Advances in Molecular Imaging for Neuroendocrine Neoplasms
Simple Summary
Abstract
1. Introduction
2. Current Practices in the Imaging of NENs
2.1. Somatostatin Receptor Imaging
2.2. Use of FDG-PET/CT in NENs
3. Novel Radiopharmaceuticals
3.1. SSTR Agonists
3.2. Radiopharmaceuticals Targeting SSTR Antagonists
3.3. Non-SSTR Radiopharmaceuticals
Radiopharmaceuticals | Radioisotopes | Class | Target | Description |
---|---|---|---|---|
Ga-68 DOTA-TATE, DOTA-NOC, DOTA-TOC | Ga-68 short half-life. Generator produced. | SSTR agonist | SSTR | Widely used. |
Cu-64 DOTA-TATE | Cu-64 longer half-life. Cyclotron produced. | SSTR agonist | SSTR | Widely used. Longer half-life than Ga-68. Lower photon energy than Ga-68. |
F-18 Alf-NOTA-octreotide | F-18 intermediate half-life. Cyclotron produced. | SSTR agonist | SSTR | Higher SSTR2 affinity than Ga-68 DOTA-TATE/NOC. |
F-18 SiFAlin TATE | SSTR agonist | SSTR | Higher tumor-to-hepatic ratio than Ga-68 DOTA-TATE/NOC. On-site labeling kit. | |
Cu-64 SAR-TATE | SSTR agonist | SSTR | Theranostic pair with Cu-67. Lower photon energy and longer half-life than Ga-68 DOTA-TATE/NOC. | |
Ga-68 DOTA-JR11 | SSTR antagonist | SSTR | Higher number of receptor binding sites and TBR than Ga-68 DOTA TATE/NOC. Accumulates in tumors. Therapy pair with Lu-177 DOTA-JR11. | |
Ga-68 DOTA-LM3 | SSTR antagonist | SSTR | Higher number of receptor binding sites. Higher TBR than Ga-68 DOTA-TATE/NOC. Accumulates in tumors. Therapy pair with Lu-177 DOTA-LM3. | |
F-18 FDG | Glucose uptake | GLUT 1 | High grade nets. Heterogeneous disease. Contraindication to PRRT. | |
Ga-68 FAPI | Fibroblast-activated protein | Fibroblast-activated protein inhibitor | Uptake in many different cancers. Therapy potential. | |
Ga-68 CXCR4 (Ga-68 PentixaFor) | Chemokine receptor | C-X-C motif chemokine receptor | Dedifferentiated NET. Index of aggressiveness. Similar prognostic indicator to FDG. | |
Ga-68 DOTA-CCK-66 | G protein coupled | Cholecystokinin 2 receptor | Pan NET agent. Renal toxicity. | |
Ga-68 or F-18 DOTA-Exendin-4 | GLP1 R expression | GLP1 receptor | Insulinoma. Renal toxicity. High sensitivity compared to SSTR and MRI. | |
F-18 MFBG | Norepinephrine | Norepinephrine receptor | Benefits of F-18 labeling over I-123 MIBG. Neuroblastoma, paraganglioma, pheomchromocytoma. |
3.4. PET/MR
4. Follow-Up of Patients with NEN and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef]
- Das, S.; Dasari, A. Epidemiology, Incidence, and Prevalence of Neuroendocrine Neoplasms: Are There Global Differences? Curr. Oncol. Rep. 2021, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- Ahenkorah, S.; Cassells, I.; Deroose, C.M.; Cardinaels, T.; Burgoyne, A.R.; Bormans, G.; Ooms, M.; Cleeren, F. Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside. Pharmaceutics 2021, 13, 599. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chauhan, A.; Kohn, E.; del Rivero, J. Neuroendocrine Tumors-Less Well Known, Often Misunderstood, and Rapidly Growing in Incidence. JAMA Oncol. 2020, 6, 21–22. [Google Scholar] [CrossRef]
- Kulke, M.H.; Siu, L.L.; Tepper, J.E.; Fisher, G.; Jaffe, D.; Haller, D.G.; Ellis, L.M.; Benedetti, J.K.; Bergsland, E.K.; Hobday, T.J.; et al. Future directions in the treatment of neuroendocrine tumors: Consensus report of the National Cancer Institute Neuroendocrine Tumor clinical trials planning meeting. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 934–943. [Google Scholar] [CrossRef]
- Venook, A.P.; Tabernero, J. Progression-free survival: Helpful biomarker or clinically meaningless end point? J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Wang, X.; Law, C.H. Association between time to disease progression end points and overall survival in patients with neuroendocrine tumors. Gastrointest. Cancer Targets Ther. 2014, 4, 103–113. [Google Scholar] [CrossRef]
- Broglio, K.R.; Berry, D.A. Detecting an overall survival benefit that is derived from progression-free survival. J. Natl. Cancer Inst. 2009, 101, 1642–1649. [Google Scholar] [CrossRef]
- Frilling, A.; Clift, A.K.; Kaemmerer, D.; Steinkraus, K.C.; Schrader, J.; Wolter, S.; Drymousis, P.; Liedke, M.-O.; Hommann, M.; Habib, N.; et al. Trends in the Management and Outcomes of Neuroendocrine Liver Metastases: A Three-decade, Multi-centre Observational Cohort Study. Ann. Surg. 2024, 2024, 10-1097. [Google Scholar] [CrossRef]
- Fortunati, E.; Argalia, G.; Zanoni, L.; Fanti, S.; Ambrosini, V. New PET Radiopharmaceuticals for the Imaging of Neuroendocrine Neoplasms. Curr. Treat. Options Oncol. 2022, 23, 703–720. [Google Scholar] [CrossRef]
- Dromain, C.; Vullierme, M.P.; Hicks, R.J.; Prasad, V.; O’Toole, D.; de Herder, W.W.; Pavel, M.; Faggiano, A.; Kos-Kudla, B.; Öberg, K.; et al. ENETS standardized (synoptic) reporting for radiological imaging in neuroendocrine tumours. J. Neuroendocrinol. 2022, 34, e13044. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Koumarianou, A.; Denecke, T.; Sundin, A.; Deroose, C.M.; Pavel, M.; Christ, E.; Lamarca, A.; Caplin, M.; Castaño, J.P.; et al. Challenges in developing response evaluation criteria for peptide receptor radionuclide therapy: A consensus report from the European Neuroendocrine Tumor Society Advisory Board Meeting 2022 and the ENETS Theranostics Task Force. J. Neuroendocrinol. 2025, 37, e13479. [Google Scholar] [CrossRef] [PubMed]
- Hicks, R.J.; Dromain, C.; de Herder, W.W.; Costa, F.P.; Deroose, C.M.; Frilling, A.; Koumarianou, A.; Krenning, E.P.; Raymond, E.; Bodei, L.; et al. ENETS standardized (synoptic) reporting for molecular imaging studies in neuroendocrine tumours. J. Neuroendocrinol. 2022, 34, e13040. [Google Scholar] [CrossRef] [PubMed]
- Hope, T.A. Updates to the Appropriate-Use Criteria for Somatostatin Receptor PET. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2020, 61, 1764. [Google Scholar] [CrossRef] [PubMed]
- Mileva, M.; Marin, G.; Levillain, H.; Artigas, C.; van Bogaert, C.; Marin, C.; Danieli, R.; Deleporte, A.; Picchia, S.; Stathopoulos, K.; et al. Prediction of 177Lu-DOTATATE PRRT Outcome Using Multimodality Imaging in Patients with Gastroenteropancreatic Neuroendocrine Tumors: Results from a Prospective Phase II LUMEN Study. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2024, 65, 236–244. [Google Scholar] [CrossRef]
- Frilling, A.; Sotiropoulos, G.C.; Radtke, A.; Malago, M.; Bockisch, A.; Kuehl, H.; Li, J.; Broelsch, C.E. The impact of 68Ga-DOTATOC positron emission tomography/computed tomography on the multimodal management of patients with neuroendocrine tumors. Ann. Surg. 2010, 252, 850–856. [Google Scholar] [CrossRef]
- Strosberg, J.R.; Halfdanarson, T.R.; Bellizzi, A.M.; Chan, J.A.; Dillon, J.S.; Heaney, A.P.; Kunz, P.L.; O’Dorisio, T.M.; Salem, R.; Segelov, E.; et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Medical Management of Midgut Neuroendocrine Tumors. Pancreas 2017, 46, 707–714. [Google Scholar] [CrossRef]
- Strosberg, J.R.; Weber, J.M.; Feldman, M.; Coppola, D.; Meredith, K.; Kvols, L.K. Prognostic validity of the American Joint Committee on Cancer staging classification for midgut neuroendocrine tumors. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 420–425. [Google Scholar] [CrossRef]
- Sharma, R.; Wang, W.M.; Yusuf, S.; Evans, J.; Ramaswami, R.; Wernig, F.; Frilling, A.; Mauri, F.; Al-Nahhas, A.; Aboagye, E.O.; et al. 68Ga-DOTATATE PET/CT parameters predict response to peptide receptor radionuclide therapy in neuroendocrine tumours. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019, 141, 108–115. [Google Scholar] [CrossRef]
- Ambrosini, V.; Morigi, J.J.; Nanni, C.; Castellucci, P.; Fanti, S. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP). Q. J. Nucl. Med. Mol. Imaging 2015, 59, 58–69. [Google Scholar]
- Chan, D.L.; Pavlakis, N.; Schembri, G.P.; Bernard, E.J.; Hsiao, E.; Hayes, A.; Barnes, T.; Diakos, C.; Khasraw, M.; Samra, J.; et al. Dual Somatostatin Receptor/FDG PET/CT Imaging in Metastatic Neuroendocrine Tumours: Proposal for a Novel Grading Scheme with Prognostic Significance. Theranostics 2017, 7, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Di Franco, M.; Zanoni, L.; Fortunati, E.; Fanti, S.; Ambrosini, V. Radionuclide Theranostics in Neuroendocrine Neoplasms: An Update. Curr. Oncol. Rep. 2024, 26, 538–550. [Google Scholar] [CrossRef]
- Binderup, T.; Knigge, U.; Loft, A.; Mortensen, J.; Pfeifer, A.; Federspiel, B.; Hansen, C.P.; Højgaard, L.; Kjaer, A. Functional imaging of neuroendocrine tumors: A head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2010, 51, 704–712. [Google Scholar] [CrossRef]
- Hicks, R.J.; Jackson, P.; Kong, G.; Ware, R.E.; Hofman, M.S.; Pattison, D.A.; Akhurst, T.A.; Drummond, E.; Roselt, P.; Callahan, J.; et al. 64Cu-SARTATE PET Imaging of Patients with Neuroendocrine Tumors Demonstrates High Tumor Uptake and Retention, Potentially Allowing Prospective Dosimetry for Peptide Receptor Radionuclide Therapy. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2019, 60, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, H.; Lindner, S.; Todica, A.; Cyran, C.C.; Tiling, R.; Auernhammer, C.J.; Spitzweg, C.; Boeck, S.; Unterrainer, M.; Gildehaus, F.J.; et al. Biodistribution and first clinical results of 18F-SiFAlin-TATE PET: A novel 18F-labeled somatostatin analog for imaging of neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, E.; Cleeren, F.; Tshibangu, T.; Koole, M.; Serdons, K.; Boeckxstaens, L.; Dekervel, J.; Vandamme, T.; Lybaert, W.; van den Broeck, B.; et al. 18F-AlF-NOTA-Octreotide Outperforms 68Ga-DOTATATE/NOC PET in Neuroendocrine Tumor Patients: Results from a Prospective, Multicenter Study. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2023, 64, 632–638. [Google Scholar] [CrossRef]
- Long, T.; Yang, N.; Zhou, M.; Chen, D.; Li, Y.; Li, J.; Tang, Y.; Liu, Z.; Li, Z.; Hu, S. Clinical Application of 18F-AlF-NOTA-Octreotide PET/CT in Combination With 18F-FDG PET/CT for Imaging Neuroendocrine Neoplasms. Clin. Nucl. Med. 2019, 44, 452–458. [Google Scholar] [CrossRef]
- Leupe, H.; Ahenkorah, S.; Dekervel, J.; Unterrainer, M.; Van Cutsem, E.; Verslype, C.; Cleeren, F.; Deroose, C.M. 18F-Labeled Somatostatin Analogs as PET Tracers for the Somatostatin Receptor: Ready for Clinical Use. J Nucl Med. 2023, 64, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Boeckxstaens, L.; Pauwels, E.; Vandecaveye, V.; Deckers, W.; Cleeren, F.; Dekervel, J.; Vandamme, T.; Serdons, K.; Koole, M.; Bormans, G.; et al. Prospective comparison of [18F]AlF-NOTA-octreotide PET/MRI to [68Ga]Ga-DOTATATE PET/CT in neuroendocrine tumor patients. EJNMMI Res. 2023, 13, 53. [Google Scholar] [CrossRef]
- Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Wang, X.; Erchegyi, J.; Rivier, J.; Mäcke, H.R.; Reubi, J.C. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc. Natl. Acad. Sci. USA 2006, 103, 16436–16441. [Google Scholar] [CrossRef]
- Krebs, S.; Pandit-Taskar, N.; Reidy, D.; Beattie, B.J.; Lyashchenko, S.K.; Lewis, J.S.; Bodei, L.; Weber, W.A.; O’Donoghue, J.A. Biodistribution and radiation dose estimates for 68Ga-DOTA-JR11 in patients with metastatic neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Wild, D.; Fani, M.; Behe, M.; Brink, I.; Rivier, J.E.F.; Reubi, J.C.; Maecke, H.R.; Weber, W.A. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2011, 52, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Cheng, Y.; Wang, X.; Yao, S.; Bai, C.; Zhao, H.; Jia, R.; Xu, J.; Huo, L. Head-to-Head Comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in Patients with Metastatic, Well-Differentiated Neuroendocrine Tumors: A Prospective Study. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2020, 61, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Jia, R.; Yang, Q.; Cheng, Y.; Zhao, H.; Bai, C.; Xu, J.; Yao, S.; Huo, L. A prospective randomized, double-blind study to evaluate the diagnostic efficacy of 68Ga-NODAGA-LM3 and 68Ga-DOTA-LM3 in patients with well-differentiated neuroendocrine tumors: Compared with 68Ga-DOTATATE. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1613–1622. [Google Scholar] [CrossRef]
- Lin, Z.; Zhu, W.; Zhang, J.; Miao, W.; Yao, S.; Huo, L. Head-to-Head Comparison of 68Ga-NODAGA-JR11 and 68Ga-DOTATATE PET/CT in Patients with Metastatic, Well-Differentiated Neuroendocrine Tumors: Interim Analysis of a Prospective Bicenter Study. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2023, 64, 1406–1411. [Google Scholar] [CrossRef]
- Nicolas, G.P.; Schreiter, N.; Kaul, F.; Uiters, J.; Bouterfa, H.; Kaufmann, J.; Erlanger, T.E.; Cathomas, R.; Christ, E.; Fani, M.; et al. Sensitivity Comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase II Imaging Study. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2018, 59, 915–921. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, Y.; Bai, C.; Zhao, H.; Jia, R.; Chen, J.; Zhu, W.; Huo, L. Gallium-68 labeled somatostatin receptor antagonist PET/CT in over 500 patients with neuroendocrine neoplasms: Experience from a single center in China. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2002–2011. [Google Scholar] [CrossRef]
- Pratt, E.C.; Lopez-Montes, A.; Volpe, A.; Crowley, M.J.; Carter, L.M.; Mittal, V.; Pillarsetty, N.; Ponomarev, V.; Udías, J.M.; Grimm, J.; et al. Simultaneous quantitative imaging of two PET radiopharmaceuticals via the detection of positron-electron annihilation and prompt gamma emissions. Nat. Biomed. Eng. 2023, 7, 1028–1039. [Google Scholar] [CrossRef]
- Mallak, N.; Yilmaz, B.; Meyer, C.; Winters, C.; Mench, A.; Jha, A.K.; Prasad, V.; Mittra, E. Theranostics in Neuroendocrine Tumors: Updates and Emerging Technologies. Curr. Probl. Cancer 2024, 52, 101129. [Google Scholar] [CrossRef]
- Haq, A.; Rayamajhi, S.; Ponisio, M.R.; Prasad, V. New horizon of radiopharmaceuticals in management of neuroendocrine tumors. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101797. [Google Scholar] [CrossRef]
- Fortunati, E.; Bonazzi, N.; Zanoni, L.; Fanti, S.; Ambrosini, V. Molecular imaging Theranostics of Neuroendocrine Tumors. Semin. Nucl. Med. 2023, 53, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Kömek, H.; Gündoğan, C.; Can, C. 68Ga-FAPI PET/CT Versus 68Ga-DOTATATE PET/CT in the Evaluation of a Patient With Neuroendocrine Tumor. Clin. Nucl. Med. 2021, 46, e290–e292. [Google Scholar] [CrossRef] [PubMed]
- Has Simsek, D.; Guzel, Y.; Denizmen, D.; Sanli, Y.; Buyukkaya, F.; Kovan, B.; Komek, H.; Isik, E.G.; Ozkan, Z.G.; Kuyumcu, S. The inferior performance of [68Ga]Ga-FAPI-04 PET/CT as a diagnostic and theranostic biomarker in [177Lu]Lu-DOTATATE refractory well-differentiated neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 828–840. [Google Scholar] [CrossRef]
- Calabrò, D.; Argalia, G.; Ambrosini, V. Role of PET/CT and Therapy Management of Pancreatic Neuroendocrine Tumors. Diagnostics 2020, 10, 1059. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.A.; Weich, A.; Higuchi, T.; Schmid, J.S.; Schirbel, A.; Lassmann, M.; Wild, V.; Rudelius, M.; Kudlich, T.; Herrmann, K.; et al. Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors—A Triple Tracer Comparative Approach. Theranostics 2017, 7, 1489–1498. [Google Scholar] [CrossRef]
- Viering, O.; Günther, T.; Holzleitner, N.; Dierks, A.; Wienand, G.; Pfob, C.H.; Bundschuh, R.A.; Wester, H.-J.; Enke, J.S.; Kircher, M.; et al. CCK2 Receptor-Targeted PET/CT in Medullary Thyroid Cancer Using [68Ga]Ga-DOTA-CCK-66. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2024, 65, 493–494. [Google Scholar] [CrossRef]
- Holzleitner, N.; Vilangattil, M.; Swaidan, A.; Garcia-Prada, C.D.; Taddio, M.F.; Jeanjean, P.; Mona, C.E.; Lapa, C.; Casini, A.; Günther, T.; et al. Preclinical evaluation of 225Ac-labeled minigastrin analog DOTA-CCK-66 for Targeted Alpha Therapy. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Viering, O.; Holzleitner, N.; Claus, R.; Amerein, A.; Dreher, N.; Enke, J.S.; Dierks, A.; Pfob, C.H.; Kircher, M.; Felber, V.; et al. CCK2 Receptor Ligand [68Ga]Ga-DOTA-CCK-66 PET/CT Outperforms [68Ga]Ga-DOTATOC PET/CT in a Patient with Small Cell Lung Cancer. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2025, 66, 662. [Google Scholar] [CrossRef]
- Santhanam, P.; Taïeb, D. Role of (18) F-FDOPA PET/CT imaging in endocrinology. Clin. Endocrinol. 2014, 81, 789–798. [Google Scholar] [CrossRef]
- Ouvrard, E.; Chevalier, E.; Addeo, P.; Sahakian, N.; Detour, J.; Goichot, B.; Bachellier, P.; Karcher, G.; Taïeb, D.; Imperiale, A. Intraindividual comparison of 18F-FDOPA and 68Ga-DOTATOC PET/CT detection rate for metastatic assessment in patients with ileal neuroendocrine tumours. Clin. Endocrinol. 2021, 94, 66–73. [Google Scholar] [CrossRef]
- Veenstra, E.B.; de Groot, D.J.A.; Brouwers, A.H.; Walenkamp, A.M.E.; Noordzij, W. Comparison of 18F-DOPA Versus 68Ga-DOTATOC as Preferred PET Imaging Tracer in Well-Differentiated Neuroendocrine Neoplasms. Clin. Nucl. Med. 2021, 46, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Pandit-Taskar, N.; Zanzonico, P.; Staton, K.D.; Carrasquillo, J.A.; Reidy-Lagunes, D.; Lyashchenko, S.; Burnazi, E.; Zhang, H.; Lewis, J.S.; Blasberg, R.; et al. Biodistribution and Dosimetry of 18F-Meta-Fluorobenzylguanidine: A First-in-Human PET/CT Imaging Study of Patients with Neuroendocrine Malignancies. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2018, 59, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Suurd, D.P.D.; Poot, A.J.; van Leeuwaarde, R.S.; Windhorst, A.D.; Vriens, M.R.; de Keizer, B. [18F]mFBG PET/CT imaging outperforms MRI and [68Ga]Ga-DOTA-TOC PET/CT in identifying recurrence pheochromocytoma. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1538–1540. [Google Scholar] [CrossRef]
- Borgwardt, L.; Brok, J.; Andersen, K.F.; Madsen, J.; Gillings, N.; Fosbøl, M.Ø.; Denholt, C.L.; Petersen, I.N.; Sørensen, L.S.; Enevoldsen, L.H.; et al. Performing [18F]MFBG Long-Axial-Field-of-View PET/CT Without Sedation or General Anesthesia for Imaging of Children with Neuroblastoma. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2024, 65, 1286–1292. [Google Scholar] [CrossRef]
- Wang, P.; Li, T.; Cui, Y.; Zhuang, H.; Li, F.; Tong, A.; Jing, H. 18F-MFBG PET/CT Is an Effective Alternative of 68Ga-DOTATATE PET/CT in the Evaluation of Metastatic Pheochromocytoma and Paraganglioma. Clin. Nucl. Med. 2023, 48, 43–48. [Google Scholar] [CrossRef]
- Boss, M.; Rottenburger, C.; Brenner, W.; Blankenstein, O.; Prasad, V.; Prasad, S.; de Coppi, P.; Kühnen, P.; Buitinga, M.; Nuutila, P.; et al. 68Ga-NODAGA-Exendin-4 PET/CT Improves the Detection of Focal Congenital Hyperinsulinism. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2022, 63, 310–315. [Google Scholar] [CrossRef]
- Virarkar, M.K.; Montanarella, M.; Itani, M.; Calimano-Ramirez, L.; Gopireddy, D.; Bhosale, P. PET/MRI imaging in neuroendocrine neoplasm. Abdom. Radiol. (N. Y.) 2023, 48, 3585–3600. [Google Scholar] [CrossRef]
- Galgano, S.J.; Calderone, C.E.; Xie, C.; Smith, E.N.; Porter, K.K.; McConathy, J.E. Applications of PET/MRI in Abdominopelvic Oncology. Radiogr. A Rev. Publ. Radiol. Soc. N. Am. Inc 2021, 41, 1750–1765. [Google Scholar] [CrossRef] [PubMed]
- Cabello, J.; Ziegler, S.I. Advances in PET/MR instrumentation and image reconstruction. Br. J. Radiol. 2018, 91, 20160363. [Google Scholar] [CrossRef]
- Hope, T.A.; Pampaloni, M.H.; Nakakura, E.; VanBrocklin, H.; Slater, J.; Jivan, S.; Aparici, C.M.; Yee, J.; Bergsland, E. Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom. Imaging 2015, 40, 1432–1440. [Google Scholar] [CrossRef]
- Catana, C. Motion correction options in PET/MRI. Semin. Nucl. Med. 2015, 45, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Lalush, D.S. Magnetic Resonance-Derived Improvements in PET Imaging. Magn. Reson. Imaging Clin. N. Am. 2017, 25, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Fuin, N.; Catalano, O.A.; Scipioni, M.; Canjels, L.P.W.; Izquierdo-Garcia, D.; Pedemonte, S.; Catana, C. Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2018, 59, 1474–1479. [Google Scholar] [CrossRef]
- Schreiter, N.F.; Nogami, M.; Steffen, I.; Pape, U.-F.; Hamm, B.; Brenner, W.; Röttgen, R. Evaluation of the potential of PET-MRI fusion for detection of liver metastases in patients with neuroendocrine tumours. Eur. Radiol. 2012, 22, 458–467. [Google Scholar] [CrossRef]
- Berzaczy, D.; Giraudo, C.; Haug, A.R.; Raderer, M.; Senn, D.; Karanikas, G.; Weber, M.; Mayerhoefer, M.E. Whole-Body 68Ga-DOTANOC PET/MRI Versus 68Ga-DOTANOC PET/CT in Patients With Neuroendocrine Tumors: A Prospective Study in 28 Patients. Clin. Nucl. Med. 2017, 42, 669–674. [Google Scholar] [CrossRef]
- Seith, F.; Schraml, C.; Reischl, G.; Nikolaou, K.; Pfannenberg, C.; la Fougère, C.; Schwenzer, N. Fast non-enhanced abdominal examination protocols in PET/MRI for patients with neuroendocrine tumors (NET): Comparison to multiphase contrast-enhanced PET/CT. La Radiol. Med. 2018, 123, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Pirasteh, A.; Riedl, C.; Mayerhoefer, M.E.; Giancipoli, R.G.; Larson, S.M.; Bodei, L. PET/MRI for neuroendocrine tumors: A match made in heaven or just another hype? Clin. Transl. Imaging 2019, 7, 405–413. [Google Scholar] [CrossRef]
- Duan, H.; Iagaru, A. Neuroendocrine Tumor Diagnosis: PET/MR Imaging. PET Clin. 2023, 18, 259–266. [Google Scholar] [CrossRef]
- Pape, U.-F.; Maasberg, S.; Jann, H.; Pschowski, R.; Krüger, S.; Prasad, V.; Denecke, T.; Wiedenmann, B.; Pascher, A. Management of follow-up of neuroendocrine neoplasias. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 129–140. [Google Scholar] [CrossRef]
- Kidd, M.; Drozdov, I.A.; Chirindel, A.; Nicolas, G.; Imagawa, D.; Gulati, A.; Tsuchikawa, T.; Prasad, V.; Halim, A.B.; Strosberg, J. NETest® 2.0-A decade of innovation in neuroendocrine tumor diagnostics. J. Neuroendocrinol. 2025, 37, e70002. [Google Scholar] [CrossRef]
- Puranik, A.D.; Dromain, C.; Fleshner, N.; Sathekge, M.; Pavel, M.; Eberhardt, N.; Zengerling, F.; Marienfeld, R.; Grunert, M.; Prasad, V. Target Heterogeneity in Oncology: The Best Predictor for Differential Response to Radioligand Therapy in Neuroendocrine Tumors and Prostate Cancer. Cancers 2021, 13, 3607. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girod, B.; Prasad, V. Advances in Molecular Imaging for Neuroendocrine Neoplasms. Cancers 2025, 17, 2013. https://doi.org/10.3390/cancers17122013
Girod B, Prasad V. Advances in Molecular Imaging for Neuroendocrine Neoplasms. Cancers. 2025; 17(12):2013. https://doi.org/10.3390/cancers17122013
Chicago/Turabian StyleGirod, Bradley, and Vikas Prasad. 2025. "Advances in Molecular Imaging for Neuroendocrine Neoplasms" Cancers 17, no. 12: 2013. https://doi.org/10.3390/cancers17122013
APA StyleGirod, B., & Prasad, V. (2025). Advances in Molecular Imaging for Neuroendocrine Neoplasms. Cancers, 17(12), 2013. https://doi.org/10.3390/cancers17122013