Molecular Mechanisms of Lymphatic Metastasis in Breast Cancer: An Updated Review
Simple Summary
Abstract
1. Introduction
2. Multivariate Breast Cancer Classification and Relation to Lymphatic Metastasis
3. Evolution of Breast Cancer Treatment in the Context of Lymphatic Dissection
3.1. From Radical Surgery to Systemic Therapy
3.2. Advances in Surgical Approaches
3.3. Experimental Models and the Emerging Role of Lymph Nodes in Metastasis
4. Mechanisms of Lymphatic Invasion and Migration
4.1. Lymphangiogenesis and Immune Modulation
4.2. Tumor Cell Migration
4.3. Molecular Drivers of Lymphatic Invasion
4.4. Transcriptional and Metabolic Adaptation for Lymphatic Spread
5. Lymphatic Microenvironment
6. Epithelial-to-Mesenchymal Transition (EMT) in Lymphatic Dissemination
7. The Tumor Microenvironment in Metastatic Breast Cancer
7.1. Cellular and Molecular Composition
7.2. Gene Expression and Signaling
7.3. Targeting the TME
8. The Role of Epigenetic Regulation in Lymphatic Metastasis of Breast Cancer
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALN | Axillary lymph nodes |
BC | Breast cancer |
BCSCs | Breast cancer stem cells |
BCTCs | Blood circulating tumor cells |
CAFs | Cancer-associated fibroblasts |
CALND | Complete axillary lymph node dissection |
CTCs | Circulating tumor cells |
DCIS | ductal carcinoma in situ |
DNMTs | DNA methyltransferase enzymes |
ECM | Extracellular matrix |
EMP | Epithelial–mesenchymal plasticity |
E/M | Epithelial/Mesenchymal |
EMT | Epithelial-to-mesenchymal transition |
HATs | Histone acetyltransferases |
HDACs | Histone deacetylases |
IDC | Invasive ductal carcinoma |
ILC | Invasive lobular carcinoma |
LCTCs | Lymph Circulating Tumor Cells |
LEC | Lymphatic endothelial cell |
LME | Lymphatic microenvironment |
LVI | Lymphatic vessel invasion |
LMVD | Lymphatic microvessel density |
LYVE-1 | Lymphatic vessel endothelial hyaluronan receptor 1 |
MDSCs | Myeloid-derived suppressor cells |
MET | Mesenchymal-to-epithelial transition |
MMPs | Matrix metalloproteinases |
PROX1 | Prospero homeobox 1 |
RLN | Regional lymph node |
SLN | Sentinel lymph node |
TAMs | Tumor-associated macrophages |
TME | Tumor microenvironment |
TNBC | Triple-negative breast cancer |
TFs | Transcription Factors |
VEGF | Vascular endothelial growth factor |
References
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global Patterns and Trends in Breast Cancer Incidence and Mortality across 185 Countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, R.; Towner, R.; Ahmed, M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers 2023, 15, 2906. [Google Scholar] [CrossRef] [PubMed]
- Panda, V.K.; Mishra, B.; Mahapatra, S.; Swain, B.; Malhotra, D.; Saha, S.; Khanra, S.; Mishra, P.; Majhi, S.; Kumari, K.; et al. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers 2025, 17, 234. [Google Scholar] [CrossRef] [PubMed]
- Natale, G.; Stouthandel, M.E.J.; Van Hoof, T.; Bocci, G. The Lymphatic System in Breast Cancer: Anatomical and Molecular Approaches. Medicina 2021, 57, 1272. [Google Scholar] [CrossRef]
- Riggio, A.I.; Varley, K.E.; Welm, A.L. The Lingering Mysteries of Metastatic Recurrence in Breast Cancer. Br. J. Cancer 2021, 124, 13–26. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Schoppmann, S.F.; Birner, P.; Stöckl, J.; Kalt, R.; Ullrich, R.; Caucig, C.; Nagy, K.; Alitalo, K.; Kerjaschki, D. Tumor-Associated Macrophages Express Lymphatic Endothelial Growth Factors and Are Related to Peritumoral Lymphangiogenesis. Am. J. Pathol. 2002, 161, 947–956. [Google Scholar] [CrossRef]
- Mohammed, R.A.A.; Martin, S.G.; Gill, M.S.; Green, A.R.; Paish, E.C.; Ellis, I.O. Improved Methods of Detection of Lymphovascular Invasion Demonstrate That It Is the Predominant Method of Vascular Invasion in Breast Cancer and Has Important Clinical Consequences. Am. J. Surg. Pathol. 2007, 31, 1825–1833. [Google Scholar] [CrossRef]
- Williams, E.D.; Gao, D.; Redfern, A.; Thompson, E.W. Controversies around Epithelial-Mesenchymal Plasticity in Cancer Metastasis. Nat. Rev. Cancer 2019, 19, 716–732. [Google Scholar] [CrossRef]
- Van Zijl, F.; Krupitza, G.; Mikulits, W. Initial Steps of Metastasis: Cell Invasion and Endothelial Transmigration. Mutat. Res. /Rev. Mutat. Res. 2011, 728, 23–34. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature 2011, 473, 298. [Google Scholar] [CrossRef] [PubMed]
- Cunnick, G.H.; Jiang, W.G.; Douglas-Jones, T.; Watkins, G.; Gomez, K.F.; Morgan, M.J.; Subramanian, A.; Mokbel, K.; Mansel, R.E. Lymphangiogenesis and Lymph Node Metastasis in Breast Cancer. Mol. Cancer 2008, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Nunomiya, K.; Shibata, Y.; Abe, S.; Inoue, S.; Igarashi, A.; Yamauchi, K.; Kimura, T.; Aida, Y.; Nemoto, T.; Sato, M.; et al. Relationship between Serum Level of Lymphatic Vessel Endothelial Hyaluronan Receptor-1 and Prognosis in Patients with Lung Cancer. J. Cancer 2014, 5, 242–247. [Google Scholar] [CrossRef]
- Ramani, P.; Dungwa, J.V.; May, M.T. LYVE-1 Upregulation and Lymphatic Invasion Correlate with Adverse Prognostic Factors and Lymph Node Metastasis in Neuroblastoma. Virchows Arch. 2012, 460, 183–191. [Google Scholar] [CrossRef]
- Mohammed, S.I.; Torres-Luquis, O.; Walls, E.; Lloyd, F. Lymph-Circulating Tumor Cells Show Distinct Properties to Blood-Circulating Tumor Cells and Are Efficient Metastatic Precursors. Mol. Oncol. 2019, 13, 1400–1418. [Google Scholar] [CrossRef]
- Karagiannakos, A.; Adamaki, M.; Tsintarakis, A.; Vojtesek, B.; Fåhraeus, R.; Zoumpourlis, V.; Karakostis, K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers 2022, 14, 664. [Google Scholar] [CrossRef]
- Zhang, Y.; Schroeder, B.E.; Jerevall, P.L.; Ly, A.; Nolan, H.; Schnabel, C.A.; Sgroi, D.C. A Novel Breast Cancer Index for Prediction of Distant Recurrence in HR+ Early-Stage Breast Cancer with One to Three Positive Nodes. Clin. Cancer Res. 2017, 23, 7217–7224. [Google Scholar] [CrossRef]
- Lorusso, G.; Rüegg, C. New Insights into the Mechanisms of Organ-Specific Breast Cancer Metastasis. Semin. Cancer Biol. 2012, 22, 226–233. [Google Scholar] [CrossRef]
- El-Kenawi, A.; Hänggi, K.; Ruffell, B. The Immune Microenvironment and Cancer Metastasis. Cold Spring Harb. Perspect. Med. 2020, 10, a037424. [Google Scholar] [CrossRef]
- Mubarak, F.; Kowkabany, G.; Popp, R.; Bansal, S.; Ahmed, S.H.; Sharan, S.; Sukniam, K.B.; Raikot, S.R.; Jimenez, P.B.; Popp, K.; et al. Early Stage Breast Cancer: Does Histologic Subtype (Ductal vs. Lobular) Impact 5 Year Overall Survival? Cancers 2024, 16, 1509. [Google Scholar] [CrossRef]
- Wong, Y.M.; Jagmohan, P.; Goh, Y.G.; Putti, T.C.; Ow, S.G.W.; Thian, Y.L.; Pillay, P. Infiltrative Pattern of Metastatic Invasive Lobular Breast Carcinoma in the Abdomen: A Pictorial Review. Insights Imaging 2021, 12, 181. [Google Scholar] [CrossRef] [PubMed]
- Fernández, B.; Paish, E.C.; Green, A.R.; Lee, A.H.S.; Macmillan, R.D.; Ellis, I.O.; Rakha, E.A. Lymph-Node Metastases in Invasive Lobular Carcinoma Are Different from Those in Ductal Carcinoma of the Breast. J. Clin. Pathol. 2011, 64, 995–1000. [Google Scholar] [CrossRef]
- Johnson, K.S.; Conant, E.F.; Soo, M.S. Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. J. Breast Imaging 2021, 3, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, D.; Ko, S.; Kim, A.; Mo, K.; Yoon, H. Breast Cancer Metastasis: Mechanisms and Therapeutic Implications. Int. J. Mol. Sci. 2022, 23, 6806. [Google Scholar] [CrossRef]
- Braun, L.; Mietzsch, F.; Seibold, P.; Schneeweiss, A.; Schirmacher, P.; Chang-Claude, J.; Peter Sinn, H.; Aulmann, S. Intrinsic Breast Cancer Subtypes Defined by Estrogen Receptor Signalling—Prognostic Relevance of Progesterone Receptor Loss. Mod. Pathol. 2013, 26, 1161–1171. [Google Scholar] [CrossRef]
- To, B.; Isaac, D.; Andrechek, E.R. Studying Lymphatic Metastasis in Breast Cancer: Current Models, Strategies, and Clinical Perspectives. J. Mammary Gland. Biol. Neoplasia 2020, 25, 191–203. [Google Scholar] [CrossRef]
- Fisher, B.; Anderson, S. Conservative Surgery for the Management of Invasive and Noninvasive Carcinoma of the Breast: NSABP Trials. National Surgical Adjuvant Breast and Bowel Project. World J. Surg. 1994, 18, 63–69. [Google Scholar] [CrossRef]
- Han, M.; Watts, J.A.; Jamshidi-Parsian, A.; Nadeem, U.; Sarimollaoglu, M.; Siegel, E.R.; Zharov, V.P.; Galanzha, E.I. In Vivo Lymphatic Circulating Tumor Cells and Progression of Metastatic Disease. Cancers 2020, 12, 2866. [Google Scholar] [CrossRef]
- Pereira, E.R.; Kedrin, D.; Seano, G.; Gautier, O.; Meijer, E.F.J.; Jones, D.; Chin, S.M.; Kitahara, S.; Bouta, E.M.; Chang, J.; et al. Lymph Node Metastases Can Invade Local Blood Vessels, Exit the Node, and Colonize Distant Organs in Mice. Science 2018, 359, 1403–1407. [Google Scholar] [CrossRef]
- Freeman, M.D.; Gopman, J.M.; Salzberg, C.A. The Evolution of Mastectomy Surgical Technique: From Mutilation to Medicine. Gland. Surg. 2018, 7, 308. [Google Scholar] [CrossRef]
- Nathanson, S.D.; Kwon, D.; Kapke, A.; Alford, S.H.; Chitale, D. The Role of Lymph Node Metastasis in the Systemic Dissemination of Breast Cancer. Ann. Surg. Oncol. 2009, 16, 3396–3405. [Google Scholar] [CrossRef] [PubMed]
- Kuerer, H.M.; Newman, L.A.; Smith, T.L.; Ames, F.C.; Hunt, K.K.; Dhingra, K.; Theriault, R.L.; Singh, G.; Binkley, S.M.; Sneige, N.; et al. Clinical Course of Breast Cancer Patients with Complete Pathologic Primary Tumor and Axillary Lymph Node Response to Doxorubicin-Based Neoadjuvant Chemotherapy. J. Clin. Oncol. 1999, 17, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Cong, B.; Cao, X.; Jiang, W.G.; Ye, L. Molecular and Cellular Machinery of Lymphatic Metastasis in Breast Cancer. Onco Targets Ther. 2025, 18, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Bryant, J.; Wolmark, N.; Mamounas, E.; Brown, A.; Fisher, E.R.; Wickerham, D.L.; Begovic, M.; DeCillis, A.; Robidoux, A.; et al. Effect of Preoperative Chemotherapy on the Outcome of Women with Operable Breast Cancer. J. Clin. Oncol. 1998, 16, 2672–2685. [Google Scholar] [CrossRef]
- Dominici, L.S.; Negron Gonzalez, V.M.; Buzdar, A.U.; Lucci, A.; Mittendorf, E.A.; Le-Petross, H.T.; Babiera, G.V.; Meric-Bernstam, F.; Hunt, K.K.; Kuerer, H.M. Cytologically Proven Axillary Lymph Node Metastases Are Eradicated in Patients Receiving Preoperative Chemotherapy with Concurrent Trastuzumab for HER2-Positive Breast Cancer. Cancer 2010, 116, 2884–2889. [Google Scholar] [CrossRef]
- Kuerer, H.M.; Sahin, A.A.; Hunt, K.K.; Newman, L.A.; Breslin, T.M.; Ames, F.C.; Ross, M.I.; Buzdar, A.U.; Hortobagyi, G.N.; Singletary, S.E. Incidence and Impact of Documented Eradication of Breast Cancer Axillary Lymph Node Metastases before Surgery in Patients Treated with Neoadjuvant Chemotherapy. Ann. Surg. 1999, 230, 72–78. [Google Scholar] [CrossRef]
- Brown, M.; Assen, F.P.; Leithner, A.; Abe, J.; Schachner, H.; Asfour, G.; Bago-Horvath, Z.; Stein, J.V.; Uhrin, P.; Sixt, M.; et al. Lymph Node Blood Vessels Provide Exit Routes for Metastatic Tumor Cell Dissemination in Mice. Science 2018, 359, 1408–1411. [Google Scholar] [CrossRef]
- Padera, T.P.; Meijer, E.F.J.; Munn, L.L. The Lymphatic System in Disease Processes and Cancer Progression. Annu. Rev. Biomed. Eng. 2016, 18, 125–158. [Google Scholar] [CrossRef]
- Kola, B.; Kakkat, S.; Suman, P.; Crouch, E.; Chakroborty, D.; Sarkar, C. Lymphangiogenesis in Breast Cancer: From Molecular Mechanisms to Clinical Implications. FASEB J. 2025, 39, e70590. [Google Scholar] [CrossRef]
- Ran, S.; Volk, L.; Hall, K.; Flister, M.J. Lymphangiogenesis and Lymphatic Metastasis in Breast Cancer. Pathophysiol. Off. J. Int. Soc. Pathophysiol. / ISP 2009, 17, 229. [Google Scholar] [CrossRef]
- Karaman, S.; Detmar, M. Mechanisms of Lymphatic Metastasis. J. Clin. Investig. 2014, 124, 922. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.P.; Witte, M.H. Cancer Metastasis through the Lymphatic versus Blood Vessels. Clin. Exp. Metastasis 2024, 41, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Stacker, S.A.; Williams, S.P.; Karnezis, T.; Shayan, R.; Fox, S.B.; Achen, M.G. Lymphangiogenesis and Lymphatic Vessel Remodelling in Cancer. Nat. Rev. Cancer 2014, 14, 159–172. [Google Scholar] [CrossRef]
- Zhou, H.; Lei, P.J.; Padera, T.P. Progression of Metastasis through Lymphatic System. Cells 2021, 10, 627. [Google Scholar] [CrossRef]
- Differential In Vivo and In Vitro Expression of Vascular Endothelial Growth Factor (VEGF)-C and VEGF-D in Tumors and Its Relationship to Lymphatic Metastasis in Immunocompetent Rats1|Cancer Research|American Association for Cancer Research. Available online: https://aacrjournals.org/cancerres/article/63/3/713/510968/Differential-in-Vivo-and-in-Vitro-Expression-of (accessed on 5 March 2025).
- Ding, M.; Fu, X.; Tan, H.; Wang, R.; Chen, Z.; Ding, S. The Effect of Vascular Endothelial Growth Factor C Expression in Tumor-Associated Macrophages on Lymphangiogenesis and Lymphatic Metastasis in Breast Cancer. Mol. Med. Rep. 2012, 6, 1023–1029. [Google Scholar] [CrossRef]
- Anstee, J.E.; Feehan, K.T.; Opzoomer, J.W.; Dean, I.; Muller, H.P.; Bahri, M.; Cheung, T.S.; Liakath-Ali, K.; Liu, Z.; Choy, D.; et al. LYVE-1+ Macrophages Form a Collaborative CCR5-Dependent Perivascular Niche That Influences Chemotherapy Responses in Murine Breast Cancer. Dev. Cell 2023, 58, 1548–1561.e10. [Google Scholar] [CrossRef]
- Jamiyan, T.; Kuroda, H.; Yamaguchi, R.; Abe, A.; Hayashi, M. CD68- and CD163-Positive Tumor-Associated Macrophages in Triple Negative Cancer of the Breast. Virchows Arch. 2020, 477, 767–775. [Google Scholar] [CrossRef]
- Ward, R.; Sims, A.H.; Lee, A.; Lo, C.; Wynne, L.; Yusuf, H.; Gregson, H.; Lisanti, M.P.; Sotgia, F.; Landberg, G.; et al. Monocytes and Macrophages, Implications for Breast Cancer Migration and Stem Cell-like Activity and Treatment. Oncotarget 2015, 6, 14687–14699. [Google Scholar] [CrossRef]
- Lewis, C.E.; Pollard, J.W. Distinct Role of Macrophages in Different Tumor Microenvironments. Cancer Res. 2006, 66, 605–612. [Google Scholar] [CrossRef]
- Gibert-Ramos, A.; López, C.; Bosch, R.; Fontoura, L.; Bueno, G.; García-Rojo, M.; Berenguer, M.; Lejeune, M. Immune Response Profile of Primary Tumour, Sentinel and Non-Sentinel Axillary Lymph Nodes Related to Metastasis in Breast Cancer: An Immunohistochemical Point of View. Histochem. Cell Biol. 2019, 152, 177–193. [Google Scholar] [CrossRef]
- Raschioni, C.; Bottai, G.; Sagona, A.; Errico, V.; Testori, A.; Gatzemeier, W.; Corsi, F.; Tinterri, C.; Roncalli, M.; Santarpia, L.; et al. CXCR4/CXCL12 Signaling and Protumor Macrophages in Primary Tumors and Sentinel Lymph Nodes Are Involved in Luminal B Breast Cancer Progression. Dis. Markers 2018, 2018, 5018671. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Stolarska, M.A.; Othmer, H.G. The Role of the Microenvironment in Tumor Growth and Invasion. Prog. Biophys. Mol. Biol. 2011, 106, 353–379. [Google Scholar] [CrossRef] [PubMed]
- Pula, B.; Witkiewicz, W.; Dziegiel, P.; Podhorska-Okolow, M. Significance of Podoplanin Expression in Cancer-Associated Fibroblasts: A Comprehensive Review. Int. J. Oncol. 2013, 42, 1849–1857. [Google Scholar] [CrossRef]
- Pula, B.; Wojnar, A.; Witkiewicz, W.; Dziegiel, P.; Podhorska-Okolow, M. Podoplanin Expression in Cancer-Associated Fibroblasts Correlates with VEGF-C Expression in Cancer Cells of Invasive Ductal Breast Carcinoma. Neoplasma 2013, 60, 516–524. [Google Scholar] [CrossRef]
- Zhu, X.W.; Mulcahy, L.A.; Mohammed, R.A.A.; Lee, A.H.S.; Franks, H.A.; Kilpatrick, L.; Yilmazer, A.; Paish, E.C.; Ellis, I.O.; Patel, P.M.; et al. IL-17 Expression by Breast-Cancer-Associated Macrophages: IL-17 Promotes Invasiveness of Breast Cancer Cell Lines. Breast Cancer Res. 2008, 10, R95. [Google Scholar] [CrossRef]
- Mendoza-Rodríguez, M.G.; Ayala-Sumuano, J.T.; García-Morales, L.; Zamudio-Meza, H.; Pérez-Yepez, E.A.; Meza, I. IL-1β Inflammatory Cytokine-Induced TP63 Isoform ∆NP63α Signaling Cascade Contributes to Cisplatin Resistance in Human Breast Cancer Cells. Int. J. Mol. Sci. 2019, 20, 270. [Google Scholar] [CrossRef]
- Rezaei, M.; Friedrich, K.; Wielockx, B.; Kuzmanov, A.; Kettelhake, A.; Labelle, M.; Schnittler, H.; Baretton, G.; Breier, G. Interplay between Neural-Cadherin and Vascular Endothelial-Cadherin in Breast Cancer Progression. Breast Cancer Res. 2012, 14, R154. [Google Scholar] [CrossRef]
- Hazan, R.B.; Qiao, R.; Keren, R.; Badano, I.; Suyama, K. Cadherin Switch in Tumor Progression. Ann. N. Y. Acad. Sci. 2004, 1014, 155–163. [Google Scholar] [CrossRef]
- Roussos, E.T.; Keckesova, Z.; Haley, J.D.; Epstein, D.M.; Weinberg, R.A.; Condeelis, J.S. AACR Special Conference on Epithelial-Mesenchymal Transition and Cancer Progression and Treatment. Cancer Res. 2010, 70, 7360–7364. [Google Scholar] [CrossRef]
- Li, C.Y.; Brown, S.; Mehrara, B.J.; Kataru, R.P. Lymphatics in Tumor Progression and Immunomodulation. Int. J. Mol. Sci. 2022, 23, 2127. [Google Scholar] [CrossRef]
- Sabeh, F.; Shimizu-Hirota, R.; Weiss, S.J. Protease-Dependent versus -Independent Cancer Cell Invasion Programs: Three-Dimensional Amoeboid Movement Revisited. J. Cell Biol. 2009, 185, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Guan, X. Cancer Metastases: Challenges and Opportunities. Acta Pharm. Sin. B 2015, 5, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Fife, C.M.; McCarroll, J.A.; Kavallaris, M. Movers and Shakers: Cell Cytoskeleton in Cancer Metastasis. Br. J. Pharmacol. 2014, 171, 5507–5523. [Google Scholar] [CrossRef]
- Pollard, T.D.; Borisy, G.G. Cellular Motility Driven by Assembly and Disassembly of Actin Filaments. Cell 2003, 112, 453–465. [Google Scholar] [CrossRef]
- Ridley, A.J.; Schwartz, M.A.; Burridge, K.; Firtel, R.A.; Ginsberg, M.H.; Borisy, G.; Parsons, J.T.; Horwitz, A.R. Cell Migration: Integrating Signals from Front to Back. Science 2003, 302, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.M.; Shiri, S.; Farsinejad, S. Metastasis Review: From Bench to Bedside. Tumour Biol. 2014, 35, 8483–8523. [Google Scholar] [CrossRef]
- Chen, L.C.; Tu, S.H.; Huang, C.S.; Chen, C.S.; Ho, C.T.; Lin, H.W.; Lee, C.H.; Chang, H.W.; Chang, C.H.; Wu, C.H.; et al. Human Breast Cancer Cell Metastasis Is Attenuated by Lysyl Oxidase Inhibitors through Down-Regulation of Focal Adhesion Kinase and the Paxillin-Signaling Pathway. Breast Cancer Res. Treat. 2012, 134, 989–1004. [Google Scholar] [CrossRef]
- Ji, H.; Hu, C.; Yang, X.; Liu, Y.; Ji, G.; Ge, S.; Wang, X.; Wang, M. Lymph Node Metastasis in Cancer Progression: Molecular Mechanisms, Clinical Significance and Therapeutic Interventions. Signal Transduct. Target. Ther. 2023, 8, 367. [Google Scholar] [CrossRef]
- Wojnar, A. Impact of Different Tumour Stroma Assessment Methods Regarding Podoplanin Expression on Clinical Outcome in Patients with Invasive Ductal Breast Carcinoma. Anticancer. Res. 2013, 33, 1447–1455. [Google Scholar]
- Leung, E.; Xue, A.; Wang, Y.; Rougerie, P.; Sharma, V.P.; Eddy, R.; Cox, D.; Condeelis, J. Blood Vessel Endothelium-Directed Tumor Cell Streaming in Breast Tumors Requires the HGF/C-Met Signaling Pathway. Oncogene 2016, 36, 2680–2692. [Google Scholar] [CrossRef]
- Veeravalli, K.K.; Chetty, C.; Ponnala, S.; Gondi, C.S.; Lakka, S.S.; Fassett, D.; Klopfenstein, J.D.; Dinh, D.H.; Gujrati, M.; Rao, J.S. MMP-9, UPAR and Cathepsin B Silencing Downregulate Integrins in Human Glioma Xenograft Cells in Vitro and in Vivo in Nude Mice. PLoS ONE 2010, 5, e11583. [Google Scholar] [CrossRef] [PubMed]
- Perentes, J.Y.; Kirkpatrick, N.D.; Nagano, S.; Smith, E.Y.; Shaver, C.M.; Sgroi, D.; Garkavtsev, I.; Munn, L.L.; Jain, R.K.; Boucher, Y. Cancer Cell-Associated MT1-MMP Promotes Blood Vessel Invasion and Distant Metastasis in Triple-Negative Mammary Tumors. Cancer Res. 2011, 71, 4527–4538. [Google Scholar] [CrossRef]
- Nakagawa, T.; Huang, S.K.; Martinez, S.R.; Tran, A.N.; Elashoff, D.; Ye, X.; Turner, R.R.; Giuliano, A.E.; Hoon, D.S.B. Proteomic Profiling of Primary Breast Cancer Predicts Axillary Lymph Node Metastasis. Cancer Res. 2006, 66, 11825–11830. [Google Scholar] [CrossRef] [PubMed]
- Vecchi, M.; Confalonieri, S.; Nuciforo, P.; Viganò, M.A.; Capra, M.; Bianchi, M.; Nicosia, D.; Bianchi, F.; Galimberti, V.; Viale, G.; et al. Breast Cancer Metastases Are Molecularly Distinct from Their Primary Tumors. Oncogene 2008, 27, 2148–2158. [Google Scholar] [CrossRef]
- Calvo, J.; Sánchez-Cid, L.; Muñoz, M.; Lozano, J.J.; Thomson, T.M.; Fernández, P.L. Infrequent Loss of Luminal Differentiation in Ductal Breast Cancer Metastasis. PLoS ONE 2013, 8, e78097. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, B.; Li, X.; Zhang, L.; Niu, Y.; Xiao, C.; Ning, L.; Fang, Z.; Wang, Y.; Zhang, L.; et al. Differentially Expressed Genes between Primary Cancer and Paired Lymph Node Metastases Predict Clinical Outcome of Node-Positive Breast Cancer Patients. Breast Cancer Res. Treat. 2007, 103, 319–329. [Google Scholar] [CrossRef]
- Hao, X.; Sun, B.; Hu, L.; Lähdesmäki, H.; Dunmire, V.; Feng, Y.; Zhang, S.W.; Wang, H.; Wu, C.; Wang, H.; et al. Differential Gene and Protein Expression in Primary Breast Malignancies and Their Lymph Node Metastases as Revealed by Combined CDNA Microarray and Tissue Microarray Analysis. Cancer 2004, 100, 1110–1122. [Google Scholar] [CrossRef]
- Suzuki, M.; Tarin, D. Gene Expression Profiling of Human Lymph Node Metastases and Matched Primary Breast Carcinomas: Clinical Implications. Mol. Oncol. 2007, 1, 172–180. [Google Scholar] [CrossRef]
- Mathe, A.; Wong-Brown, M.; Morten, B.; Forbes, J.F.; Braye, S.G.; Avery-Kiejda, K.A.; Scott, R.J. Novel Genes Associated with Lymph Node Metastasis in Triple Negative Breast Cancer. Sci. Rep. 2015, 5, 15832. [Google Scholar] [CrossRef]
- Xu, K.; Wang, R.; Xie, H.; Hu, L.; Wang, C.; Xu, J.; Zhu, C.; Liu, Y.; Gao, F.; Li, X.; et al. Single-Cell RNA Sequencing Reveals Cell Heterogeneity and Transcriptome Profile of Breast Cancer Lymph Node Metastasis. Oncogenesis 2021, 10, 66. [Google Scholar] [CrossRef]
- Cheng, X.; Cao, Y.; Liu, X.; Li, Y.; Li, Q.; Gao, D.; Yu, Q. Single-Cell and Spatial Omics Unravel the Spatiotemporal Biology of Tumour Border Invasion and Haematogenous Metastasis. Clin. Transl. Med. 2024, 14, e70036. [Google Scholar] [CrossRef] [PubMed]
- Eltayeb, M.A.; Faggad, A.; Abbadi, O.S.; Elhassan, M.M.A. Characteristics of Breast Cancer at First Presentation in Sudanese Patients Attending the National Cancer Institute–University of Gezira (NCI–UG). Arch. Breast Cancer 2020, 7, 104–110. [Google Scholar] [CrossRef]
- Gu, X.; Wei, S.; Lv, X. Circulating Tumor Cells: From New Biological Insights to Clinical Practice. Signal Transduct. Target. Ther. 2024, 9, 226. [Google Scholar] [CrossRef]
- Zhan, Q.; Liu, B.; Situ, X.; Luo, Y.; Fu, T.; Wang, Y.; Xie, Z.; Ren, L.; Zhu, Y.; He, W.; et al. New Insights into the Correlations between Circulating Tumor Cells and Target Organ Metastasis. Signal Transduct. Target. Ther. 2023, 8, 465. [Google Scholar] [CrossRef]
- Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective Identification of Tumorigenic Breast Cancer Cells. Proc. Natl. Acad. Sci. USA 2003, 100, 3983–3988. [Google Scholar] [CrossRef]
- Fillmore, C.M.; Kuperwasser, C. Human Breast Cancer Cell Lines Contain Stem-like Cells That Self-Renew, Give Rise to Phenotypically Diverse Progeny and Survive Chemotherapy. Breast Cancer Res. 2008, 10, R25. [Google Scholar] [CrossRef]
- Liu, F.; Gu, L.N.; Shan, B.E.; Geng, C.Z.; Sang, M.X. Biomarkers for EMT and MET in Breast Cancer: An Update. Oncol. Lett. 2016, 12, 4869–4876. [Google Scholar] [CrossRef]
- Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in Cancer. Nat. Rev. Cancer 2018, 18, 128–134. [Google Scholar] [CrossRef]
- Karlsson, M.C.; Gonzalez, S.F.; Welin, J.; Fuxe, J. Epithelial-mesenchymal Transition in Cancer Metastasis through the Lymphatic System. Mol. Oncol. 2017, 11, 781. [Google Scholar] [CrossRef]
- Pang, M.F.; Georgoudaki, A.M.; Lambut, L.; Johansson, J.; Tabor, V.; Hagikura, K.; Jin, Y.; Jansson, M.; Alexander, J.S.; Nelson, C.M.; et al. TGF-Β1-Induced EMT Promotes Targeted Migration of Breast Cancer Cells through the Lymphatic System by the Activation of CCR7/CCL21-Mediated Chemotaxis. Oncogene 2015, 35, 748–760. [Google Scholar] [CrossRef]
- Aiello, N.M.; Kang, Y. Context-Dependent EMT Programs in Cancer Metastasis. J. Exp. Med. 2019, 216, 1016–1026. [Google Scholar] [CrossRef]
- Foroni, C.; Broggini, M.; Generali, D.; Damia, G. Epithelial-Mesenchymal Transition and Breast Cancer: Role, Molecular Mechanisms and Clinical Impact. Cancer Treat. Rev. 2012, 38, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz, A.; Ahrends, T.; Wełnicka-Jaśkiewicz, M.; Seroczyńska, B.; Skokowski, J.; Jaśkiewicz, J.; Szade, J.; Biernat, W.; Zaczek, A.J. Expression of Epithelial to Mesenchymal Transition-Related Markers in Lymph Node Metastases as a Surrogate for Primary Tumor Metastatic Potential in Breast Cancer. J. Transl. Med. 2012, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, X.; Chang, A.; Huang, C.; Yang, L.; Xiang, Z.; Zhou, Y. Expression and Clinical Significance of Microvessel Density and Its Association with TWIST in Nasopharyngeal Carcinoma. Int. J. Clin. Exp. Med. 2015, 8, 1265. [Google Scholar] [PubMed]
- Che, N.; Zhao, X.L.; Sun, T.; Zhao, X.M.; Gu, Q.; Dong, X.Y.; Zhao, N.; Liu, Y.R.; Yao, Z.; Sun, B.C. The Role of Twist1 in Hepatocellular Carcinoma Angiogenesis: A Clinical Study. Hum. Pathol. 2011, 42, 840–847. [Google Scholar] [CrossRef]
- Imani, S.; Hosseinifard, H.; Cheng, J.; Wei, C.; Fu, J. Prognostic Value of EMT-Inducing Transcription Factors (EMT-TFs) in Metastatic Breast Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 28587. [Google Scholar] [CrossRef]
- Siersbæk, R.; Scabia, V.; Nagarajan, S.; Chernukhin, I.; Papachristou, E.K.; Broome, R.; Johnston, S.J.; Joosten, S.E.P.; Green, A.R.; Kumar, S.; et al. IL6/STAT3 Signaling Hijacks Estrogen Receptor α Enhancers to Drive Breast Cancer Metastasis. Cancer Cell 2020, 38, 412–423.e9. [Google Scholar] [CrossRef]
- Du, F.Y.; Zhou, Q.F.; Sun, W.J.; Chen, G.L. Targeting Cancer Stem Cells in Drug Discovery: Current State and Future Perspectives. World J. Stem Cells 2019, 11, 398–420. [Google Scholar] [CrossRef]
- Scioli, M.G.; Storti, G.; D’amico, F.; Gentile, P.; Fabbri, G.; Cervelli, V.; Orlandi, A. The Role of Breast Cancer Stem Cells as a Prognostic Marker and a Target to Improve the Efficacy of Breast Cancer Therapy. Cancers 2019, 11, 1021. [Google Scholar] [CrossRef]
- Tan, S.; Yamashita, A.; Gao, S.J.; Kurisawa, M. Hyaluronic Acid Hydrogels with Defined Crosslink Density for the Efficient Enrichment of Breast Cancer Stem Cells. Acta Biomater. 2019, 94, 320–329. [Google Scholar] [CrossRef]
- Qi, M.; Xia, Y.; Wu, Y.; Zhang, Z.; Wang, X.; Lu, L.; Dai, C.; Song, Y.; Xu, K.; Ji, W.; et al. Lin28B-High Breast Cancer Cells Promote Immune Suppression in the Lung Pre-Metastatic Niche via Exosomes and Support Cancer Progression. Nat. Commun. 2022, 13, 897. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, Q.; Zou, Y.; Chen, H.; Qi, L.; Chen, Y. Stem Cells and Cellular Origins of Breast Cancer: Updates in the Rationale, Controversies, and Therapeutic Implications. Front. Oncol. 2019, 9, 820. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Farzaneh, M. Signaling Pathways Governing Breast Cancer Stem Cells Behavior. Stem Cell Res. Ther. 2021, 12, 245. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xu, J.; Tang, L.; Guan, X. Breast Cancer Stem Cell: The Roles and Therapeutic Implications. Cell Mol. Life Sci. 2017, 74, 951–966. [Google Scholar] [CrossRef]
- Bulfoni, M.; Gerratana, L.; Del Ben, F.; Marzinotto, S.; Sorrentino, M.; Turetta, M.; Scoles, G.; Toffoletto, B.; Isola, M.; Beltrami, C.A.; et al. In Patients with Metastatic Breast Cancer the Identification of Circulating Tumor Cells in Epithelial-to-Mesenchymal Transition Is Associated with a Poor Prognosis. Breast Cancer Res. 2016, 18, 30. [Google Scholar] [CrossRef]
- Grosse-Wilde, A.; D’Hérouël, A.F.; McIntosh, E.; Ertaylan, G.; Skupin, A.; Kuestner, R.E.; Del Sol, A.; Walters, K.A.; Huang, S. Stemness of the Hybrid Epithelial/Mesenchymal State in Breast Cancer and Its Association with Poor Survival. PLoS ONE 2015, 10, e0126522. [Google Scholar] [CrossRef]
- Maller, O.; Martinson, H.; Schedin, P. Extracellular Matrix Composition Reveals Complex and Dynamic Stromal-Epithelial Interactions in the Mammary Gland. J. Mammary Gland. Biol. Neoplasia 2010, 15, 301–318. [Google Scholar] [CrossRef]
- Sakakura, T.; Nishizuka, Y.; Dawe, C.J. Mesenchyme-Dependent Morphogenesis and Epithelium-Specific Cytodifferentiation in Mouse Mammary Gland. Science 1976, 194, 1439–1441. [Google Scholar] [CrossRef]
- Place, A.E.; Jin Huh, S.; Polyak, K. The Microenvironment in Breast Cancer Progression: Biology and Implications for Treatment. Breast Cancer Res. 2011, 13, 227. [Google Scholar] [CrossRef]
- Orimo, A.; Gupta, P.B.; Sgroi, D.C.; Arenzana-Seisdedos, F.; Delaunay, T.; Naeem, R.; Carey, V.J.; Richardson, A.L.; Weinberg, R.A. Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell 2005, 121, 335–348. [Google Scholar] [CrossRef]
- Hu, M.; Yao, J.; Carroll, D.K.; Weremowicz, S.; Chen, H.; Carrasco, D.; Richardson, A.; Violette, S.; Nikolskaya, T.; Nikolsky, Y.; et al. Regulation of in Situ to Invasive Breast Carcinoma Transition. Cancer Cell 2008, 13, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Eiro, N.; González, L.; Martínez-Ordoñez, A.; Fernandez-Garcia, B.; González, L.O.; Cid, S.; Dominguez, F.; Perez-Fernandez, R.; Vizoso, F.J. Cancer-Associated Fibroblasts Affect Breast Cancer Cell Gene Expression, Invasion and Angiogenesis. Cell. Oncol. 2018, 41, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, C.; Muthana, M.; Coffelt, S.B.; Lewis, C.E. The Role of Myeloid Cells in the Promotion of Tumour Angiogenesis. Nat. Rev. Cancer 2008, 8, 618–631. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.G.; Niessen, K.; Kulic, I.; Raouf, A.; Eaves, C.; Pollet, I.; Karsan, A. Jagged1-Mediated Notch Activation Induces Epithelial-to-Mesenchymal Transition through Slug-Induced Repression of E-Cadherin. J. Exp. Med. 2007, 204, 2935–2948. [Google Scholar] [CrossRef]
- Morales, L.; Neven, P.; Timmerman, D.; Christiaens, M.R.; Vergote, I.; Van Limbergen, E.; Carbonez, A.; Van Huffel, S.; Ameye, L.; Paridaens, R. Acute Effects of Tamoxifen and Third-Generation Aromatase Inhibitors on Menopausal Symptoms of Breast Cancer Patients. Anticancer. Drugs 2004, 15, 753–760. [Google Scholar] [CrossRef]
- Rizzo, P.; Miao, H.; D’Souza, G.; Osipo, C.; Yun, J.; Zhao, H.; Mascarenhas, J.; Wyatt, D.; Antico, G.; Hao, L.; et al. Cross-Talk between Notch and the Estrogen Receptor in Breast Cancer Suggests Novel Therapeutic Approaches. Cancer Res. 2008, 68, 5226–5235. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Luo, J.; Xiao, W.; Ye, X.; Chen, M.; Li, Y.; Zhang, G.J. Notch3 Inhibits Epithelial–Mesenchymal Transition by Activating Kibra-Mediated Hippo/YAP Signaling in Breast Cancer Epithelial Cells. Oncogenesis 2016, 5, e269. [Google Scholar] [CrossRef]
- Dezso, Z.; Oestreicher, J.; Weaver, A.; Santiago, S.; Agoulnik, S.; Chow, J.; Oda, Y.; Funahashi, Y. Gene Expression Profiling Reveals Epithelial Mesenchymal Transition (EMT) Genes Can Selectively Differentiate Eribulin Sensitive Breast Cancer Cells. PLoS ONE 2014, 9, e106131. [Google Scholar] [CrossRef]
- Nandi, A.; Chakrabarti, R. The Many Facets of Notch Signaling in Breast Cancer: Toward Overcoming Therapeutic Resistance. Genes. Dev. 2020, 34, 1422–1438. [Google Scholar] [CrossRef]
- Leek, R.D.; Landers, R.; Fox, S.B.; Ng, F.; Harris, A.L.; Lewis, C.E. Association of Tumour Necrosis Factor Alpha and Its Receptors with Thymidine Phosphorylase Expression in Invasive Breast Carcinoma. Br. J. Cancer 1998, 77, 2246–2251. [Google Scholar] [CrossRef]
- Shimizu, M.; Cohen, B.; Goldvasser, P.; Berman, H.; Virtanen, C.; Reedijk, M. Plasminogen Activator UPA Is a Direct Transcriptional Target of the JAG1-Notch Receptor Signaling Pathway in Breast Cancer. Cancer Res. 2011, 71, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Piha-Paul, S.A.; Munster, P.N.; Hollebecque, A.; Argilés, G.; Dajani, O.; Cheng, J.D.; Wang, R.; Swift, A.; Tosolini, A.; Gupta, S. Results of a Phase 1 Trial Combining Ridaforolimus and MK-0752 in Patients with Advanced Solid Tumours. Eur. J. Cancer 2015, 51, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, M.A.; Aftimos, P.; Claire Dees, E.; LoRusso, P.M.; Pegram, M.D.; Awada, A.; Huang, B.; Cesari, R.; Jiang, Y.; Shaik, M.N.; et al. Phase I Study of the Gamma Secretase Inhibitor PF-03084014 in Combination with Docetaxel in Patients with Advanced Triple-Negative Breast Cancer. Oncotarget 2017, 8, 2320–2328. [Google Scholar] [CrossRef]
- So, J.Y.; Wahler, J.; Das Gupta, S.; Salerno, D.M.; Maehr, H.; Uskokovic, M.; Suh, N. HES1-Mediated Inhibition of Notch1 Signaling by a Gemini Vitamin D Analog Leads to Decreased CD44(+)/CD24(-/Low) Tumor-Initiating Subpopulation in Basal-like Breast Cancer. J. Steroid Biochem. Mol. Biol. 2015, 148, 111–121. [Google Scholar] [CrossRef]
- Garcia-Martinez, L.; Zhang, Y.; Nakata, Y.; Chan, H.L.; Morey, L. Epigenetic Mechanisms in Breast Cancer Therapy and Resistance. Nat. Commun. 2021, 12, 1786. [Google Scholar] [CrossRef]
- Ilango, S.; Paital, B.; Jayachandran, P.; Padma, P.R.; Nirmaladevi, R. Epigenetic Alterations in Cancer. Front Biosci (Landmark Ed.) 2020, 25, 1058–1109. [Google Scholar] [CrossRef]
- Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in Human Disease and Prospects for Epigenetic Therapy. Nature 2004, 429, 457–463. [Google Scholar] [CrossRef]
- Bird, A. DNA Methylation Patterns and Epigenetic Memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef]
- Kim, M.S.; Lebron, C.; Nagpal, J.K.; Chae, Y.K.; Chang, X.; Huang, Y.; Chuang, T.; Yamashita, K.; Trink, B.; Ratovitski, E.A.; et al. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem. Biophys. Res. Commun. 2008, 370, 38–43, ISSN 0006-291X. [Google Scholar] [CrossRef]
- Umetani, N.; Mori, T.; Koyanagi, K.; Shinozaki, M.; Kim, J.; Giuliano, A.E.; Hoon, D.S.B. Aberrant Hypermethylation of ID4 Gene Promoter Region Increases Risk of Lymph Node Metastasis in T1 Breast Cancer. Oncogene 2005, 24, 4721–4727. [Google Scholar] [CrossRef]
- Jung, S.P.; Kim, S.; Nam, S.J.; Kim, I.; Bae, J.W. The Role of the CDH1 Promoter Hypermethylation in the Axillary Lymph Node Metastasis and Prognosis. J. Breast Cancer 2013, 16, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Barekati, Z.; Radpour, R.; Lu, Q.; Bitzer, J.; Zheng, H.; Toniolo, P.; Lenner, P.; Zhong, X.Y. Methylation Signature of Lymph Node Metastases in Breast Cancer Patients. BMC Cancer 2012, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, G.; Laurito, S.; Marzese, D.M.; Gago, F.; Orozco, J.; Tello, O.; Branham, T.; Campoy, E.M.; Roqué, M. Epigenetic Variations in Breast Cancer Progression to Lymph Node Metastasis. Clin. Exp. Metastasis 2015, 32, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Mathe, A.; Wong-Brown, M.; Locke, W.J.; Stirzaker, C.; Braye, S.G.; Forbes, J.F.; Clark, S.J.; Avery-Kiejda, K.A.; Scott, R.J. DNA Methylation Profile of Triple Negative Breast Cancer-Specific Genes Comparing Lymph Node Positive Patients to Lymph Node Negative Patients. Sci. Rep. 2016, 6, 33435. [Google Scholar] [CrossRef]
- Leslie, P.L.; Chao, Y.L.; Tsai, Y.H.; Ghosh, S.K.; Porrello, A.; Van Swearingen, A.E.D.; Harrison, E.B.; Cooley, B.C.; Parker, J.S.; Carey, L.A.; et al. Histone Deacetylase 11 Inhibition Promotes Breast Cancer Metastasis from Lymph Nodes. Nat. Commun. 2019, 10, 4192. [Google Scholar] [CrossRef]
- Bao, L.; Qian, Z.; Lyng, M.B.; Wang, L.; Yu, Y.; Wang, T.; Zhang, X.; Yang, H.; Brünner, N.; Wang, J.; et al. Coexisting Genomic Aberrations Associated with Lymph Node Metastasis in Breast Cancer. J. Clin. Investig. 2018, 128, 2310–2324. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahjabeen, F.; Habbani, S.F.; Mohammed, S.I. Molecular Mechanisms of Lymphatic Metastasis in Breast Cancer: An Updated Review. Cancers 2025, 17, 2134. https://doi.org/10.3390/cancers17132134
Mahjabeen F, Habbani SF, Mohammed SI. Molecular Mechanisms of Lymphatic Metastasis in Breast Cancer: An Updated Review. Cancers. 2025; 17(13):2134. https://doi.org/10.3390/cancers17132134
Chicago/Turabian StyleMahjabeen, Fatema, Samrin F. Habbani, and Sulma I. Mohammed. 2025. "Molecular Mechanisms of Lymphatic Metastasis in Breast Cancer: An Updated Review" Cancers 17, no. 13: 2134. https://doi.org/10.3390/cancers17132134
APA StyleMahjabeen, F., Habbani, S. F., & Mohammed, S. I. (2025). Molecular Mechanisms of Lymphatic Metastasis in Breast Cancer: An Updated Review. Cancers, 17(13), 2134. https://doi.org/10.3390/cancers17132134