Using [18F]FDG PET/CT to Identify Optimal Responders to Neoadjuvant Therapy in Breast Cancer—Results from a Prospective Patient Cohort
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. NAC Regimens of Study Population
2.3. Data Collection
2.4. [18F]FDG PET/CT Acquisition and Image Analysis
2.5. Statistical Analysis
3. Results
3.1. Baseline Patients’ Characteristics
3.2. Response to NAC Histopathological Assessment
3.3. [18F]FDG PET/CT Qualitative Visual Analysis
3.4. [18F]FDG PET/CT Semi-Quantitative Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantini, L.; Trapani, D.; Guidi, L.; Boscolo Bielo, L.; Scafetta, R.; Koziej, M.; Vidal, L.; Saini, K.S.; Curigliano, G. Neoadjuvant Therapy in Hormone Receptor-Positive/HER2-Negative Breast Cancer. Cancer Treat. Rev. 2024, 123, 102669. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, R.; Marrazzo, E.; Agostinetto, E.; De Sanctis, R.; Losurdo, A.; Masci, G.; Tinterri, C.; Santoro, A. Neoadjuvant Chemotherapy in Hormone Receptor-Positive/HER2-Negative Early Breast Cancer: When, Why and What? Crit. Rev. Oncol. Hematol. 2021, 160, 103280. [Google Scholar] [CrossRef]
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.H.; Bergh, J.; Burstein, H.J.; Cardoso, M.J.; Carey, L.A.; Dawood, S.; Del Mastro, L.; et al. Early Breast Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-up ☆. Ann. Oncol. 2024, 35, 159–182. [Google Scholar] [CrossRef]
- Pusztai, L.; Denkert, C.; O’Shaughnessy, J.; Cortes, J.; Dent, R.; McArthur, H.; Kümmel, S.; Bergh, J.; Park, Y.H.; Hui, R.; et al. Event-Free Survival by Residual Cancer Burden with Pembrolizumab in Early-Stage TNBC: Exploratory Analysis from KEYNOTE-522. Ann. Oncol. 2024, 35, 429–436. [Google Scholar] [CrossRef]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1—Or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- Pinder, S.E.; Provenzano, E.; Earl, H.; Ellis, I.O. Laboratory Handling and Histology Reporting of Breast Specimens from Patients Who Have Received Neoadjuvant Chemotherapy. Histopathology 2007, 50, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Mittendorf, E.A.; Jeruss, J.S.; Tucker, S.L.; Kolli, A.; Newman, L.A.; Gonzalez-Angulo, A.M.; Buchholz, T.A.; Sahin, A.A.; Cormier, J.N.; Buzdar, A.U.; et al. Validation of a Novel Staging System for Disease-Specific Survival in Patients with Breast Cancer Treated with Neoadjuvant Chemotherapy. J. Clin. Oncol. 2011, 29, 1956–1962. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and Impact of Pathologic Complete Response on Prognosis after Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef]
- Li, X.; Dai, D.; Chen, B.; Tang, H.; Wei, W. Oncological Outcome of Complete Response after Neoadjuvant Chemotherapy for Breast Conserving Surgery: A Systematic Review and Meta-Analysis. World J. Surg. Oncol. 2017, 15, 210. [Google Scholar] [CrossRef]
- Ades, F.; Tryfonidis, K.; Zardavas, D. The Past and Future of Breast Cancer Treatment-from the Papyrus to Individualised Treatment Approaches. Ecancermedicalscience 2017, 11, 746. [Google Scholar] [CrossRef]
- Johnson, H.M.; Lin, H.; Shen, Y.; Diego, E.J.; Krishnamurthy, S.; Yang, W.T.; Smith, B.D.; Valero, V.; Lucci, A.; Sun, S.X.; et al. Patient-Reported Outcomes of Omission of Breast Surgery Following Neoadjuvant Systemic Therapy: A Nonrandomized Clinical Trial. JAMA Netw. Open 2023, 6, e2333933. [Google Scholar] [CrossRef] [PubMed]
- Vaz, S.C.; Woll, J.P.P.; Cardoso, F.; Groheux, D.; Cook, G.J.R.; Ulaner, G.A.; Jacene, H.; Rubio, I.T.; Schoones, J.W.; Peeters, M.J.V.; et al. Joint EANM-SNMMI Guideline on the Role of 2-[18F]FDG PET/CT in No Special Type Breast Cancer: (Endorsed by the ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2706–2732. [Google Scholar] [CrossRef] [PubMed]
- Kirienko, M.; Gelardi, F.; Fiz, F.; Bauckneht, M.; Ninatti, G.; Pini, C.; Briganti, A.; Falconi, M.; Oyen, W.J.G.; Winette, W.T.; et al. Personalised PET Imaging in Oncology: An Umbrella Review of Meta-Analyses to Guide the Appropriate Radiopharmaceutical Choice and Indication. Eur. J. Nucl. Med. Mol. Imaging 2024, 52, 208. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Choi, J.Y. Prognostic Value of 18F-FDG PET and PET/CT for Assessment of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer: A Systematic Review and Meta-Analysis. Breast Cancer Res. 2020, 22, 119. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
- Giuliano, A.E.; Edge, S.B.; Hortobagyi, G.N. Eighth Edition of the AJCC Cancer Staging Manual: Breast Cancer. Ann. Surg. Oncol. 2018, 25, 1783–1785. [Google Scholar] [CrossRef]
- Zhu, H.; Doğan, B.E. American Joint Committee on Cancer’s Staging System for Breast Cancer, Eighth Edition: Summary for Clinicians. Eur. J. Breast Health 2021, 17, 234–238. [Google Scholar] [CrossRef]
- Pini, C.; Kirienko, M.; Gelardi, F.; Bossi, P.; Rahal, D.; Toschi, L.; Ninatti, G.; Rodari, M.; Marulli, G.; Antunovic, L.; et al. Challenging the Significance of SUV-Based Parameters in a Large-Scale Retrospective Study on Lung Lesions. Cancer Imaging 2024, 24, 162. [Google Scholar] [CrossRef]
- Groheux, D.; Biard, L.; Giacchetti, S.; Teixeira, L.; Hindié, E.; Cuvier, C.; Vercellino, L.; Merlet, P.; De Roquancourt, A.; De Cremoux, P.; et al. 18F-FDG PET/CT for the Early Evaluation of Response to Neoadjuvant Treatment in Triple-Negative Breast Cancer: Influence of the Chemotherapy Regimen. J. Nucl. Med. 2016, 57, 536–543. [Google Scholar] [CrossRef]
- Groheux, D.; Giacchetti, S.; Moretti, J.L.; Porcher, R.; Espié, M.; Lehmann-Che, J.; De Roquancourt, A.; Hamy, A.S.; Cuvier, C.; Vercellino, L.; et al. Correlation of High 18F-FDG Uptake to Clinical, Pathological and Biological Prognostic Factors in Breast Cancer. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 426–435. [Google Scholar] [CrossRef]
- Gebhart, G.; Gámez, C.; Holmes, E.; Robles, J.; Garcia, C.; Cortés, M.; De Azambuja, E.; Fauria, K.; Van Dooren, V.; Aktan, G.; et al. 18F-FDG PET/CT for Early Prediction of Response to Neoadjuvant Lapatinib, Trastuzumab, and Their Combination in HER2-Positive Breast Cancer: Results from Neo-ALTTO. J. Nucl. Med. 2013, 54, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Gelardi, F.; De Sanctis, R.; Ninatti, G.; Tiberio, P.; Rodari, M.; Zambelli, A.; Santoro, A.; Fernandes, B.; Chiti, A.; Antunovic, L. The Predictive Role of Radiomics in Breast Cancer Patients Imaged by [18F]FDG PET: Preliminary Results from a Prospective Cohort. Diagnostics 2024, 14, 2312. [Google Scholar] [CrossRef] [PubMed]
- Coudert, B.; Pierga, J.Y.; Mouret-Reynier, M.A.; Kerrou, K.; Ferrero, J.M.; Petit, T.; Kerbrat, P.; Dupré, P.F.; Bachelot, T.; Gabelle, P.; et al. Use of [18F]-FDG PET to Predict Response to Neoadjuvant Trastuzumab and Docetaxel in Patients with HER2-Positive Breast Cancer, and Addition of Bevacizumab to Neoadjuvant Trastuzumab and Docetaxel in [18F]-FDG PET-Predicted Non-Responders (AVATAXHER): An Open-Label, Randomised Phase 2 Trial. Lancet Oncol. 2014, 15, 1493–1502. [Google Scholar] [CrossRef]
- Gebhart, G.; Keyaerts, M.; Guiot, T.; Flamen, P.; Ruiz-Borrego, M.; Stradella, A.; Bermejo, B.; Escriva-De-Romani, S.; Martínez, L.C.; Ribelles, N.; et al. Optimal [18F]FDG PET/CT Cutoff for Pathologic Complete Response in HER2-Positive Early Breast Cancer Patients Treated with Neoadjuvant Trastuzumab and Pertuzumab in the PHERGain Trial. J. Nucl. Med. 2024, 65, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Pérez-García, J.M.; Cortés, J.; Ruiz-Borrego, M.; Colleoni, M.; Stradella, A.; Bermejo, B.; Dalenc, F.; Escrivá-de-Romaní, S.; Calvo Martínez, L.; Ribelles, N.; et al. 3-Year Invasive Disease-Free Survival with Chemotherapy de-Escalation Using an 18F-FDG-PET-Based, Pathological Complete Response-Adapted Strategy in HER2-Positive Early Breast Cancer (PHERGain): A Randomised, Open-Label, Phase 2 Trial. Lancet 2024, 403, 1649–1659. [Google Scholar] [CrossRef]
- Kazerouni, A.S.; Peterson, L.M.; Jenkins, I.; Novakova-Jiresova, A.; Linden, H.M.; Gralow, J.R.; Hockenbery, D.M.; Mankoff, D.A.; Porter, P.L.; Partridge, S.C.; et al. Multimodal Prediction of Neoadjuvant Treatment Outcome by Serial FDG PET and MRI in Women with Locally Advanced Breast Cancer. Breast Cancer Res. 2023, 25, 138. [Google Scholar] [CrossRef]
- Seban, R.D.; Arnaud, E.; Loirat, D.; Cabel, L.; Cottu, P.; Djerroudi, L.; Hescot, S.; Loap, P.; Bonneau, C.; Bidard, F.C.; et al. [18F]FDG PET/CT for Predicting Triple-Negative Breast Cancer Outcomes after Neoadjuvant Chemotherapy with or without Pembrolizumab. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 4024–4035. [Google Scholar] [CrossRef]
Variables (n = 133) | N (%) | Median (IQR) | |
---|---|---|---|
Age (y) | 49.5 (42–57) | ||
Molecular subtypes (n) | HR+/HER2− | 13 (10) | |
HR−/HER2+ | 74 (55) | ||
TNBC | 46 (35) | ||
HER2 status (n) | Positive | 74 (56) | |
Negative | 59 (44) | ||
HR status (n) | Positive | 13 (10) | |
Negative | 120 (90) | ||
Ki67 (%) | 35 (25–60) | ||
Tumour grading (n) | G2 | 31 (23) | |
G2/3 | 19 (14) | ||
G3 | 75 (57) | ||
NA | 8 (6) | ||
Clinical TNM stage (n) | I | 5 (3) | |
II | 104 (78) | ||
III | 22 (17) | ||
NA | 2 (2) | ||
Clinical lymph node status (n) | Negative | 63 (47) | |
Positive | 70 (53) |
Site | Primary Tumour | Lymph Nodes | |||
---|---|---|---|---|---|
[18F]FDG PET/CT | Positive | Negative | Positive | Negative | Uncertain |
Baseline | 130 | 3 * | 76 | 25 | 32 |
Preoperative | 43 | 90 | 12 | 117 | 4 |
Variables | pCR/RD | RCB Index | ||||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
OR | p-Value | OR | p-Value | OR | p-Value | OR | p-Value | |
Age | 1 (0.97–1.03) | 0.98 | 0.99 (0.94–1.02) | 0.31 | 1 (0.97–1.04) | 0.61 | 1 (0.99–1.08) | 0.11 |
BC subtypes | 0.72 | 0.77 | ||||||
HR+/HER2− | Ref. | Ref. | Ref. | Ref. | ||||
HR−/HER2+ | 1.4 (0.43–4.8) | 1.6 (0.4–7.8) | 0.46 | 0.78 (0.23–2.6) | 0.7 (0.15–3.15) | 0.63 | ||
TNBC | 1.67 (0.4–5.87) | 2.24 (0.46–11) | 0.32 | 0.65 (0.18–2.3) | 0.58 (0.1–3) | 0.51 | ||
Ki-67 | 1 (0.98–1.01) | 0.97 | 1 (0.98–1.03) | 0.4 | 1.00 (0.98–1.01) | 0.98 | 1 (0.97–1.01) | 0.98 |
Stage | 0.35 | 0.40 | ||||||
I | Ref. | Ref. | Ref. | Ref. | 0.40 | |||
II | 0.66 (0.1–4.15) | 1.35 (0.16–10.9) | 0.78 | 1.7 (0.27–10.5) | 0.99 (0.12–8.2) | |||
III | 0.35 (0.05–2.5) | 0.7 (0.67–7.67) | 0.78 | 3 (0.40–22) | 1.75 (0.14–21) | |||
Baseline MTV | 0.99 (0.97–1.02) | 0.73 | 1 (0.99–1.03) | 0.29 | 1.00 (0.97–1.03) | 0.88 | 0.97 (0.92–1.01) | 0.19 |
Baseline SUVmax | 1 (0.98–1.05) | 0.33 | 1.04 (0.99–1.10) | 0.1 | 0.99 (0.96–1.02) | 0.52 | 0.97 (0.93–1.01) | 0.18 |
Preoperative SUVmax | 0.29 (0.15–0.56) | <0.001 * | 0.26 (0.13–0.5) | <0.001 * | 3.74 (1.8–7.7) | <0.001 * | 4.2 (1.99–8.9) | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelardi, F.; Tiberio, P.; Torrisi, R.; Zanca, R.; Rodari, M.; Zambelli, A.; Santoro, A.; Fernandes, B.; Sagona, A.; Errico, V.; et al. Using [18F]FDG PET/CT to Identify Optimal Responders to Neoadjuvant Therapy in Breast Cancer—Results from a Prospective Patient Cohort. Cancers 2025, 17, 2133. https://doi.org/10.3390/cancers17132133
Gelardi F, Tiberio P, Torrisi R, Zanca R, Rodari M, Zambelli A, Santoro A, Fernandes B, Sagona A, Errico V, et al. Using [18F]FDG PET/CT to Identify Optimal Responders to Neoadjuvant Therapy in Breast Cancer—Results from a Prospective Patient Cohort. Cancers. 2025; 17(13):2133. https://doi.org/10.3390/cancers17132133
Chicago/Turabian StyleGelardi, Fabrizia, Paola Tiberio, Rosalba Torrisi, Roberta Zanca, Marcello Rodari, Alberto Zambelli, Armando Santoro, Bethania Fernandes, Andrea Sagona, Valentina Errico, and et al. 2025. "Using [18F]FDG PET/CT to Identify Optimal Responders to Neoadjuvant Therapy in Breast Cancer—Results from a Prospective Patient Cohort" Cancers 17, no. 13: 2133. https://doi.org/10.3390/cancers17132133
APA StyleGelardi, F., Tiberio, P., Torrisi, R., Zanca, R., Rodari, M., Zambelli, A., Santoro, A., Fernandes, B., Sagona, A., Errico, V., Testori, A., Tinterri, C., Chiti, A., De Sanctis, R., Sollini, M., & Antunovic, L. (2025). Using [18F]FDG PET/CT to Identify Optimal Responders to Neoadjuvant Therapy in Breast Cancer—Results from a Prospective Patient Cohort. Cancers, 17(13), 2133. https://doi.org/10.3390/cancers17132133