Immunotherapy-Associated Renal Dysfunction in Metastatic Cancer: An Emerging Challenge in Onco-Nephrology
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Data Collection
2.4. Definitions
2.5. Outcomes
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Renal Function Follow up and Oncological Outcomes
3.3. Univariate Analysis: Predictors of AKD
3.4. Multivariate Analysis: Predictors of AKD
3.5. Model Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICIs | Immune checkpoint inhibitors |
AKI | Acute kidney injury |
AKD | Acute kidney disease |
References
- Haslam, A.; Prasad, V. Estimation of the Percentage of US Patients with Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw. Open 2019, 2, e192535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020, 11, 3801. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gubin, M.M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J.P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C.D.; Krebber, W.J.; et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515, 577–581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naidoo, J.; Page, D.B.; Li, B.T.; Connell, L.C.; Schindler, K.; Lacouture, M.E.; Postow, M.A.; Wolchok, J.D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015, 26, 2375–2391, Erratum in Ann Oncol. 2016, 27, 1362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Champiat, S.; Lambotte, O.; Barreau, E.; Belkhir, R.; Berdelou, A.; Carbonnel, F.; Cauquil, C.; Chanson, P.; Collins, M.; Durrbach, A.; et al. Management of immune checkpoint blockade dysimmune toxicities: A collaborative position paper. Ann Oncol. 2016, 27, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, F.B.; Marrone, K.A.; Troxell, M.L.; Ralto, K.M.; Hoenig, M.P.; Brahmer, J.R.; Le, D.T.; Lipson, E.J.; Glezerman, I.G.; Wolchok, J.; et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 2016, 90, 638–647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Izzedine, H.; Mateus, C.; Boutros, C.; Robert, C.; Rouvier, P.; Amoura, Z.; Mathian, A. Renal effects of immune checkpoint inhibitors. Nephrol. Dial. Transplant. 2017, 32, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Seethapathy, H.; Zhao, S.; Strohbehn, I.A.; Lee, M.; Chute, D.F.; Bates, H.; Molina, G.E.; Zubiri, L.; Gupta, S.; Motwani, S.; et al. Incidence and Clinical Features of Immune-Related Acute Kidney Injury in Patients Receiving Programmed Cell Death Ligand-1 Inhibitors. Kidney Int. Rep. 2020, 5, 1700–1705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moledina, D.G.; Perazella, M.A. Drug-Induced Acute Interstitial Nephritis. Clin. J. Am. Soc. Nephrol. 2017, 12, 2046–2049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Floris, M.; Trevisani, F.; Angioi, A.; Lepori, N.; Simeoni, M.; Cabiddu, G.; Pani, A.; Rosner, M.H. Acute Kidney Disease in Oncology: A New Concept to Enhance the Understanding of the Impact of Kidney Injury in Patients with Cancer. Kidney Blood Press Res. 2024, 49, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lambourg, E.; Guthrie, B.; Morales, D.R.; Donnan, P.T.; Bell, S. Patient outcomes following AKI and AKD: A population-based cohort study. BMC Med. 2022, 20, 229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, L.; Li, C.; Li, N.; Zhao, L.; Zhu, Z.; Zhang, X.; Wang, J.; Zhao, J.; Huang, J.; Zheng, Z.; et al. Incidence and prognosis of acute kidney injury versus acute kidney disease among 71,041 inpatients. Clin. Kidney J. 2023, 16, 1993–2002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.J.; Lee, T.H.; Kuo, G.; Yen, C.L.; Lee, C.C.; Chang, C.H.; Tu, K.H.; Chen, Y.C.; Fang, J.T.; Hung, C.C.; et al. All-cause and immune checkpoint inhibitor-associated acute kidney injury in immune checkpoint inhibitor users: A meta-analysis of occurrence rate, risk factors and mortality. Clin. Kidney J. 2023, 17, sfad292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lumlertgul, N.; Vassallo, P.; Tydeman, F.; Lewis, N.; Hobill, A.; Weerapolchai, K.; Nordin, N.Z.; Seylanova, N.; Martin, L.; Cennamo, A.; et al. Acute kidney injury in patients receiving immune checkpoint inhibitors: A retrospective real-world study. Eur. J. Cancer 2023, 191, 112967. [Google Scholar] [CrossRef] [PubMed]
- Kitchlu, A.; McArthur, E.; Amir, E.; Booth, C.M.; Sutradhar, R.; Majeed, H.; Nash, D.M.; Silver, S.A.; Garg, A.X.; Chan, C.T.; et al. Acute Kidney Injury in Patients Receiving Systemic Treatment for Cancer: A Population-Based Cohort Study. J. Natl. Cancer Inst. 2019, 111, 727–736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mettrick, K.; Hassan, K.; Lamont, I.; Reid, D. The Iron-chelator, N,N’-bis (2-hydroxybenzyl) Ethylenediamine-N,N’-Diacetic acid is an Effective Colistin Adjunct against Clinical Strains of Biofilm-Dwelling Pseudomonas aeruginosa. Antibiotics 2020, 9, 144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carey, J. News Feature: On the brink of a recycling revolution? Proc. Natl. Acad. Sci. USA 2017, 114, 612–616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, K.; Cao, X.; Ai, B.; Xiao, H.; Huang, Q.; Zhang, Z.; Chu, Q.; Zhang, L.; Dai, X.; Liao, Y. Salvage surgery following downstaging of advanced non-small cell lung cancer by targeted therapy. Thorac. Cancer 2021, 12, 2161–2169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126, Erratum in J. Clin. Oncol. 2022, 40, 315. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Yazawa, K.; Fujino, M.; Imamura, R.; Hatayama, N.; Kakuta, Y.; Tsutahara, K.; Okumi, M.; Ichimaru, N.; Kaimori, J.Y.; et al. High-pressure carbon monoxide preserves rat kidney grafts from apoptosis and inflammation. Lab. Investig. 2017, 97, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Kao, L.; Rajan, J.; Roy, L.; Kavosh, E.; Khan, D.A. Adverse reactions during drug challenges: A single US institution’s experience. Ann. Allergy Asthma Immunol. 2013, 110, 86–91.e1. [Google Scholar] [CrossRef] [PubMed]
- Trevisani, F.; Di Marco, F.; Quattrini, G.; Lepori, N.; Floris, M.; Valsecchi, D.; Giordano, L.; Dell’Oca, I.; Cardellini, S.; Cinque, A.; et al. Acute kidney injury and acute kidney disease in high-dose cisplatin-treated head and neck cancer. Front. Oncol. 2023, 13, 1173578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, W.; Xiao, S.; Li, X.; Huang, J.; Li, G.; Zhang, Z. Incidence, mortality, and risk factors of acute kidney injury after immune checkpoint inhibitors: Systematic review and meta-analysis of real-world evidence. Eur. J. Intern. Med. 2023, 115, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wei, W.; Yang, L.; Li, J.; Yi, C.; Pu, Y.; Yin, T.; Na, F.; Zhang, L.; Fu, P.; et al. Incidence and risk factors of acute kidney injury in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1173952. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shirai, Y.; Liang, J.J.; Hirao, K.; Hyman, M.C.; Kumareswaran, R.; Arkles, J.S.; Schaller, R.D.; Supple, G.E.; Frankel, D.S.; Nazarian, S.; et al. Non-Scar-Related and Purkinje-Related Ventricular Tachycardia in Patients with Structural Heart Disease: Prevalence, Mapping Features, and Clinical Outcomes. JACC Clin. Electrophysiol. 2020, 6, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Yigit, B.; Wang, N.; Ten Hacken, E.; Chen, S.S.; Bhan, A.K.; Suarez-Fueyo, A.; Katsuyama, E.; Tsokos, G.C.; Chiorazzi, N.; Wu, C.J.; et al. SLAMF6 as a Regulator of Exhausted CD8+ T Cells in Cancer. Cancer Immunol. Res. 2019, 7, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Jullian-Desayes, I.; Trzepizur, W.; Boursier, J.; Joyeux-Faure, M.; Bailly, S.; Benmerad, M.; Le Vaillant, M.; Jaffre, S.; Pigeanne, T.; Bizieux-Thaminy, A.; et al. Obstructive sleep apnea, chronic obstructive pulmonary disease and NAFLD: An individual participant data meta-analysis. Sleep Med. 2021, 77, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Floris, M.; Angioi, A.; Liscia, N.; Ghidini, M.; Cinque, A.; Puzzoni, M.; Pani, A.; Lepori, N.; Scartozzi, M.; Dettori, M.; et al. Preoperatory Flot Regimen for Gastroesophageal Cancer and Renal Function: A New Onco-Nephrological Perspective. Kidney Blood Press Res. 2025, 9, 1–21. [Google Scholar] [CrossRef] [PubMed]
Category | Variable | Frequency | Percentage (%) |
---|---|---|---|
Sex | Male | 84 | 37.2 |
Risk factors | Viral infections | 30 | 13.5 |
Diabetes | 34 | 15.0 | |
Hypertension | 95 | 42.0 | |
Ischemic heart disease | 24 | 10.6 | |
COPD | 23 | 10.2 | |
Chronic kidney disease | 9 | 4.0 | |
Smoking status | Never | 42 | 18.6 |
Former | 77 | 34.1 | |
Current | 75 | 33.2 | |
Cancer characteristics | PD-L1 status | 95 | 42.0 |
Vascular invasion | 13 | 5.8 | |
Lymphatic invasion | 6 | 2.7 | |
Neural invasion | 10 | 4.4 | |
Other drugs | Antibiotics | 31 | 14.8 |
ACE inhibitors/ARBs | 76 | 33.6 | |
Calcium channel blockers | 38 | 16.8 | |
Diuretics | 19 | 8.4 | |
Oral antidiabetics | 27 | 11.9 | |
Insulin | 7 | 3.1 | |
Anti-inflammatories | 6 | 2.7 | |
Antiplatelet agents | 45 | 19.9 | |
Beta-blockers | 27 | 11.9 | |
Anti-cancer treatment | Associated chemotherapy | 82 | 36.3 |
Taxanes * | 24 | 10.6 | |
Platinum ** | 22 | 9.7 | |
Targeted therapy *** | 16 | 7.1 | |
Immunotherapy | 3 | 1.3 | |
Chemotherapy | 29 | 12.8 | |
Radiotherapy | 8 | 3.5 | |
Cancer type | Melanoma | 17 | 7.5 |
Kidney | 17 | 7.5 | |
NSCLC | 115 | 50.9 | |
Squamous lung | 19 | 8.4 | |
Urothelial | 16 | 7.1 | |
Skin | 9 | 4.0 | |
Colon | 2 | 0.9 | |
Head and neck | 9 | 4.0 | |
SCLC | 4 | 1.8 | |
Mesothelioma | 7 | 3.1 | |
Biliary tract | 4 | 1.8 | |
Breast | 7 | 3.1 | |
ICI target | PD-1 | 166 | 73.5 |
PD-L1 status | 49 | 21.7 | |
CTLA4 | 11 | 4.9 | |
Treatment line | 1st | 133 | 58.8 |
2nd | 61 | 27.0 | |
3rd | 6 | 2.7 | |
4th | 3 | 1.3 | |
≥5th | 6 | 2.7 | |
Kidney outcomes | AKD flag | 46 | 20.4 |
Persistent AKD | 16 | 7.1 | |
eGFR loss ≥30% | 29 | 12.8 | |
Overall outcomes | Death | 109 | 48.2 |
Chemotherapy outcomes | Toxicity | 112 | 49.6 |
Toxicity grade ≥2 | 108 | 47.8 | |
Progression/Recurrence | 132 | 61.4 | |
Best cancer response | Complete remission (1st FU) | 33 | 15.1 |
Partial remission (1st FU) | 93 | 42.5 | |
Complete remission (2nd FU) | 1 | 0.4 | |
Partial remission (2nd FU) | 21 | 9.3 |
Variable | Valid | Median | IQR | Shapiro–Wilk | p-Value | 25th Percentile | 75th Percentile |
---|---|---|---|---|---|---|---|
Age (years) | 226 | 69.000 | 13.000 | 0.966 | <0.001 | 62.000 | 75.000 |
Diagnosis to treatment time (days) | 226 | 68.000 | 315.750 | 0.415 | <0.001 | 36.250 | 352.000 |
Pack/Year (Tobacco) | 154 | 35.000 | 32.750 | 0.850 | <0.001 | 17.250 | 50.000 |
Body mass index (BMI) | 224 | 23.710 | 5.400 | 0.880 | <0.001 | 21.400 | 26.800 |
Body surface area (BSA)(m2) | 223 | 1.760 | 0.320 | 0.987 | 0.043 | 1.600 | 1.920 |
WBC (×1.000/mm3) | 225 | 7.300 | 2.810 | 0.607 | <0.001 | 5.920 | 8.730 |
Neutrophils (×1.000/mm3) | 225 | 4.490 | 2.210 | 0.704 | <0.001 | 3.560 | 5.770 |
Lymphocytes (×1.000/mm3) | 224 | 1.635 | 0.955 | 0.231 | <0.001 | 1.218 | 2.172 |
N/L ratio | 224 | 2.670 | 2.363 | 0.745 | <0.001 | 1.799 | 4.162 |
Eosinophils (×1.000/mm3) | 224 | 0.150 | 0.182 | 0.255 | <0.001 | 0.080 | 0.263 |
E/L ratio | 224 | 0.080 | 0.111 | 0.179 | <0.001 | 0.040 | 0.151 |
Platelets (×1.000/mm3) | 225 | 260.0 | 106.0 | 0.908 | <0.001 | 202.0 | 308.0 |
P/L ratio | 224 | 151.464 | 129.762 | 0.887 | <0.001 | 98.867 | 228.630 |
CRP (basal) (mg/dL) | 133 | 0.490 | 1.720 | 0.418 | <0.001 | 0.180 | 1.900 |
eGFR (basal) (mL/min/1.73 m2) | 225 | 79.066 | 31.198 | 0.986 | 0.030 | 61.151 | 92.350 |
eGFR after cycle 1 (mL/min/1.73 m2) | 224 | 73.605 | 30.058 | 0.995 | 0.621 | 60.460 | 90.518 |
eGFR after cycle 2 (mL/min/1.73 m2) | 225 | 74.258 | 31.676 | 0.992 | 0.255 | 58.236 | 89.912 |
eGFR after cycle 3 (mL/min/1.73 m2) | 209 | 74.025 | 31.327 | 0.992 | 0.295 | 58.780 | 90.107 |
eGFR after cycle 4 (mL/min/1.73 m2) | 198 | 74.185 | 31.510 | 0.988 | 0.086 | 58.155 | 89.665 |
eGFR after cycle 5 (mL/min/1.73 m2) | 181 | 73.644 | 28.384 | 0.993 | 0.520 | 58.775 | 87.159 |
eGFR after cycle 6 (mL/min/1.73 m2) | 177 | 74.880 | 28.408 | 0.991 | 0.350 | 58.940 | 87.348 |
ΔGFR (worst value) (mL/min/1.73 m2) | 225 | 9.713 | 13.346 | 0.823 | <0.001 | 3.744 | 17.090 |
ΔGFR (worst value) (%) | 225 | 14.135 | 18.371 | 0.866 | <0.001 | 5.121 | 23.492 |
Start of line 1 to end of follow-Up | 225 | 671.000 | 676.000 | 0.753 | <0.001 | 366.000 | 1042.000 |
Start of line 2 to end of follow-Up | 225 | 537.000 | 551.000 | 0.916 | <0.001 | 299.000 | 850.000 |
Recurrence to end of follow-Up | 133 | 189.000 | 355.000 | 0.881 | <0.001 | 67.000 | 422.000 |
Variable | Chi-Squared (χ2) | df | p |
---|---|---|---|
Sex | 3.037 | 1 | 0.081 |
Smoking | 2.322 | 2 | 0.313 |
Viral infections | 2.427 | 1 | 0.119 |
Diagnosis | 25.877 | 11 | 0.007 |
Type of monoclonal Ab | 12.296 | 6 | 0.056 |
ICI Target | 3.858 | 2 | 0.145 |
Line of treatment | 12.146 | 5 | 0.033 |
Associated chemotherapy | 4.7 | 1 | 0.03 |
PD-L1 status | 0.078 | 1 | 0.781 |
PD-L1 score if pos | 2.09 | 3 | 0.554 |
Ulceration | 0.0 | 1 | 1.0 |
Regression | 0.311 | 1 | 0.577 |
BRAF status | 0.434 | 1 | 0.51 |
Vascular invasion | 0.549 | 1 | 0.459 |
Lymphatic invasion | 0.224 | 1 | 0.636 |
Neural invasion | 1.159 | 1 | 0.282 |
TILs | 0.384 | 1 | 0.536 |
Baseline LDH | 0.077 | 1 | 0.781 |
Race | 0.257 | 1 | 0.612 |
Persistent AKD | 67.379 | 1 | <0.001 |
eGFR loss >30% | 108.614 | 1 | <0.001 |
Toxicity | 0.352 | 1 | 0.553 |
Toxicity types | 11.513 | 10 | 0.319 |
Toxicity grade | 4.473 | 4 | 0.346 |
Toxicity outcome | 3.118 | 2 | 0.21 |
Best response | 0.322 | 3 | 0.956 |
Progression/recurrence | 0.006 | 1 | 0.94 |
Other therapies | 0.078 | 1 | 0.78 |
Best response 2 | 5.59 | 3 | 0.133 |
Death | 1.915 | 1 | 0.166 |
Antibiotics | 4.443 | 1 | 0.035 |
Diabetes | 0.788 | 1 | 0.375 |
Hypertension | 3.593 | 1 | 0.058 |
Ischemic heart disease | 4.869 | 1 | 0.027 |
COPD | 0.03 | 1 | 0.862 |
CKD | 0.974 | 1 | 0.324 |
ACE inhibitors/ARBs | 0.783 | 1 | 0.376 |
Calcium channel blockers | 1.002 | 1 | 0.317 |
Diuretics | 6.054 | 1 | 0.014 |
Oral antidiabetics | 0.064 | 1 | 0.801 |
Insulin | 0.164 | 1 | 0.685 |
Anti-inflammatories | 8.155 | 1 | 0.004 |
Antiplatelets | 0.58 | 1 | 0.446 |
Beta-blockers | 1.627 | 1 | 0.202 |
Taxanes | 0.358 | 1 | 0.55 |
Platinum | 3.757 | 1 | 0.053 |
Targeted therapy | 3.123 | 1 | 0.077 |
Immunotherapy | 0.777 | 1 | 0.378 |
Chemotherapy | 5.865 | 1 | 0.015 |
Radiotherapy | 0.11 | 1 | 0.74 |
U | p-Value | |
---|---|---|
Age (years) | 3686.000 | 0.252 |
Diagnosis to treatment time (days) | 4211.500 | 0.858 |
Pack/Year (Tobacco) | 2094.000 | 0.816 |
Body mass index (BMI) | 3596.000 | 0.204 |
Body surface area (BSA) (m2) | 2949.000 | 0.006 |
WBC (×1.000/mm3) | 3617.000 | 0.205 |
Neutrophils (×1.000/mm3) | 3740.500 | 0.340 |
Lymphocytes (×1.000/mm3) | 3817.000 | 0.480 |
N/L ratio | 4305.500 | 0.590 |
Eosinophils (×1.000/mm3) | 3164.500 | 0.018 |
E/L ratio | 3453.000 | 0.102 |
Platelets (×1.000/mm3) | 5082.000 | 0.014 |
P/L ratio | 4771.500 | 0.084 |
CRP (basal) (mg/dL) | 1421.500 | 0.865 |
eGFR (basal) (mL/min/1.73 m2) | 4389.500 | 0.490 |
eGFR after cycle 1 (mL/min/1.73 m2) | 4974.000 | 0.025 |
eGFR after cycle 2 (mL/min/1.73 m2) | 5302.000 | 0.003 |
eGFR after cycle 3 (mL/min/1.73 m2) | 4427.000 | 0.015 |
eGFR after cycle 4 (mL/min/1.73 m2) | 4505.000 | <0.001 |
eGFR after cycle 5 (mL/min/1.73 m2) | 3867.500 | <0.001 |
eGFR after cycle 6 (mL/min/1.73 m2) | 3572.500 | <0.001 |
ΔGFR (worst value) (mL/min/1.73 m2) | 916.000 | <0.001 |
ΔGFR (worst value) (%) | 239.000 | <0.001 |
Start of line 1 to end of Follow-Up | 4009.500 | 0.918 |
Start of line 2 to end of Follow-Up | 4301.000 | 0.521 |
Recurrence to end of Follow-Up | 1106.500 | 0.162 |
Variable | Estimate | Standard Error | Odds Ratio | 95% CI Lower | 95% CI Upper | p-Value |
---|---|---|---|---|---|---|
Body surface area (BSA) | 2.058 | 0.923 | 8.165 | 0.203 | 3.997 | 0.030 |
Anti-inflammatory drugs | 3.379 | 1.379 | 29.738 | 0.669 | 6.096 | 0.014 |
Antibiotics (Yes) | 1.106 | 0.719 | 3.022 | −0.297 | 2.509 | 0.054 |
Chemotherapy (Yes) | −1.068 | 0.630 | 0.343 | −3.929 | 0.258 | 0.085 |
Platelet count (Baseline) | −0.004 | 0.002 | 0.996 | −0.009 | 0.000 | 0.061 |
Eosinophils (Baseline) | 0.319 | 0.206 | 1.375 | −0.132 | 1.117 | 0.122 |
Diuretics (Yes) | 1.087 | 0.595 | 2.965 | −0.080 | 2.254 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trevisani, F.; Angioi, A.; Ghidini, M.; Floris, M.; Izzo, D.; Marsicano, R.M.; Denaro, N.; Tomasello, G.; Garrone, O. Immunotherapy-Associated Renal Dysfunction in Metastatic Cancer: An Emerging Challenge in Onco-Nephrology. Cancers 2025, 17, 2090. https://doi.org/10.3390/cancers17132090
Trevisani F, Angioi A, Ghidini M, Floris M, Izzo D, Marsicano RM, Denaro N, Tomasello G, Garrone O. Immunotherapy-Associated Renal Dysfunction in Metastatic Cancer: An Emerging Challenge in Onco-Nephrology. Cancers. 2025; 17(13):2090. https://doi.org/10.3390/cancers17132090
Chicago/Turabian StyleTrevisani, Francesco, Andrea Angioi, Michele Ghidini, Matteo Floris, Davide Izzo, Renato Maria Marsicano, Nerina Denaro, Gianluca Tomasello, and Ornella Garrone. 2025. "Immunotherapy-Associated Renal Dysfunction in Metastatic Cancer: An Emerging Challenge in Onco-Nephrology" Cancers 17, no. 13: 2090. https://doi.org/10.3390/cancers17132090
APA StyleTrevisani, F., Angioi, A., Ghidini, M., Floris, M., Izzo, D., Marsicano, R. M., Denaro, N., Tomasello, G., & Garrone, O. (2025). Immunotherapy-Associated Renal Dysfunction in Metastatic Cancer: An Emerging Challenge in Onco-Nephrology. Cancers, 17(13), 2090. https://doi.org/10.3390/cancers17132090