2,000 Breast Tumours Reveals Novel Subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Pereira, B.; Chin, S.-F.; Rueda, O.M.; Vollan, H.-K.M.; Provenzano, E.; Bardwell, H.A.; Pugh, M.; Jones, L.; Russell, R.; Sammut, S.-J.; et al. The Somatic Mutation Profiles of 2,433 Breast Cancers Refine Their Genomic and Transcriptomic Landscapes. Nat. Commun. 2016, 7, 11479. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Luca, B.A.; Steen, C.B.; Matusiak, M.; Azizi, A.; Varma, S.; Zhu, C.; Przybyl, J.; Espín-Pérez, A.; Diehn, M.; Alizadeh, A.A.; et al. Atlas of Clinically Distinct Cell States and Ecosystems across Human Solid Tumors. Cell 2021, 184, 5482–5496.e28. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.A.A.; de Santiago, I.; Campbell, T.M.; Vaughn, C.; Hickey, T.E.; Ross, E.; Tilley, W.D.; Markowetz, F.; Ponder, B.A.J.; Meyer, K.B. Regulators of Genetic Risk of Breast Cancer Identified by Integrative Network Analysis. Nat. Genet. 2016, 48, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Liska, O.; Bohár, B.; Hidas, A.; Korcsmáros, T.; Papp, B.; Fazekas, D.; Ari, E. TFLink: An Integrated Gateway to Access Transcription Factor-Target Gene Interactions for Multiple Species. Database 2022, 2022, baac083. [Google Scholar] [CrossRef]
- Campbell, T.M.; Castro, M.A.A.; Ponder, B.A.J.; Meyer, K.B. Identification of Post-Transcriptional Modulators of Breast Cancer Transcription Factor Activity Using MINDy. PLoS ONE 2016, 11, e0168770. [Google Scholar] [CrossRef]
- Fletcher, M.N.C.; Castro, M.A.A.; Wang, X.; de Santiago, I.; O’Reilly, M.; Chin, S.-F.; Rueda, O.M.; Caldas, C.; Ponder, B.A.J.; Markowetz, F.; et al. Master Regulators of FGFR2 Signalling and Breast Cancer Risk. Nat. Commun. 2013, 4, 2464. [Google Scholar] [CrossRef]
- Lin, S.-H.; Thakur, R.; Machiela, M.J. LDexpress: An Online Tool for Integrating Population-Specific Linkage Disequilibrium Patterns with Tissue-Specific Expression Data. BMC Bioinform. 2021, 22, 608. [Google Scholar] [CrossRef] [PubMed]
- Steeg, P.S. Tumor Metastasis: Mechanistic Insights and Clinical Challenges. Nat. Med. 2006, 12, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, S.I.; Park, H.S.; Lee, J.S.; Park, S.; Park, B.-W. The Impact of Local and Regional Recurrence on Distant Metastasis and Survival in Patients Treated with Breast Conservation Therapy. J. Breast Cancer 2011, 14, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.X.; Hewitt, S.M.; Yu, J. Locoregional Tumor Burden and Risk of Mortality in Metastatic Breast Cancer. NPJ Precis. Oncol. 2022, 6, 22. [Google Scholar] [CrossRef]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y.; Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single Nucleotide Polymorphisms and Cancer Susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef]
- Lee, S.A.; Haiman, C.A.; Burtt, N.P.; Pooler, L.C.; Cheng, I.; Kolonel, L.N.; Pike, M.C.; Altshuler, D.; Hirschhorn, J.N.; Henderson, B.E.; et al. A Comprehensive Analysis of Common Genetic Variation in Prolactin (PRL) and PRL Receptor (PRLR) Genes in Relation to Plasma Prolactin Levels and Breast Cancer Risk: The Multiethnic Cohort. BMC Med. Genet. 2007, 8, 72. [Google Scholar] [CrossRef]
- Nyante, S.J.; Faupel-Badger, J.M.; Sherman, M.E.; Pfeiffer, R.M.; Gaudet, M.M.; Falk, R.T.; Andaya, A.A.; Lissowska, J.; Brinton, L.A.; Peplonska, B.; et al. Genetic Variation in PRL and PRLR, and Relationships with Serum Prolactin Levels and Breast Cancer Risk: Results from a Population-Based Case-Control Study in Poland. Breast Cancer Res. 2011, 13, R42. [Google Scholar] [CrossRef]
- Liu, N.; Wang, A.; Xue, M.; Zhu, X.; Liu, Y.; Chen, M. FOXA1 and FOXA2: The Regulatory Mechanisms and Therapeutic Implications in Cancer. Cell Death Discov. 2024, 10, 172. [Google Scholar] [CrossRef]
- Ye, T.; Li, J.; Feng, J.; Guo, J.; Wan, X.; Xie, D.; Liu, J. The Subtype-Specific Molecular Function of SPDEF in Breast Cancer and Insights into Prognostic Significance. J. Cell Mol. Med. 2021, 25, 7307–7320. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Yu, X.; Zheng, Y.; Yu, Y.; Yang, M.; Zhang, N. WDR11-DT Enhances Radiosensitivity via Promoting PARP1 Degradation and Homologous Recombination Deficiency. Cancer Lett. 2025, 625, 217757. [Google Scholar] [CrossRef]
- Blaye, C.; Darbo; Debled, M.; Brouste, V.; Vélasco, V.; Pinard, C.; Larmonier, N.; Pellegrin, I.; Tarricone, A.; Arnedos, M.; et al. An Immunological Signature to Predict Outcome in Patients with Triple-Negative Breast Cancer with Residual Disease after Neoadjuvant Chemotherapy. ESMO Open 2022, 7, 100502. [Google Scholar] [CrossRef]
- Wong, G.L.; Manore, S.G.; Doheny, D.L.; Lo, H.W. STAT Family of Transcription Factors in Breast Cancer: Pathogenesis and Therapeutic Opportunities and Challenges. Semin. Cancer Biol. 2022, 86, 84. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Z.; Zhong, Q.; Zhao, L.; Wang, Y.; Chi, H. Identification and Validation of a Novel Prognostic Signature Based on Transcription Factors in Breast Cancer by Bioinformatics Analysis. Gland. Surg. 2022, 11, 892–912. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Bao, L.; Chen, Y.; Xue, Y.; Wang, Y.; Zhang, B.; Wang, C.; Corley, C.D.; McDonald, J.G.; Kumar, A.; et al. ZMYND8 Is a Master Regulator of 27-Hydroxycholesterol That Promotes Tumorigenicity of Breast Cancer Stem Cells. Sci. Adv. 2022, 8, eabn5295. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Bao, L.; Xue, Y.; Zhu, M.; Kumar, A.; Xing, C.; Wang, J.E.; Wang, Y.; Luo, W. ZMYND8 Protects Breast Cancer Stem Cells against Oxidative Stress and Ferroptosis through Activation of NRF2. J. Clin. Investig. 2024, 134, e171166. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Bao, L.; Vale, G.; McDonald, J.G.; Fang, Y.; Peng, Y.; Kumar, A.; Xing, C.; Brasó-Maristany, F.; et al. ZMYND8 Drives HER2 Antibody Resistance in Breast Cancer via Lipid Control of IL-27. Nat. Commun. 2025, 16, 3908. [Google Scholar] [CrossRef]
- de Boniface, J.; Szulkin, R.; Johansson, A.L. V Survival After Breast Conservation vs Mastectomy Adjusted for Comorbidity and Socioeconomic Status: A Swedish National 6-Year Follow-up of 48 986 Women. JAMA Surg. 2021, 156, 628–637. [Google Scholar] [CrossRef]
- Anderson, M.G.; Zhang, Q.; Rodriguez, L.E.; Hecquet, C.M.; Donawho, C.K.; Ansell, P.J.; Reilly, E.B. ABBV-176, a PRLR Antibody Drug Conjugate with a Potent DNA-Damaging PBD Cytotoxin and Enhanced Activity with PARP Inhibition. BMC Cancer 2021, 21, 681. [Google Scholar] [CrossRef]
- Agarwal, N.; Machiels, J.-P.; Suárez, C.; Lewis, N.; Higgins, M.; Wisinski, K.; Awada, A.; Maur, M.; Stein, M.; Hwang, A.; et al. Phase I Study of the Prolactin Receptor Antagonist LFA102 in Metastatic Breast and Castration-Resistant Prostate Cancer. Oncologist 2016, 21, 535–536. [Google Scholar] [CrossRef]
- Lundin, K.B.; Henningson, M.; Hietala, M.; Ingvar, C.; Rose, C.; Jernström, H. Androgen Receptor Genotypes Predict Response to Endocrine Treatment in Breast Cancer Patients. Br. J. Cancer 2011, 105, 1676–1683. [Google Scholar] [CrossRef]
Characteristics | All Patients | Missing |
---|---|---|
n = 1701 (%) | ||
Age at inclusion (years) a | 62 (52, 69) | 0 |
Age ≥ 50 (years) | 1367 (80) | 0 |
BMI ≥ 25 (kg/m2) | 836 (52) | 101 |
Preoperative smoker, yes | 300 (18) | 7 |
Oral contraceptive use, ever | 1239 (73) | 3 |
MHT, ever | 671 (40) | 6 |
Children | 1 | |
Nulliparous | 192 (11) | |
1–2 | 1049 (62) | |
≥3 | 459 (27) | |
Age at first birth (years) b | 7 | |
<20 | 188 (13) | |
20–24 | 533 (35) | |
25–29 | 502 (33) | |
≥30 | 279 (19) | |
Breastfeeding first child (months) | 16 | |
Nulliparous | 192 (11) | |
0–12 | 1440 (85) | |
>12 | 53 (3.1) | |
Breastfeeding total (months) | 12 | |
Nulliparous | 192 (11) | |
0–12 | 941 (56) | |
>12 | 556 (33) | |
Excessive milk production b | 230 (16) | 75 |
Invasive tumor size pT2/3/4 | 441 (26) | 0 |
Any axillary lymph node involvement | 579 (34) | 2 |
ER+ | 1504 (89) | 2 |
PgR+ | 1214 (71) | 2 |
HER2+ | 175 (11) | 66 |
TNBC | 129 (7.6) | 8 |
Main histological type | 0 | |
No specific type | 1366 (80) | |
Lobular | 194 (11) | |
Mixed | 141 (8.3) | |
Histological grade III | 470 (28) | 6 |
Final surgical technique | ||
Mastectomy, yes | 647 (38) | 0 |
Adjuvant treatments | ||
Chemotherapy | 488 (29) | 0 |
Radiotherapy | 1129 (66) | 0 |
HER2+ as of Nov. 2005 | n = 150 | |
Trastuzumab | 118 (79) | 0 |
ER+ tumors only | n = 1504 | |
Tamoxifen | 892 (59) | 0 |
Aromatase inhibitors | 688 (46) | 0 |
Genotype | Total (n) | Any BC Event (n) | Multivariable Model 1 (Without Interaction Term) | Interaction Radiotherapy 2 | |||||
---|---|---|---|---|---|---|---|---|---|
HR (CI 95%) | Pnom | Padj | HR (CI 95%) | Pnom | Padj | ||||
Single-SNP genotypes | |||||||||
PRLR 4 | AA | 521 | 73 | Ref | Ref | Ref | Ref | Ref | Ref |
AG | 808 | 117 | 1.05 (0.78–1.41) | >0.3 | 1 | 0.56 (0.31–1.03) | 0.06 | 1 | |
GG | 372 | 48 | 0.94 (0.65–1.36) | >0.3 | 1 | 0.84 (0.39–1.79) | >0.3 | 1 | |
PRLR 5 | GG | 1519 | 213 | Ref | Ref | Ref | Ref | Ref | Ref |
Any A | 182 | 25 | 0.95 (0.63–1.45) | >0.3 | 1 | 0.43 (0.19–1.01) | 0.05 | 1 | |
PRLR 7 | TT | 1348 | 192 | Ref | Ref | Ref | Ref | Ref | Ref |
Any C | 353 | 46 | 0.90 (0.65–1.25) | >0.3 | 1 | 0.52 (0.27–1.00) | 0.05 | 1 | |
PRLR 9 | CC | 1556 | 218 | Ref | Ref | Ref | Ref | Ref | Ref |
Any T | 145 | 20 | 1.05 (0.66–1.67) | >0.3 | 1 | 0.33 (0.13–0.84) | 0.02 | 0.5 | |
PRLR 11 | CC | 986 | 125 | Ref | Ref | Ref | Ref | Ref | Ref |
TC | 622 | 96 | 1.19 (0.91–1.55) | 0.2 | 1 | 0.78 (0.45–1.36) | >0.3 | 1 | |
TT | 93 | 17 | 1.63 (0.96–2.77) | 0.07 | 1 | 3.28 (0.89–12.15) | 0.07 | 1 | |
Combined genotypes | |||||||||
1. AA/GG/TT/CC/CC | 279 | 33 | Ref | Ref | Ref | Ref | Ref | Ref | |
2. AG/GG/TT/CC/TC | 285 | 41 | 1.21 (0.76–1.91) | >0.3 | 1 | 0.23 (0.09–0.62) | 0.003 | 0.02 | |
3. AG/GG/TT/CC/CC | 256 | 33 | 1.21 (0.75–1.97) | >0.3 | 1 | 0.48 (0.17–1.36) | 0.17 | 1 | |
4. GG/GG/TT/CC/TC | 95 | 17 | 1.49 (0.81–2.73) | 0.2 | 1 | 0.55 (0.15–1.98) | >0.3 | 1 | |
5. AA/GG/TT/CC/TC | 91 | 20 | 1.90 (1.08–3.35) | 0.025 | 0.15 | 0.50 (0.15–1.70) | 0.27 | 1 | |
6. GG/GG/TT/CC/CC | 87 | 11 | 1.06 (0.53–2.11) | >0.3 | 1 | 0.22 (0.05–0.89) | 0.03 | 0.2 | |
7 Rare | 608 | 83 | 1.18 (0.78–1.77) | >0.3 | 1 | 0.29 (0.12–0.71) | 0.0065 | 0.039 |
Combined Genotypes | Subgroup: No Radiotherapy 1 | Subgroup: With Radiotherapy 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total (n) | Any BC Event (n) | HR (CI 95%) | Pnom | Padj | Total (n) | Any BC Event (n) | HR (CI 95%) | Pnom | Padj | ||
1 | AA/GG/TT/CC/CC | 104 | 9 | Ref | Ref | Ref | 175 | 24 | Ref | Ref | Ref |
2 | AG/GG/TT/CC/TC | 94 | 21 | 2.79 (1.27–6.14) | 0.01 | 0.06 | 191 | 20 | 0.63 (0.35–1.15) | 0.1 | 0.8 |
3 | AG/GG/TT/CC/CC | 95 | 13 | 1.77 (0.75–4.18) | 0.2 | 1 | 161 | 20 | 0.89 (0.49–1.63) | >0.3 | 1 |
4 | GG/GG/TT/CC/TC | 34 | 6 | 2.28 (0.79–6.62) | 0.1 | 0.7 | 61 | 11 | 1.13 (0.53–2.38) | >0.3 | 1 |
5 | AA/GG/TT/CC/TC | 31 | 7 | 2.91 (1.06–7.99) | 0.04 | 0.2 | 60 | 13 | 1.36 (0.67–2.78) | >0.3 | 1 |
6 | GG/GG/TT/CC/CC | 28 | 5 | 2.56 (0.85–7.75) | 0.09 | 0.57 | 59 | 6 | 0.54 (0.22–1.34) | 0.18 | 1 |
7 | Rare | 186 | 35 | 2.43 (1.16–5.11) | 0.02 | 0.1 | 422 | 48 | 0.69 (0.42–1.15) | 0.15 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munnik, F.; Gonçalves de Oliveira, K.; Godina, C.; Isaksson, K.; Jernström, H. Prognostic Differences of Adjuvant Radiotherapy in Breast Cancer Cohorts Based on PRLR Genotypes, Expression, and Transcriptional Network Regulation. Cancers 2025, 17, 2378. https://doi.org/10.3390/cancers17142378
Munnik F, Gonçalves de Oliveira K, Godina C, Isaksson K, Jernström H. Prognostic Differences of Adjuvant Radiotherapy in Breast Cancer Cohorts Based on PRLR Genotypes, Expression, and Transcriptional Network Regulation. Cancers. 2025; 17(14):2378. https://doi.org/10.3390/cancers17142378
Chicago/Turabian StyleMunnik, Floor, Kelin Gonçalves de Oliveira, Christopher Godina, Karolin Isaksson, and Helena Jernström. 2025. "Prognostic Differences of Adjuvant Radiotherapy in Breast Cancer Cohorts Based on PRLR Genotypes, Expression, and Transcriptional Network Regulation" Cancers 17, no. 14: 2378. https://doi.org/10.3390/cancers17142378
APA StyleMunnik, F., Gonçalves de Oliveira, K., Godina, C., Isaksson, K., & Jernström, H. (2025). Prognostic Differences of Adjuvant Radiotherapy in Breast Cancer Cohorts Based on PRLR Genotypes, Expression, and Transcriptional Network Regulation. Cancers, 17(14), 2378. https://doi.org/10.3390/cancers17142378