Artificial Intelligence and Rectal Cancer: Beyond Images
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results and Discussion
Reference | First Author | Year | Model Input(s) | Performance | Number of Centers | External Validation(s)? | Note | ||
---|---|---|---|---|---|---|---|---|---|
Non-Images? | Images? | CM Better? | |||||||
NIMs | |||||||||
[37] | Peng J. | 2014 | Yes (demographic and clinicopathological) | C-Index = 0.73–0.76 | 1 | No | |||
[38] | Sun Y. | 2017 | Yes (clinicopathological) | C-Index = 0.71 | 1 | No | |||
[39] | Valentini V. | 2011 | Yes | C-Index = 0.68–0.73 | 5 | Yes | Subsequently re-validated by Reference [62] | ||
CMs | |||||||||
[40] | Chen L.D. | 2020 | Yes (clinical) | Yes (radiomics, ANN, US) | Yes | AUC = 0.80 | 1 | No | |
[41] | Cheng Y. | 2021 | Yes | Yes (radiomics, MRI) | Yes | AUC = 0.91–0.94 | 1 | No | |
[42] | Cui Y. | 2019 | Yes (from EHRs) | Yes (radiomics, MRI) | Yes | AUC = 0.97 | 1 | No | |
[43] | Dinapoli N. | 2018 | Yes (clinical) | Yes (radiomics, MRI) | AUC = 0.75 | 3 | Yes | Subsequently re-validated by Reference [63] | |
[44] | Ding L. | 2020 | Yes | Yes (DL, MRI) | AUC = 0.89–0.92 | 1 | No | ||
[45] | Huang Y.Q. | 2016 | Yes (clinicopathological) | Yes (radiomics, CT) | C-Index = 0.78 | 1 | No | ||
[46] | Jin C. | 2021 | Yes (blood tumor markers) | Yes (DL, MRI) | Yes | AUC = 0.97 | 3 | Yes | |
[47] | Kleppe A. | 2022 | Yes (markers) | Yes (DL, histopathology) | Yes | HR = 3.06–10.71 | 3 | Yes | |
[48] | Li M. | 2021 | Yes (clinical) | Yes (radiomics, CT) | Yes | AUC = 0.80 | 1 | No | |
[49] | Liu H. | 2022 | Yes (clinical) | Yes (DL, MRI) | Yes | AUC = 0.84 | 1 | No | |
[50] | Liu S. | 2021 | Yes (clinical) | Yes (radiomics, MRI) | Yes | AUC = 0.86 | 1 | No | |
[51] | Liu X. | 2021 | Yes (clinicopathological) | Yes (radiomics, DL, MRI) | Yes | C-Index = 0.78 | 3 | Yes | |
[52] | Mao Y. | 2022 | Yes (clinicopathological) | Yes (radiomics, CT) | Yes | AUC = 0.87 | 1 | No | |
[53] | Peterson K.J. | 2023 | Yes (clinical [from EHRs]) | Yes (radiomics, MRI) | Yes | AUC = 0.73 | 1 | No | |
[54] | van Stiphout R.G.P.M. | 2011 | Yes (clinical) | Yes (PET-CT) | Yes | AUC = 0.86 | 4 | Yes | |
[55] | van Stiphout R.G.P.M. | 2014 | Yes (clinical) | Yes (PET-CT) | AUC = 0.70 | 2 | Yes | ||
[56] | Wan L. | 2019 | Yes (clinical) | Yes (MRI) | Yes | AUC = 0.84 | 1 | No | |
[57] | Wei Q. | 2023 | Yes (clinical) | Yes (radiomics, MRI) | Yes | AUC = 0.87 | 2 | Yes | |
[58] | Wei Q. | 2023 | Yes (clinical) | Yes (radiomics, MRI) | Yes | AUC = 0.85 | 1 | No | |
[59] | Yi X. | 2019 | Yes (radiological-clinicopathological) | Yes (radiomics, MRI) | AUC = 0.90–0.93 | 1 | No |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Bergan, R.C. Clinical Trial Design: Past, Present, and Future in the Context of Big Data and Precision Medicine. Cancer 2020, 126, 4838–4846. [Google Scholar] [CrossRef] [PubMed]
- Damiani, A.; Onder, G.; Valentini, V. Large Databases (Big Data) and Evidence-Based Medicine. Eur. J. Intern. Med. 2018, 53, 1–2. [Google Scholar] [CrossRef]
- De Maria Marchiano, R.; Di Sante, G.; Piro, G.; Carbone, C.; Tortora, G.; Boldrini, L.; Pietragalla, A.; Daniele, G.; Tredicine, M.; Cesario, A.; et al. Translational Research in the Era of Precision Medicine: Where We Are and Where We Will Go. J. Pers. Med. 2021, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal Biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef]
- Lambin, P.; van Stiphout, R.G.P.M.; Starmans, M.H.W.; Rios-Velazquez, E.; Nalbantov, G.; Aerts, H.J.W.L.; Roelofs, E.; van Elmpt, W.; Boutros, P.C.; Granone, P.; et al. Predicting Outcomes in Radiation Oncology—Multifactorial Decision Support Systems. Nat. Rev. Clin. Oncol. 2012, 10, 27–40. [Google Scholar] [CrossRef]
- Elmore, J.G.; Lee, C.I. Data Quality, Data Sharing, and Moving Artificial Intelligence Forward. JAMA Netw. Open 2021, 4, e2119345. [Google Scholar] [CrossRef]
- Torkamani, A.; Andersen, K.G.; Steinhubl, S.R.; Topol, E.J. High-Definition Medicine. Cell 2017, 170, 828–843. [Google Scholar] [CrossRef]
- Cuocolo, R.; Caruso, M.; Perillo, T.; Ugga, L.; Petretta, M. Machine Learning in Oncology: A Clinical Appraisal. Cancer Lett. 2020, 481, 55–62. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Meldolesi, E.; van Soest, J.; Damiani, A.; Dekker, A.; Alitto, A.R.; Campitelli, M.; Dinapoli, N.; Gatta, R.; Gambacorta, M.A.; Lanzotti, V.; et al. Standardized Data Collection to Build Prediction Models in Oncology: A Prototype for Rectal Cancer. Future Oncol. 2016, 12, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Cusumano, D.; Meijer, G.; Lenkowicz, J.; Chiloiro, G.; Boldrini, L.; Masciocchi, C.; Dinapoli, N.; Gatta, R.; Casà, C.; Damiani, A.; et al. A Field Strength Independent MR Radiomics Model to Predict Pathological Complete Response in Locally Advanced Rectal Cancer. Radiol. Med. 2021, 126, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Valentini, V.; Alfieri, S.; Coco, C.; D’Ugo, D.; Crucitti, A.; Pacelli, F.; Persiani, R.; Sofo, L.; Picciocchi, A.; Doglietto, G.B.; et al. Four Steps in the Evolution of Rectal Cancer Managements through 40 Years of Clinical Practice: Pioneering, Standardization, Challenges and Personalization. Radiother. Oncol. 2024, 194, 110190. [Google Scholar] [CrossRef] [PubMed]
- Savino, M.; Chiloiro, G.; Masciocchi, C.; Capocchiano, N.D.; Lenkowicz, J.; Gottardelli, B.; Gambacorta, M.A.; Valentini, V.; Damiani, A. A Process Mining Approach for Clinical Guidelines Compliance: Real-World Application in Rectal Cancer. Front. Oncol. 2023, 13, 1090076. [Google Scholar] [CrossRef]
- Ramagopalan, S.V.; Simpson, A.; Sammon, C. Can Real-World Data Really Replace Randomised Clinical Trials? BMC Med. 2020, 18, 13. [Google Scholar] [CrossRef]
- Penberthy, L.T.; Rivera, D.R.; Lund, J.L.; Bruno, M.A.; Meyer, A. An Overview of Real-World Data Sources for Oncology and Considerations for Research. CA Cancer J. Clin. 2021, 72, 287–300. [Google Scholar] [CrossRef]
- Morin, O.; Vallières, M.; Braunstein, S.; Ginart, J.B.; Upadhaya, T.; Woodruff, H.C.; Zwanenburg, A.; Chatterjee, A.; Villanueva-Meyer, J.E.; Valdes, G.; et al. An Artificial Intelligence Framework Integrating Longitudinal Electronic Health Records with Real-World Data Enables Continuous Pan-Cancer Prognostication. Nat. Cancer 2021, 2, 709–722. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef]
- Jia, L.-L.; Zheng, Q.-Y.; Tian, J.-H.; He, D.-L.; Zhao, J.-X.; Zhao, L.-P.; Huang, G. Artificial Intelligence with Magnetic Resonance Imaging for Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 1026216. [Google Scholar] [CrossRef]
- Bedrikovetski, S.; Dudi-Venkata, N.N.; Kroon, H.M.; Seow, W.; Vather, R.; Carneiro, G.; Moore, J.W.; Sammour, T. Artificial Intelligence for Pre-Operative Lymph Node Staging in Colorectal Cancer: A Systematic Review and Meta-Analysis. BMC Cancer 2021, 21, 1058. [Google Scholar] [CrossRef]
- Coppola, F.; Giannini, V.; Gabelloni, M.; Panic, J.; Defeudis, A.; Lo Monaco, S.; Cattabriga, A.; Cocozza, M.A.; Pastore, L.V.; Polici, M.; et al. Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice. Diagnostics 2021, 11, 756. [Google Scholar] [CrossRef]
- Kalantar, R.; Lin, G.; Winfield, J.M.; Messiou, C.; Lalondrelle, S.; Blackledge, M.D.; Koh, D.-M. Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-The-Art Approaches and Challenges. Diagnostics 2021, 11, 1964. [Google Scholar] [CrossRef]
- Kuntz, S.; Krieghoff-Henning, E.; Kather, J.N.; Jutzi, T.; Höhn, J.; Kiehl, L.; Hekler, A.; Alwers, E.; von Kalle, C.; Fröhling, S.; et al. Gastrointestinal Cancer Classification and Prognostication from Histology Using Deep Learning: Systematic Review. Eur. J. Cancer 2021, 155, 200–215. [Google Scholar] [CrossRef]
- Kwok, H.C.; Charbel, C.; Danilova, S.; Miranda, J.; Gangai, N.; Petkovska, I.; Chakraborty, J.; Horvat, N. Rectal MRI Radiomics Inter- and Intra-Reader Reliability: Should We Worry about That? Abdom. Radiol. 2022, 47, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.; Tan, G.X.V.; Fernandes, M.C.; Yildirim, O.; Sims, J.A.; Araujo-Filho, J.d.A.B.; de M Machado, F.A.; Assuncao, A.N., Jr.; Nomura, C.H.; Horvat, N. Rectal MRI Radiomics for Predicting Pathological Complete Response: Where We Are. Clin. Imaging 2022, 82, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, K.; Hirasawa, T.; Yoshio, T.; Fujisaki, J.; Ozawa, T.; Ishihara, S.; Aoki, T.; Yamada, A.; Koike, K.; Suzuki, H.; et al. Utilizing Artificial Intelligence in Endoscopy: A Clinician’s Guide. Expert. Rev. Gastroenterol. Hepatol. 2020, 14, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Pacal, I.; Karaboga, D.; Basturk, A.; Akay, B.; Nalbantoglu, U. A Comprehensive Review of Deep Learning in Colon Cancer. Comput. Biol. Med. 2020, 126, 104003. [Google Scholar] [CrossRef]
- Qin, Y.; Zhu, L.-H.; Zhao, W.; Wang, J.-J.; Wang, H. Review of Radiomics- and Dosiomics-Based Predicting Models for Rectal Cancer. Front. Oncol. 2022, 12, 913683. [Google Scholar] [CrossRef]
- Reginelli, A.; Nardone, V.; Giacobbe, G.; Belfiore, M.P.; Grassi, R.; Schettino, F.; Del Canto, M.; Grassi, R.; Cappabianca, S. Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics 2021, 11, 1796. [Google Scholar] [CrossRef]
- Staal, F.C.R.; van der Reijd, D.J.; Taghavi, M.; Lambregts, D.M.J.; Beets-Tan, R.G.H.; Maas, M. Radiomics for the Prediction of Treatment Outcome and Survival in Patients with Colorectal Cancer: A Systematic Review. Clin. Color. Cancer 2021, 20, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, A.; Verde, F.; Romeo, V.; Boccadifuoco, F.; Mainenti, P.P.; Maurea, S. Radiomics and Machine Learning Applications in Rectal Cancer: Current Update and Future Perspectives. World J. Gastroenterol. 2021, 27, 5306–5321. [Google Scholar] [CrossRef] [PubMed]
- Tabari, A.; Chan, S.M.; Omar, O.M.F.; Iqbal, S.I.; Gee, M.S.; Daye, D. Role of Machine Learning in Precision Oncology: Applications in Gastrointestinal Cancers. Cancers 2022, 15, 63. [Google Scholar] [CrossRef]
- Wang, P.-P.; Deng, C.-L.; Wu, B. Magnetic Resonance Imaging-Based Artificial Intelligence Model in Rectal Cancer. World J. Gastroenterol. 2021, 27, 2122–2130. [Google Scholar] [CrossRef]
- Wong, C.; Fu, Y.; Li, M.; Mu, S.; Chu, X.; Fu, J.; Lin, C.; Zhang, H. MRI-Based Artificial Intelligence in Rectal Cancer. J. Magn. Reson. Imaging 2022, 57, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Xu, Y.; Sun, H.; Jiang, T.; Xie, S.; Ooi, B.Y.; Ding, Y. MRI Evaluation of Complete Response of Locally Advanced Rectal Cancer after Neoadjuvant Therapy: Current Status and Future Trends. Cancer Manag. Res. 2021, 13, 4317–4328. [Google Scholar] [CrossRef]
- Peng, J.; Ding, Y.; Tu, S.; Shi, D.; Sun, L.; Li, X.; Wu, H.; Cai, S. Prognostic Nomograms for Predicting Survival and Distant Metastases in Locally Advanced Rectal Cancers. PLoS ONE 2014, 9, e106344. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, H.; Lu, X.; Huang, Y.; Xu, Z.; Huang, S.; Wang, X.; Chi, P. A Nomogram to Predict Distant Metastasis after Neoadjuvant Chemoradiotherapy and Radical Surgery in Patients with Locally Advanced Rectal Cancer. J. Surg. Oncol. 2017, 115, 462–469. [Google Scholar] [CrossRef]
- Valentini, V.; van Stiphout, R.G.P.M.; Lammering, G.; Gambacorta, M.A.; Barba, M.C.; Bebenek, M.; Bonnetain, F.; Bosset, J.-F.; Bujko, K.; Cionini, L.; et al. Nomograms for Predicting Local Recurrence, Distant Metastases, and Overall Survival for Patients with Locally Advanced Rectal Cancer on the Basis of European Randomized Clinical Trials. J. Clin. Oncol. 2011, 29, 3163–3172. [Google Scholar] [CrossRef]
- Chen, L.-D.; Li, W.; Xian, M.-F.; Zheng, X.; Lin, Y.; Liu, B.-X.; Lin, M.-X.; Li, X.; Zheng, Y.-L.; Xie, X.-Y.; et al. Preoperative Prediction of Tumour Deposits in Rectal Cancer by an Artificial Neural Network-Based US Radiomics Model. Eur. Radiol. 2020, 30, 1969–1979. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, Y.; Hu, Y.; Zhang, Z.; Wang, X.; Yu, Q.; Liu, G.; Cui, E.; Yu, T.; Jiang, X. Multiparametric MRI-Based Radiomics Approaches on Predicting Response to Neoadjuvant Chemoradiotherapy (NCRT) in Patients with Rectal Cancer. Abdom. Radiol. 2021, 46, 5072–5085. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yang, X.; Shi, Z.; Yang, Z.; Du, X.; Zhao, Z.; Cheng, X. Radiomics Analysis of Multiparametric MRI for Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Eur. Radiol. 2018, 29, 1211–1220. [Google Scholar] [CrossRef]
- Dinapoli, N.; Barbaro, B.; Gatta, R.; Chiloiro, G.; Casà, C.; Masciocchi, C.; Damiani, A.; Boldrini, L.; Gambacorta, M.A.; Dezio, M.; et al. Magnetic Resonance, Vendor-Independent, Intensity Histogram Analysis Predicting Pathologic Complete Response after Radiochemotherapy of Rectal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Liu, G.; Zhang, X.; Liu, S.; Li, S.; Zhang, Z.; Guo, Y.; Lu, Y. A Deep Learning Nomogram Kit for Predicting Metastatic Lymph Nodes in Rectal Cancer. Cancer Med. 2020, 9, 8809–8820. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, C.; He, L.; Tian, J.; Liang, C.; Chen, X.; Ma, Z.; Liu, Z. Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J. Clin. Oncol. 2016, 34, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Yu, H.; Ke, J.; Ding, P.; Yi, Y.; Jiang, X.; Duan, X.; Tang, J.; Chang, D.T.; Wu, X.; et al. Predicting Treatment Response from Longitudinal Images Using Multi-Task Deep Learning. Nat. Commun. 2021, 12, 1851. [Google Scholar] [CrossRef] [PubMed]
- Kleppe, A.; Skrede, O.-J.; Raedt, S.D.; Hveem, T.S.; Askautrud, H.A.; Jacobsen, J.E.; Church, D.N.; Nesbakken, A.; Shepherd, N.A.; Novelli, M.; et al. A Clinical Decision Support System Optimising Adjuvant Chemotherapy for Colorectal Cancers by Integrating Deep Learning and Pathological Staging Markers: A Development and Validation Study. Lancet Oncol. 2022, 23, 1221–1232. [Google Scholar] [CrossRef]
- Li, M.; Jin, Y.-M.; Zhang, Y.-C.; Zhao, Y.-L.; Huang, C.-C.; Liu, S.-M.; Song, B. Radiomics for Predicting Perineural Invasion Status in Rectal Cancer. World J. Gastroenterol. 2021, 27, 5610–5621. [Google Scholar] [CrossRef]
- Liu, H.; Yin, H.; Li, J.; Dong, X.; Zheng, H.; Zhang, T.; Yin, Q.; Zhang, Z.; Lu, M.; Zhang, H.; et al. Deep Learning Model Based on MRI and Clinical Factors Facilitates Noninvasive Evaluation of KRAS Mutation in Rectal Cancer. J. Magn. Reson. Imaging 2022, 56, 1659–1668. [Google Scholar] [CrossRef]
- Liu, S.; Yu, X.; Yang, S.; Hu, P.; Hu, Y.; Chen, X.; Li, Y.; Zhang, Z.; Li, C.; Lu, Q. Machine Learning-Based Radiomics Nomogram for Detecting Extramural Venous Invasion in Rectal Cancer. Front. Oncol. 2021, 11, 610338. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Liu, Z.; Li, Z.; Xie, P.; Sun, K.; Wei, W.; Dai, W.; Tang, Z.; Ding, Y.; et al. Deep Learning Radiomics-Based Prediction of Distant Metastasis in Patients with Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy: A Multicentre Study. EBioMedicine 2021, 69, 103442. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Pei, Q.; Fu, Y.; Liu, H.; Chen, C.; Li, H.; Gong, G.; Yin, H.; Pang, P.; Lin, H.; et al. Pre-Treatment Computed Tomography Radiomics for Predicting the Response to Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer: A Retrospective Study. Front. Oncol. 2022, 12, 850774. [Google Scholar] [CrossRef]
- Peterson, K.J.; Simpson, M.T.; Drezdzon, M.K.; Szabo, A.; Ausman, R.A.; Nencka, A.S.; Knechtges, P.M.; Peterson, C.Y.; Ludwig, K.A.; Ridolfi, T.J. Predicting Neoadjuvant Treatment Response in Rectal Cancer Using Machine Learning: Evaluation of MRI-Based Radiomic and Clinical Models. J. Gastrointest. Surg. 2023, 27, 122–130. [Google Scholar] [CrossRef] [PubMed]
- van Stiphout, R.G.P.M.; Lammering, G.; Buijsen, J.; Janssen, M.H.M.; Gambacorta, M.A.; Slagmolen, P.; Lambrecht, M.; Rubello, D.; Gava, M.; Giordano, A.; et al. Development and External Validation of a Predictive Model for Pathological Complete Response of Rectal Cancer Patients Including Sequential PET-CT Imaging. Radiother. Oncol. 2011, 98, 126–133. [Google Scholar] [CrossRef]
- van Stiphout, R.G.P.M.; Valentini, V.; Buijsen, J.; Lammering, G.; Meldolesi, E.; van Soest, J.; Leccisotti, L.; Giordano, A.; Gambacorta, M.A.; Dekker, A.; et al. Nomogram Predicting Response after Chemoradiotherapy in Rectal Cancer Using Sequential PETCT Imaging: A Multicentric Prospective Study with External Validation. Radiother. Oncol. 2014, 113, 215–222. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, C.; Zhao, Q.; Meng, Y.; Zou, S.; Yang, Y.; Liu, Y.; Jiang, J.; Ye, F.; Ouyang, H.; et al. Developing a Prediction Model Based on MRI for Pathological Complete Response after Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Abdom. Radiol. 2019, 44, 2978–2987. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Chen, Z.; Tang, Y.; Chen, W.; Zhong, L.; Mao, L.; Hu, S.; Wu, Y.; Deng, K.; Yang, W.; et al. External Validation and Comparison of MR-Based Radiomics Models for Predicting Pathological Complete Response in Locally Advanced Rectal Cancer: A Two-Centre, Multi-Vendor Study. Eur. Radiol. 2022, 33, 1906–1917. [Google Scholar] [CrossRef]
- Wei, Q.; Yuan, W.; Jia, Z.; Chen, J.; Li, L.; Yan, Z.; Liao, Y.; Mao, L.; Hu, S.; Liu, X.; et al. Preoperative MR Radiomics Based on High-Resolution T2-Weighted Images and Amide Proton Transfer-Weighted Imaging for Predicting Lymph Node Metastasis in Rectal Adenocarcinoma. Abdom. Radiol. 2023, 48, 458–470. [Google Scholar] [CrossRef]
- Yi, X.; Pei, Q.; Zhang, Y.; Zhu, H.; Wang, Z.; Chen, C.; Li, Q.; Long, X.; Tan, F.; Zhou, Z.; et al. MRI-Based Radiomics Predicts Tumor Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Front. Oncol. 2019, 9, 552. [Google Scholar] [CrossRef]
- Roselló, S.; Frasson, M.; García-Granero, E.; Roda, D.; Jordá, E.; Navarro, S.; Campos, S.; Esclápez, P.; García-Botello, S.; Flor, B.; et al. Integrating Downstaging in the Risk Assessment of Patients with Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy: Validation of Valentini’s Nomograms and the Neoadjuvant Rectal Score. Clin. Color. Cancer 2018, 17, 104–112.e2. [Google Scholar] [CrossRef]
- Tang, B.; Lenkowicz, J.; Peng, Q.; Boldrini, L.; Hou, Q.; Dinapoli, N.; Valentini, V.; Diao, P.; Yin, G.; Orlandini, L.C. Local Tuning of Radiomics-Based Model for Predicting Pathological Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. BMC Med. Imaging 2022, 22, 44. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-López, O.A.; Montesinos-López, A.; Mosqueda-Gonzalez, B.A.; Montesinos-López, J.C.; Crossa, J. Accounting for Correlation between Traits in Genomic Prediction. Methods Mol. Biol. 2022, 2467, 285–327. [Google Scholar] [PubMed]
- Lipkova, J.; Chen, R.J.; Chen, B.; Lu, M.Y.; Barbieri, M.; Shao, D.; Vaidya, A.J.; Chen, C.; Zhuang, L.; Williamson, D.F.K.; et al. Artificial Intelligence for Multimodal Data Integration in Oncology. Cancer Cell 2022, 40, 1095–1110. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Z.; Li, C.; Li, Z.; Lou, X.; Shao, L.; Wan, J.; Huang, Y.; Chen, H.; Pang, X.; et al. Development and Validation of a Radiopathomics Model to Predict Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer: A Multicentre Observational Study. Lancet Digit. Health 2022, 4, e8–e17. [Google Scholar] [CrossRef]
- Kim, D.W.; Jang, H.Y.; Kim, K.W.; Shin, Y.; Park, S.H. Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean J. Radiol. 2019, 20, 405. [Google Scholar] [CrossRef]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef]
- Huang, S.C.; Pareek, A.; Seyyedi, S.; Banerjee, I.; Lungren, M.P. Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. NPJ Digit. Med. 2020, 3, 136. [Google Scholar] [CrossRef]
Reference | First Author | Year | Journal | Aim | Number of Patients | TRIPOD | AI Model(s) | ||
---|---|---|---|---|---|---|---|---|---|
Total | Training | Validation | |||||||
NIMs | |||||||||
[37] | Peng J. | 2014 | PLOS One | Predict OS, DMs (and LR) | 917 | 833 | 84 | 2b | Cox regression |
[38] | Sun Y. | 2017 | Journal of Surgical Oncology | Predict DMs after nCRT | 522 | 425 | 97 | 2b | Cox regression |
[39] | Valentini V. | 2011 | Journal of Clinical Oncology | Predict OS, LR, DMs | 2795 | 2242 | 553 | 3 | Cox regression |
CMs | |||||||||
[40] | Chen L.D. | 2020 | European Radiology | Predict TDs | 127 | 87 | 40 | 2b | ANN |
[41] | Cheng Y. | 2021 | Abdominal Radiology | Predict response (particularly, pCR) to nCRT | 193 | 128 | 65 | 2a | Logistic regression |
[42] | Cui Y. | 2019 | European Radiology | Predict response (particularly, pCR) to nCRT | 186 | 131 | 55 | 2a | Logistic regression |
[43] | Dinapoli N. | 2018 | International Journal of Radiation Oncology | Predict response (particularly, pCR) to nCRT | 221 | 162 | 59 | 3 | GLM |
[44] | Ding L. | 2020 | Cancer Medicine | Predict preoperative LN metastases | 545 | 362 | 183 | 2a | Logistic regression, DL |
[45] | Huang Y.Q. | 2016 | Journal of Clinical Oncology | Predict preoperative LN metastases | 526 | 326 | 200 | 2b | Logistic regression |
[46] | Jin C. | 2021 | Nature Communications | Predict response (particularly, pCR) to nCRT | 622 | 321 | 301 | 3 | DL |
[47] | Kleppe A. | 2022 | Lancet Oncology | Optimize adjuvant therapy | 2072 | 997 | 1075 | 3 | Cox regression, DL |
[48] | Li M. | 2021 | World Journal of Gastroenterology | Predict PNI | 303 | 242 | 61 | 2a | Logistic regression |
[49] | Liu H. | 2022 | Journal of Magnetic Resonance Imaging | Evaluate KRAS mutation | 376 | 288 | 88 | 2a | Logistic regression, DL |
[50] | Liu S. | 2021 | Frontiers in Oncology | Detect preoperative EMVI | 281 | 198 | 83 | 2b | Logistic regression |
[51] | Liu X. | 2021 | Lancet EBioMedicine | Predict DMs after nCRT | 235 | 170 | 65 | 3 | DL |
[52] | Mao Y. | 2022 | Frontiers in Oncology | Predict response (particularly, pCR) to nCRT | 216 | 151 | 65 | 2a | Logistic regression |
[53] | Peterson K.J. | 2023 | Journal of Gastrointestinal Surgery | Predict response (particularly, pCR) to nCRT | 131 | 111 | 20 | 2a | Logistic regression |
[54] | van Stiphout R.G.P.M. | 2011 | Radiotherapy & Oncology | Predict response (particularly, pCR) to nCRT | 953 | Various groupings | 3 | SVM | |
[55] | van Stiphout R.G.P.M. | 2014 | Radiotherapy & Oncology | Predict response (particularly, pCR) to nCRT | 190 | 112 | 78 | 3 | Logistic regression |
[56] | Wan L. | 2019 | Abdominal Radiology | Predict response (particularly, pCR) to nCRT | 120 | 84 | 36 | 2b | Logistic regression |
[57] | Wei Q. | 2023 | European Radiology | Predict response (particularly, pCR) to nCRT | 151 | 100 | 51 | 3 (plus 2a) | RF |
[58] | Wei Q. | 2023 | Abdominal Radiology | Predict preoperative LN metastases | 125 | 80 | 45 | 2a | Logistic regression |
[59] | Yi X. | 2019 | Frontiers in Oncology | Predict response (particularly, pCR) to nCRT | 134 | 101 | 33 | 2a | SVM, RF, LASSO |
(A) | Reference | First Author | Year | Performances | |||||
---|---|---|---|---|---|---|---|---|---|
Type | Model Component(s) | Performance | Combined Model | Performance | Notes | ||||
CMs | |||||||||
[40] | Chen L.D. | 2020 | AUC | US–Radiomics | 0.74 | US–Radiomics + Clinical | 0.80 | ||
[41] | Cheng Y. | 2021 | Clinical | 0.84–0.91 | MRI–Radiomics + Clinical | 0.91–0.94 | Range values: minimum, pCR; maximum, GR | ||
[42] | Cui Y. | 2019 | MRI–Radiomics | 0.94 | MRI–Radiomics + Clinical | 0.97 | |||
[43] | Dinapoli N. | 2018 | MRI–Radiomics + Clinical | 0.75 | |||||
[44] | Ding L. | 2020 | MRI Nomograms (2 interrelated outcomes) | 0.89–0.92 | Range values: minimum, degree outcome; maximum, status outcome | ||||
[45] | Huang Y.Q. | 2016 | C-Index | CT–Radiomics + Clinical | 0.78 | ||||
[46] | Jin C. | 2021 | AUC | MRI (2 external validations) | 0.92–0.95 | MRI + Blood Markers | 0.97 | ||
[47] | Kleppe A. | 2022 | HR | H&E–DL (Poor vs. Good) | 3.04 (Adjusted)–3.84 (Unadjusted) | H&E-DL + Pathological Markers (High vs. Low, Intermediate vs. Low) | 10.71, 3.06 | ||
[48] | Li M. | 2021 | AUC | Clinical | 0.67 | Clinical + CT–Radiomics | 0.80 | ||
[49] | Liu H. | 2022 | Clinical|MRI | 0.67|0.77 | Clinical + MRI | 0.84 | |||
[50] | Liu S. | 2021 | Radiomics + Clinical|Radiomics + mrEMVI | 0.70|0.77 | Radiomics + Clinical + mrEMVI | 0.83 | |||
[51] | Liu X. | 2021 | C-Index | MRI–Radiomics | 0.75 | MRI–Radiomics + Clinical | 0.78 | ||
[52] | Mao Y. | 2022 | AUC | Clinical | CT–Radiomics | 0.79|0.83 | Clinical + CT–Radiomics | 0.87 | ||
[53] | Peterson K.J. | 2023 | Clinical Markers | 0.64–0.69 | Clinical Markers + MRI–Radiomics | 0.73 | |||
[54] | van Stiphout RGPM | 2011 | Clinical | 0.69 | Clinical + PET–CT (Post-nCRT) | 0.86 | |||
[55] | van Stiphout R.G.P.M. | 2014 | Clinical + PET–CT | 0.70 | |||||
[56] | Wan L. | 2019 | mrTRG|rT2wSI-related|CATV-related | Training: 0.68, 0.77, 0.83 | MRI + Clinical | 0.84 | |||
[57] | Wei Q. | 2023 | Clinical|MRI-Radiomics | 0.69|0.83 | Clinical + MRI-Radiomics | 0.87 | Performance of best model (RF) | ||
[58] | Wei Q. | 2023 | MRI–Radiomics | 0.85 | Clinical + MRI-Radiomics | 0.93 | Performance of best model (LR) | ||
[59] | Yi X. | 2019 | See (B) sub-table | Three outcomes | |||||
(B) | Reference | First Author | Year | Outcome | Model | ||||
Image1 | Image2 + Clinical | Combined | |||||||
[59] | Yi X. | 2019 | pCR | 0.82 | 0.76 | 0.88 | |||
2019 | GR | 0.79 | 0.77 | 0.90 | |||||
2019 | DS | 0.80 | 0.85 | 0.89 |
Validation | Area Under the Curve | Concordance Index | ||
---|---|---|---|---|
Internal | 0.86 | 0.08 | 0.75 | 0.03 |
External | 0.86 | 0.12 | 0.74 | 0.04 |
Reference | First Author | Year | Feature-Selection Technique(s) | Data | ||
---|---|---|---|---|---|---|
Normalization | Imputation | Augmentation | ||||
NIMs | ||||||
[37] | Peng J. | 2014 | ||||
[38] | Sun Y. | 2017 | ||||
[39] | Valentini V. | 2011 | Z-score transformation | Expectation–maximization | ||
CMs | ||||||
[40] | Chen L.D. | 2020 | Spearman correlation + LASSO | |||
[41] | Cheng Y. | 2021 | Intra-class correlation + Mann–Whitney U test + LASSO | |||
[42] | Cui Y. | 2019 | Univariate LR + LASSO + Pearson correlation | Z-score transformation | ||
[43] | Dinapoli N. | 2018 | Mann-Whitney test | |||
[44] | Ding L. | 2020 | Univariate/Multivariate analyses (NOS) | |||
[45] | Huang Y.Q. | 2016 | LASSO | |||
[46] | Jin C. | 2021 | Image data are normalized | |||
[47] | Kleppe A. | 2022 | ||||
[48] | Li M. | 2021 | Intra-class correlation + 6 other methods (analysis of variance, Pearson, mutual information, L1-based, tree-based, recursive) + univariate LR | Z-score transformation | ||
[49] | Liu H. | 2022 | MRI image normalization to [0, 255] | Yes | ||
[50] | Liu S. | 2021 | Spearman correlation + mRMR + LASSO | Image normalization | ||
[51] | Liu X. | 2021 | Image Z-score transformation | |||
[52] | Mao Y. | 2022 | Inter-/Intra-observer correlation + LASSO + LR (uni-/multi-variate) | |||
[53] | Peterson K.J. | 2023 | Correlation (NOS) + LASSO | Z-score transformation | ||
[54] | van Stiphout R.G.P.M. | 2011 | Spearman correlation + Wilcoxon rank-sum test | Z-score transformation | Mean | |
[55] | van Stiphout R.G.P.M. | 2014 | Spearman correlation + Wilcoxon rank-sum test | Expectation–maximization | ||
[56] | Wan L. | 2019 | Univariate analysis (t and Mann–Whitney U or chi-square and Fisher exact tests) + LASSO + Intraclass correlation | |||
[57] | Wei Q. | 2023 | Inter-class correlation + LASSO | Image intensity normalization to [0, 255] | ||
[58] | Wei Q. | 2023 | Intra-class correlation + Spearman correlation + multivariate LR | Image intensity Z-score transformation | Median | |
[59] | Yi X. | 2019 | Inter-/Intra-observer correlation + LASSO |
Reference | First author | Year | Journal | IMs | CMs | NIMs | Notes |
---|---|---|---|---|---|---|---|
[11] | Lambin P. | 2017 | Nature Reviews Clinical Oncology | Main focus | Briefly mentioned | Not present | Radiomics |
[12] | Meldolesi E. | 2016 | Future Oncology | ||||
[20] | Jia L.L. | 2022 | Frontiers in Oncology | Systematic review (with meta-analysis) | |||
[21] | Bedrikovetski S. | 2021 | BMC Cancer | ||||
[22] | Coppola F. | 2021 | Diagnostics | Radiomics | |||
[23] | Kalantar R. | 2021 | Diagnostics | Deep learning | |||
[24] | Kuntz S. | 2021 | European Journal of Cancer | Deep learning; Systematic review | |||
[25] | Kwok H.C. | 2022 | Abdominal Radiology | Radiomics | |||
[26] | Miranda J. | 2022 | Clinical Imaging | ||||
[27] | Namikawa K. | 2020 | Expert Review of Gastroenterology & Hepatolog | ||||
[28] | Pacal I. | 2020 | Computers in Biology and Medicine | Deep learning | |||
[29] | Qin Y. | 2022 | Frontiers in Oncology | Radiomics | |||
[30] | Reginelli A. | 2021 | Diagnostics | ||||
[31] | Staal F.C.R. | 2021 | Clinical Colorectal Cancer | Radiomics; Systematic review | |||
[32] | Stanzione A. | 2021 | World Journal of Gastroenterology | Radiomics | |||
[33] | Tabari A. | 2022 | Cancers | ||||
[34] | Wang P.P. | 2021 | World Journal of Gastroenterology | ||||
[35] | Wong C. | 2023 | Journal of Magnetic Resonance Imaging | ||||
[36] | Xu Q. | 2021 | Cancer Management and Research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novellino, T.; Masciocchi, C.; Tudor, A.M.; Casà, C.; Chiloiro, G.; Romano, A.; Damiani, A.; Arcuri, G.; Gambacorta, M.A.; Valentini, V. Artificial Intelligence and Rectal Cancer: Beyond Images. Cancers 2025, 17, 2235. https://doi.org/10.3390/cancers17132235
Novellino T, Masciocchi C, Tudor AM, Casà C, Chiloiro G, Romano A, Damiani A, Arcuri G, Gambacorta MA, Valentini V. Artificial Intelligence and Rectal Cancer: Beyond Images. Cancers. 2025; 17(13):2235. https://doi.org/10.3390/cancers17132235
Chicago/Turabian StyleNovellino, Tommaso, Carlotta Masciocchi, Andrada Mihaela Tudor, Calogero Casà, Giuditta Chiloiro, Angela Romano, Andrea Damiani, Giovanni Arcuri, Maria Antonietta Gambacorta, and Vincenzo Valentini. 2025. "Artificial Intelligence and Rectal Cancer: Beyond Images" Cancers 17, no. 13: 2235. https://doi.org/10.3390/cancers17132235
APA StyleNovellino, T., Masciocchi, C., Tudor, A. M., Casà, C., Chiloiro, G., Romano, A., Damiani, A., Arcuri, G., Gambacorta, M. A., & Valentini, V. (2025). Artificial Intelligence and Rectal Cancer: Beyond Images. Cancers, 17(13), 2235. https://doi.org/10.3390/cancers17132235