Periodic Boosters of COVID-19 Vaccines Do Not Affect the Safety and Efficacy of Immune Checkpoint Inhibitors for Advanced Non-Small Cell Lung Cancer: A Longitudinal Analysis of the Vax-On-Third Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Eligibility Criteria
2.2. Data Collection and Outcome Assessments
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Safety Analysis
3.3. Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Lancet Public Health. COVID-19 pandemic: What’s next for public health? Lancet Public Health 2022, 7, e391. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 31 March 2025).
- Ao, D.; He, X.; Liu, J.; Xu, L. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period. Signal Transduct. Target Ther. 2023, 8, 466. [Google Scholar] [CrossRef]
- Fontanet, A.; Cauchemez, S. COVID-19 herd immunity: Where are we? Nat. Rev. Immunol. 2020, 20, 583–584. [Google Scholar] [CrossRef]
- McAuley, H.J.C.; Evans, R.A.; Bolton, C.E.; Brightling, C.E.; Chalmers, J.D.; Docherty, A.B.; Elneima, O.; Greenhaff, P.L.; Gupta, A.; Harris, V.C.; et al. Prevalence of physical frailty, including risk factors, up to 1 year after hospitalisation for COVID-19 in the UK: A multicentre, longitudinal cohort study. eClinicalMedicine 2023, 57, 101896. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. 2023. Available online: https://www.who.int/europe/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 31 March 2025).
- Hosseini-Moghaddam, S.M.; Shepherd, F.A.; Swayze, S.; Kwong, J.C.; Chan, K.K.W. SARS-CoV-2 Infection, Hospitalization, and Mortality in Adults with and Without Cancer. JAMA Netw. Open. 2023, 6, 2331617. [Google Scholar] [CrossRef]
- COVID-19 Advice for the Public: Getting Vaccinated. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice (accessed on 31 March 2025).
- Kamboj, M.; Bohlke, K.; Baptiste, D.M.; Dunleavy, K.; Fueger, A.; Jones, L.; Kelkar, A.H.; Law, L.Y.; LeFebvre, K.B.; Ljungman, P.; et al. Vaccination of Adults with Cancer: ASCO Guideline. J. Clin. Oncol. 2024, 42, 1699–1721. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Teijaro, J.R.; Farber, D.L. COVID-19 vaccines: Modes of immune activation and future challenges. Nat. Rev. Immunol. 2021, 21, 195–197. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 2020, 20, 75–76. [Google Scholar] [CrossRef]
- Malek, A.E.; Cornejo, P.P.; Daoud, N.; Alam, M. The mRNA COVID-19 vaccine in patients with cancer receiving checkpoint inhibitor therapy: What we know and what we don’t. Immunotherapy 2022, 14, 91–94. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, G. SARS-CoV-2 infection and COVID-19 vaccination in cancer patients undergoing immune checkpoint inhibitors. Cell Death Dis. 2023, 14, 390. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Li, J.; Hou, X.; Yang, Q.; Zhou, Y.; Ye, J.; Wu, X.; Feng, Y.; Hu, T.; Xu, Z.; et al. Indications for and contraindications of immune checkpoint inhibitors in cancer patients with COVID-19 vaccination. Future Oncol. 2021, 17, 3477–3484. [Google Scholar] [CrossRef]
- New, J.; Shenton, L.; Ksayer, R.; Wang, J.; Zakharia, K.; Nicholson, L.J.; Pandey, A.C. Immune Checkpoint Inhibitors and Vaccination: Assessing Safety, Efficacy, and Synergistic Potential. Vaccines 2024, 12, 1270. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liao, L.; Huang, W.; Feng, H.; Wang, W.; Huang, N.; Zhao, Z.; Shi, Y.; Ye, J.; Gu, K. Patients with advanced cancer were treated with immune checkpoint inhibitors and injected with COVID-19 vaccine to improve their prognosis without increasing pancreatic related adverse events. Hum. Vaccin. Immunother. 2024, 20, 2358575. [Google Scholar] [CrossRef]
- Niewolik, J.; Mikuteit, M.; Cossmann, A.; Vahldiek, K.; Gutzmer, R.; Müller, F.; Schröder, D.; Heinemann, S.; Behrens, G.M.N.; Dopfer-Jablonka, A.; et al. Immunogenicity of COVID-19 vaccination in melanoma patients under immune checkpoint blockade. Oncology 2022, 100, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.J.; Liu, Y.L.; Wen, K.; Kurts, C.; Wu, H.; Mei, Q.; Li, J. Potentially improved response of COVID-19 vaccinated nasopharyngeal cancer patients to combination therapy with anti-PD-1 blockade and chemotherapy. Ann Oncol. 2023, 34, 121–123. [Google Scholar] [CrossRef]
- Khaddour, K.; Kamel, J.M.; Meeder, N.; Xu, Z.; Sandra, C.; Pasquinelli, M.; Nguyen, R.H.-T.; Liu, L.C.; Gadi, V.K.; Feldman, L.E.; et al. Clinical outcomes in patients with metastatic non-small cell lung cancer and head and neck squamous cell cancer treated with immune checkpoint inhibitors according to COVID-19 vaccination status. J. Clin. Oncol. 2023, 41 (Suppl. 16), e14696. [Google Scholar] [CrossRef]
- Qian, Y.; Zhu, Z.; Mo, Y.Y.; Zhang, Z. COVID-19 vaccination is associated with enhanced efficacy of anti-PD-(L)1 immunotherapy in advanced NSCLC patients: A real-world study. Infect. Agent Cancer 2023, 18, 50. [Google Scholar] [CrossRef]
- Interim Clinical Considerations for Use of COVID-19 Vaccines in the United States. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html (accessed on 31 March 2025).
- Prevention and Treatment of Cancer-Related Infections. Version 3.2024. Available online: https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf (accessed on 31 March 2025).
- Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). Available online: https://www.strobe-statement.org (accessed on 31 March 2025).
- Registri Farmaci Sottoposti a Monitoraggio. Available online: https://www.aifa.gov.it/registri-farmaci-sottoposti-a-monitoraggio (accessed on 31 March 2024).
- Detterbeck, F.C.; Boffa, D.J.; Kim, A.W.; Tanoue, L.T. The Eighth Edition Lung Cancer Stage Classification. Chest 2017, 151, 193–203. [Google Scholar] [CrossRef]
- Adverse Drug Reaction Monitoring. Available online: https://www.aifa.gov.it/web/guest/content/segnalazioni-reazioni-avverse (accessed on 31 March 2025).
- PD-L1 IHC 22C3 pharmDx. Available online: https://www.agilent.com/en/product/pharmdx/pd-l1-ihc-22c3-pharmdx (accessed on 31 March 2025).
- Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 31 March 2025).
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef]
- Wang, X.; Ji, X. Sample Size Estimation in Clinical Research: From Randomized Controlled Trials to Observational Studies. Chest 2020, 158, S12–S20. [Google Scholar] [CrossRef] [PubMed]
- The R Project for Statistical Computing. R Website. Available online: https://www.r-project.org (accessed on 31 March 2025).
- Zhang, Z.; Kim, H.J.; Lonjon, G.; Zhu, Y.; written on behalf of AME Big-Data Clinical Trial Collaborative Group. Balance diagnostics after propensity score matching. Ann. Transl. Med. 2019, 7, 16. [Google Scholar] [CrossRef]
- Brest, P.; Mograbi, B.; Hofman, P.; Milano, G. COVID-19 vaccination and cancer immunotherapy: Should they stick together? Br. J. Cancer 2022, 126, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Nelli, F.; Giannarelli, D.; Fabbri, A.; Virtuoso, A.; Giron Berrios, J.R.; Marrucci, E.; Fiore, C.; Schirripa, M.; Signorelli, C.; Chilelli, M.G.; et al. Immune-related adverse events and disease outcomes after the third dose of SARS-CoV-2 mRNA-BNT162b2 vaccine in cancer patients receiving immune checkpoint inhibitors. Cancer Immunol. Immunother. 2023, 72, 3217–3228. [Google Scholar] [CrossRef]
- Owen, D.H.; Ismaila, N.; Ahluwalia, A.; Feldman, J.; Gadgeel, S.; Mullane, M.; Naidoo, J.; Presley, C.J.; Reuss, J.E.; Singhi, E.K.; et al. Therapy for Stage IV Non-Small Cell Lung Cancer with Driver Alterations: ASCO Living Guideline, Version 2024.3. J. Clin. Oncol. 2025, 43, e2–e16. [Google Scholar] [CrossRef]
- Brookhart, M.A.; Schneeweiss, S.; Rothman, K.J.; Glynn, R.J.; Avorn, J.; Stürmer, T. Variable selection for propensity score models. Am. J. Epidemiol. 2006, 163, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Bersanelli, M.; Verzoni, E.; Cortellini, A.; Giusti, R.; Calvetti, L.; Ermacora, P.; Di Napoli, M.; Catino, A.; Guadalupi, V.; Guaitoli, G.; et al. Impact of influenza vaccination on survival of patients with advanced cancer receiving immune checkpoint inhibitors (INVIDIa-2): Final results of the multicentre, prospective, observational study. eClinicalMedicine 2023, 61, 102044. [Google Scholar] [CrossRef]
- Kim, H.H.; Lee, H.K.; Hennighausen, L.; Furth, P.A.; Sung, H.; Huh, J.W. Time-course analysis of antibody and cytokine response after the third SARS-CoV-2 vaccine dose. Vaccine X 2024, 20, 100565. [Google Scholar] [CrossRef]
- Aoki, H.; Kitabatake, M.; Abe, H.; Xu, P.; Tsunoda, M.; Shichino, S.; Hara, A.; Ouji-Sageshima, N.; Motozono, C.; Ito, T.; et al. CD8+ T cell memory induced by successive SARS-CoV-2 mRNA vaccinations is characterized by shifts in clonal dominance. Cell Rep. 2024, 43, 113887. [Google Scholar] [CrossRef]
- Ruiz, J.I.; Lopez-Olivo, M.A.; Geng, Y.; Suarez-Almazor, M.E. COVID-19 vaccination in patients with cancer receiving immune checkpoint inhibitors: A systematic review and meta-analysis. J. Immunother. Cancer 2023, 11, e006246. [Google Scholar] [CrossRef]
- Wang, X.; Kattan, M.W. Cohort Studies: Design, Analysis, and Reporting. Chest 2020, 158, S72–S78. [Google Scholar] [CrossRef] [PubMed]
- Valachis, A.; Rosén, C.; Koliadi, A.; Digkas, E.; Gustavsson, A.; Nearchou, A.; Ullenhag, G.J. Improved survival without increased toxicity with influenza vaccination in cancer patients treated with checkpoint inhibitors. OncoImmunology 2021, 10, 1886725. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Lewis, R.J. Immortal Time Bias in Observational Studies. JAMA 2021, 325, 686–687. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A.; Sterne, J.A.C.; Higgins, J.P.T.; Shrier, I.; Hernández-Díaz, S. A Structural Description of Biases That Generate Immortal Time. Epidemiology 2025, 36, 107–114. [Google Scholar] [CrossRef]
- Gujar, S.; Pol, J.G.; Kim, Y.; Kroemer, G. Repurposing CD8+ T cell immunity against SARS-CoV-2 for cancer immunotherapy: A positive aspect of the COVID-19 pandemic? Oncoimmunology 2020, 9, 1794424. [Google Scholar] [CrossRef]
- Walle, T.; Bajaj, S.; Kraske, J.A.; Rösner, T.; Cussigh, C.S.; Kälber, K.A.; Müller, L.J.; Strobel, S.B.; Burghaus, J.; Kallenberger, S.M.; et al. Cytokine release syndrome-like serum responses after COVID-19 vaccination are frequent and clinically inapparent under cancer immunotherapy. Nat. Cancer 2022, 3, 1039–1051. [Google Scholar] [CrossRef]
- Piening, A.; Ebert, E.; Khojandi, N.; Alspach, E.; Teague, R.M. Immune responses to SARS-CoV-2 in vaccinated patients receiving checkpoint blockade immunotherapy for cancer. Front. Immunol. 2022, 13, 1022732. [Google Scholar] [CrossRef]
- Song, N.J.; Chakravarthy, K.B.; Jeon, H.; Bolyard, C.; Reynolds, K.; Weller, K.P.; Reisinger, S.; Wang, Y.; Li, A.; Jiang, S.; et al. mRNA vaccines against SARS-CoV-2 induce divergent antigen-specific T-cell responses in patients with lung cancer. J. Immunother. Cancer 2024, 12, e007922. [Google Scholar] [CrossRef]
- Ravera, F.; Dameri, M.; Lombardo, I.; Stabile, M.; Fallani, N.; Scarsi, C.; Cigolini, B.; Gentilcore, G.; Domnich, A.; Zullo, L.; et al. Biological modifications of the immune response to COVID-19 vaccine in patients treated with anti-CD20 agents and immune-checkpoint inhibitors. BioRxiv 2024. [Google Scholar] [CrossRef]
- Trougakos, I.P.; Terpos, E.; Alexopoulos, H.; Politou, M.; Paraskevis, D.; Scorilas, A.; Kastritis, E.; Andreakos, E.; Dimopoulos, M.A. Adverse effects of COVID-19 mRNA vaccines: The spike hypothesis. Trends Mol. Med. 2022, 28, 542–554. [Google Scholar] [CrossRef]
- Huang, H.C.; Wang, S.H.; Fang, G.C.; Chou, W.C.; Liao, C.C.; Sun, C.P.; Jan, J.T.; Ma, H.H.; Ko, H.Y.; Ko, Y.A.; et al. Upregulation of PD-L1 by SARS-CoV-2 promotes immune evasion. J. Med. Virol. 2023, 95, e28478. [Google Scholar] [CrossRef] [PubMed]
- Sabbatino, F.; Conti, V.; Franci, G.; Sellitto, C.; Manzo, V.; Pagliano, P.; De Bellis, E.; Masullo, A.; Salzano, F.A.; Caputo, A.; et al. PD-L1 Dysregulation in COVID-19 Patients. Front. Immunol. 2021, 12, 695242. [Google Scholar] [CrossRef] [PubMed]
- Awadasseid, A.; Yin, Q.; Wu, Y.; Zhang, W. Potential protective role of the anti-PD-1 blockade against SARS-CoV-2 infection. Biomed. Pharmacother. 2021, 142, 111957. [Google Scholar] [CrossRef]
- Loacker, L.; Kimpel, J.; Bánki, Z.; Schmidt, C.Q.; Griesmacher, A.; Anliker, M. Increased PD-L1 surface expression on peripheral blood granulocytes and monocytes after vaccination with SARS-CoV-2 mRNA or vector vaccine. Clin. Chem. Lab. Med. 2022, 61, e17–e19. [Google Scholar] [CrossRef]
- MacManus, M.P.; Akhurst, T.; Lewin, S.R.; Hegi-Johnson, F. Response to COVID-19 vaccination imaged by PD-L1 PET scanning. EJNMMI Rep. 2024, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hu, J.C.; Rong, L.; He, Y.; Wang, X.; Lin, X.; Li, W.; Wu, Y.; Kuwentrai, C.; Su, C.; et al. The guided fire from within: Intratumoral administration of mRNA-based vaccines to mobilize memory immunity and direct immune responses against pathogen to target solid tumors. Cell Discov. 2025, 10, 127. [Google Scholar] [CrossRef]
- Grippin, A.J.; De, B.; Fink, K.; Swanson, D.; Young, C.; Chang, E.; Johns, A.; Cha, E.; Wei, X.; Dudzinski, S.; et al. MA15.04 Timing of Pre-Biopsy COVID-mRNA Vaccination and PD-L1 Expression in Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2023, 18, S153–S154. [Google Scholar] [CrossRef]
- Grippin, A.J.; Copling, S.; Kim, A.; Young, E.; Lohray, R.; Chang, E.; Kouzy, R.; Lewis, J.; Wei, X.; Rinsurongkawong, W.; et al. 995MO Association of SARS-CoV-2 mRNA vaccines with tumor PD-L1 expression and clinical responses to immune checkpoint blockade. Ann. Oncol. 2024, 35, S677–S678. [Google Scholar] [CrossRef]
- Yin, J.; Song, Y.; Tang, J.; Zhang, B. What is the optimal duration of immune checkpoint inhibitors in malignant tumors? Front. Immunol. 2022, 13, 983581. [Google Scholar] [CrossRef]
- Olsson Ladjevardi, C.; Koliadi, A.; Rydén, V.; Inan El-Naggar, A.; Digkas, E.; Valachis, A.; Ullenhag, G.J. Predicting immune-related adverse events using a simplified frailty score in cancer patients treated with checkpoint inhibitors: A retrospective cohort study. Cancer Med. 2023, 12, 13217–13224. [Google Scholar] [CrossRef]
- Ranganathan, P.; Pramesh, C.S.; Buyse, M. Common pitfalls in statistical analysis: The perils of multiple testing. Perspect Clin. Res. 2016, 7, 106–107. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Vaccines in People with Cancer. Available online: https://www.cancer.org/cancer/managing-cancer/coronavirus-covid-19-and-cancer/covid-19-vaccines-in-people-with-cancer (accessed on 28 May 2025).
- Kamboj, M.; Kirkwood, M.K.; Bohlke, K.; Gralow, J.R.; Garrett-Mayer, E.; Aggarwal, C. More Frequent than Annual Administration of COVID-19 Vaccination May Be Appropriate for Patients with Cancer. JCO Oncol. Adv. 2025, 2, e2400107. [Google Scholar] [CrossRef] [PubMed]
Variable | All Patients (N = 204) | Reference Cohort (N = 102) | Exposed Cohort (N = 102) | p Value | SMD |
---|---|---|---|---|---|
Age - mean (SD), years - ≥70 years | 68.8 (8.4) 110 (53.9%) | 69.0 (8.1) 58 (56.9%) | 68.9 (8.7) 52 (51.0%) | 0.740 0.483 | - 0.058 |
Sex - female - male | 67 (32.8%) 137 (67.2%) | 32 (31.4%) 70 (68.6%) | 35 (34.3%) 67 (65.7%) | 0.766 | 0.029 |
ECOG PS - 0 - 1 - 2 | 49 (24.0%) 123 (60.3%) 32 (15.7%) | 31 (30.4%) 54 (52.9%) 17 (16.7%) | 18 (17.7%) 69 (67.6%) 15 (14.7%) | 0.067 | <0.001 |
Histology - non-squamous - squamous | 147 (72.1%) 57 (27.9%) | 78 (76.5%) 24 (23.5%) | 69 (67.6%) 33 (32.4%) | 0.212 | <0.001 |
Metastatic sites - ≤2 - >2 | 115 (56.4%) 89 (43.6%) | 55 (53.9%) 47 (46.1%) | 60 (58.8%) 42 (41.2%) | 0.572 | 0.049 |
Bone metastasis | 46 (22.5%) | 25 (24.5%) | 21 (20.6%) | 0.616 | 0.039 |
CNS metastasis | 47 (23.0%) | 19 (18.6%) | 28 (27.5%) | 0.1830 | <0.001 |
Liver metastasis | 18 (8.8%) | 9 (8.8%) | 9 (8.8%) | 1 | 0.001 |
PD-L1 TPS - <1% - ≥1% and ≤49% - ≥50% | 64 (31.4%) 59 (28.9%) 81 (39.7%) | 33 (32.4%) 27 (26.5%) 42 (41.2%) | 31 (30.4%) 32 (31.4%) 39 (38.2%) | 0.742 | 0.039 |
BMI - mean (SD), kg/m2 - ≥25 kg/m2 | 25.8 (4.4) 89 (43.6%) | 25.9 (4.9) 49 (48.0%) | 25.7 (3.9) 40 (39.2%) | 0.985 0.259 | - 0.088 |
Smoking habits - never - current or former | 17 (8.3%) 187 (91.7%) | 8 (7.8%) 94 (92.2%) | 9 (8.8%) 93 (91.2%) | 1 | 0.009 |
Previous thoracic RT | 35 (17.2%) | 12 (11.8%) | 23 (22.5%) | 0.062 | <0.001 |
LIPI category - 0 - 1 - 2 | 78 (38.2%) 84 (41.2%) 42 (20.6%) | 42 (41.2%) 35 (34.3%) 25 (24.5%) | 36 (35.3%) 49 (48.0%) 17 (16.7%) | 0.115 | 0.019 |
Upfront therapy - only ICIs - pemetrexed-based - paclitaxel-based | 81 (39.7%) 86 (42.2%) 37 (18.1%) | 42 (41.2%) 46 (45.1%) 14 (13.7%) | 39 (38.2%) 40 (39.2%) 23 (22.5%) | 0.257 | <0.001 |
Corticosteroid therapy a | 88 (43.1%) | 39 (38.2%) | 49 (48.0%) | 0.203 | <0.001 |
APAP b | 79 (38.7%) | 35 (34.3%) | 44 (43.1%) | 0.250 | <0.0001 |
Systemic antimicrobial therapy c | 44 (21.6%) | 23 (22.5%) | 21 (20.6%) | 0.865 | 0.019 |
PPI d | 67 (32.8%) | 35 (34.3%) | 32 (31.4%) | 0.766 | 0.029 |
irAE Type | All Grades, No. of Patients (%) | Grade 1–2, No. of Patients (%) | Grade 3–4, No. of Patients (%) | Median Time to Onset, Weeks (IQR) |
---|---|---|---|---|
All types | 72 (35.3%) | 58 (28.4%) | 14 (6.9%) | - |
Thyroid dysfunction - Hypothyroidism - Hyperthyroidism | 13 (6.4%) 2 (1.0%) | 12 (5.9%) 2 (1.0%) | 1 (0.5%) - | 10.2 (6.7–22.7) 7.1 (5.9–11.4) |
Dermatologic | 11 (5.4%) | 10 (4.9%) | 1 (0.5%) | 6.9 (3.2–17.4) |
Colitis | 8 (3.9%) | 6 (2.9%) | 2 (1.0%) | 6.6 (2.9–28.1) |
Pneumonitis | 7 (3.4%) | 4 (1.9%) | 3 (1.5%) | 12.3 (7.5–20.8) |
Hepatitis | 5 (2.4%) | 4 (1.9%) | 1 (0.5%) | 4.9 (2.2–22.3) |
Arthritis | 6 (2.9%) | 6 (2.4%) | - | 37.5 (16.2–49.2) |
Pancreatitis | 5 (2.4%) | 4 (1.9%) | 1 (0.5%) | 9.9 (5.6–25.1) |
Myositis | 3 (1.5%) | 3 (1.4%) | - | 13.2 (6.9–20.6) |
Nephritis | 2 (1.0%) | 1 (0.5%) | 1 (0.5%) | 11.9 (3.4–20.3) |
Diabetes | 2 (1.0%) | 2 (1.0%) | - | 10.8 (6.2–16.5) |
Hypophysitis | 2 (1.0%) | 1 (0.5%) | 1 (0.5%) | 20.6 (7.6–37.1) |
Vasculitis | 2 (1.0%) | 1 (0.5%) | 1 (0.5%) | 5.0 (3.2–6.9) |
Adrenal dysfunction | 1 (0.5%) | 1 (0.5%) | - | 12.8 (9.6–30.4) |
Peripheral sensory neuropathy | 1 (0.5%) | - | 1 (0.5%) | 6.7 (3.1–32.1) |
Uveitis | 1 (0.5%) | - | 1 (0.5%) | 9.1 (7.0–37.6) |
Myocarditis | 1 (0.5%) | 1 (0.5%) | - | 4.9 (4.3–11.4) |
irAE Type | All Grades, No. of Patients (%) | Grade 1–2, No. of Patients (%) | Grade 3, No. of Patients (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Reference Cohort (N = 102) | Exposed Cohort (N = 102) | p Value | Reference Cohort (N = 102) | Exposed Cohort (N = 102) | p Value | Reference Cohort (N = 102) | Exposed Cohort (N = 102) | p Value | |
All types | 37 (36.3%) | 35 (34.3%) | 0.769 | 33 (32.4%) | 25 (24.5%) | 0.214 | 4 (3.9%) | 10 (9.8%) | 0.096 |
Dermatologic | 4 (3.9%) | 7 (6.8%) | 0.369 | 4 (3.9%) | 6 (5.9%) | 0.516 | - | 1 (0.5%) | 0.316 |
Thyroid dysfunction | 7 (6.8%) | 8 (7.8%) | 0.788 | 7 (6.8%) | 7 (6.8%) | 1 | - | 1 (0.5%) | 0.316 |
Colitis | 3 (2.9%) | 5 (4.9%) | 0.470 | 3 (2.9%) | 3 (2.9%) | 1 | - | 2 (1.0%) | 0.155 |
Pneumonitis | 4 (3.9%) | 3 (2.9%) | 0.700 | 2 (1.0%) | 2 (1.0%) | 1 | 2 (1.0%) | 1 (0.5%) | 0.560 |
Hepatitis | 4 (3.9%) | 1 (0.5%) | 0.174 | 4 (3.9%) | - | 0.043 | - | 1 (0.5%) | 0.316 |
Arthritis | 4 (3.9%) | 2 (1.0%) | 0.407 | 4 (3.9%) | 2 (1.0%) | 0.407 | - | - | - |
Pancreatitis | 2 (1.0%) | 3 (2.9%) | 0.650 | 2 (1.0%) | 2 (1.0%) | 1 | - | 1 (0.5%) | 0.316 |
Myositis | 2 (1.0%) | 1 (0.5%) | 0.560 | 2 (1.0%) | 1 (0.5%) | 0.560 | - | - | - |
Nephritis | 2 (1.0%) | - | 0.155 | 1 (0.5%) | - | 0.316 | 1 (0.5%) | - | 0.316 |
Diabetes | 1 (0.5%) | 1 (0.5%) | 1 | 1 (0.5%) | 1 (0.5%) | 1 | - | - | - |
Hypophysitis | - | 2 (1.0%) | 0.155 | - | 1 (0.5%) | 0.316 | - | 1 (0.5%) | 0.316 |
Vasculitis | 1 (0.5%) | 1 (0.5%) | 1 | 1 (0.5%) | - | 0.316 | - | 1 (0.5%) | 0.316 |
Adrenal dysfunction | 1 (0.5%) | - | 0.316 | 1 (0.5%) | - | 0.316 | - | - | - |
Peripheral sensory neuropathy | - | 1 (0.5%) | 0.316 | - | - | - | - | 1 (0.5%) | 0.316 |
Uveitis | 1 (0.5%) | - | 0.316 | - | - | - | 1 (0.5%) | - | 0.316 |
Myocarditis | 1 (0.5%) | - | 0.316 | 1 (0.5%) | - | 0.316 | - | - | - |
Covariate | Median PFS, Months (95% CI) | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | ||
Age - <70 years (N = 94) - ≥70 years (N = 110) | 7.6 (6.0–9.3) 7.7 (6.3–9.1) | 1.00 1.05 (0.78–1.40) | - 0.739 | 1.00 0.94 (0.66–1.33) | - 0.748 |
Sex - female (N = 67) - male (N = 137) | 7.7 (3.6–11.9) 7.8 (6.7–8.9) | 1.00 0.78 (0.57–1.06) | - 0.123 | 1.00 0.84 (0.58–1.22) | - 0.373 |
ECOG PS - 0 (N = 49) - 1 (N = 123) - 2 (N = 32) | 11.9 (7.9–15.9) 7.7 (6.5–8.9) 3.7 (2.2–5.2) | 1.00 1.87 (1.28–2.72) 2.81 (1.73–4.55) | - 0.001 <0.001 | 1.00 1.14 (0.71–1.83) 1.77 (0.99–3.15) | - 0.584 0.052 |
Histology - non-squamous (N = 147) - squamous (N = 57) | 7.6 (6.3–8.9) 8.5 (7.0–10.0) | 1.00 0.86 (0.62–1.20) | - 0.394 | 1.00 0.93 (0.55–1.59) | - 0.809 |
Metastatic sites - ≤2 (N = 115) - >2 (N = 89) | 8.5 (7.5–9.5) 7.0 (4.8–9.1) | 1.00 1.22 (0.91–1.64) | - 0.172 | 1.00 1.11 (0.68–1.82) | - 0.670 |
Bone metastasis - no (N = 158) - any (N = 46) | 8.4 (7.4–9.5) 5.2 (2.6–7.7) | 1.00 1.75 (1.25–2.46) | - 0.001 | 1.00 1.04 (0.65–1.66) | - 0.854 |
CNS metastasis - no (N = 157) - any (N = 47) | 7.8 (6.4–9.2) 7.7 (4.9–10.5) | 1.00 0.83 (0.59–1.18) | - 0.324 | 1.00 0.73 (0.43–1.24) | - 0.256 |
Liver metastasis - no (N = 186) - any (N = 18) | 8.0 (7.0–9.1) 6.2 (2.7–9.6) | 1.00 1.06 (0.62–1.81) | - 0.806 | 1.00 1.01 (0.55–1.82) | - 0.990 |
PD-L1 TPS - <1% (N = 64) - ≥1% and ≤49% (N = 59) - ≥50% (N = 81) | 6.7 (4.6–8.7) 8.9 (6.8–11.1) 7.0 (5.3–8.6) | 1.00 0.74 (0.51–1.07) 0.75 (0.53–1.07) | - 0.117 0.122 | 1.00 0.82 (0.53–1.25) 0.75 (0.16–3.32) | - 0.365 0.696 |
BMI - <25 kg/m2 (N = 115) - ≥25 kg/m2 (N = 89) | 7.0 (5.6–8.3) 8.6 (7.9–9.2) | 1.00 0.94 (0.70–1.26) | - 0.688 | 1.00 1.04 (0.74–1.47) | - 0.801 |
Smoking habits - never (N = 17) - current or former (N = 187) | 4.9 (2.4–7.3) 8.1 (7.0–9.1) | 1.00 0.67 (0.40–1.11) | - 0.121 | 1.00 0.77 (0.42–1.41) | - 0.400 |
Previous chest radiotherapy - no (N = 169) - yes (N = 35) | 7.8 (6.4–9.2) 7.6 (5.2–10.0) | 1.00 0.90 (0.61–1.32) | - 0.597 | 1.00 0.93 (0.60–1.44) | - 0.756 |
LIPI category - 0 (N = 78) - 1 (N = 84) - 2 (N = 42) | 13.5 (7.7–19.3) 6.9 (5.4–8.3) 3.0 (2.5–3.4) | 1.00 2.70 (1.90–3.85) 8.52 (5.52–13.16) | - <0.001 <0.001 | 1.002.79 (1.87–4.17) 9.25 (5.63–15.20) | - <0.001 <0.001 |
Upfront therapy - only pembrolizumab (N = 81) - pemetrexed-based (N = 86) - paclitaxel-based (N = 37) | 7.0 (5.3–8.6) 8.5 (5.5–9.5) 8.5 (8.0–9.0) | 1.00 1.18 (0.86–1.64) 0.86 (0.56–1.32) | - 0.293 0.513 | 1.00 1.08 (0.24–4.75) 0.66 (0.15–2.90) | - 0.912 0.590 |
Corticosteroid therapy a - no (N = 116) - yes (N = 88) | 10.1 (7.6–12.5) 4.2 (2.8–5.6) | 1.00 2.05 (1.52–2.76) | - <0.001 | 1.00 1.63 (1.15–2.31) | - 0.006 |
APAP b - no (N = 125) - yes (N = 79) | 8.6 (7.2–9.9) 6.1 (4.4–7.7) | 1.00 1.22 (0.90–1.64) | - 0.185 | 1.00 1.10 (0.76–1.60) | - 0.584 |
Systemic antimicrobial therapy c - no (N = 160) - yes (N = 44) | 8.6 (7.0–10.2) 4.1 (2.5–5.7) | 1.00 2.27 (1.59–3.23) | - <0.001 | 1.00 1.57 (1.02–2.43) | - 0.040 |
PPI d - no (N = 137) - yes (N = 67) | 8.3 (7.0–9.5) 7.0 (5.7–8.2) | 1.00 1.28 (0.94–1.75) | - 0.109 | 1.00 1.37 (0.94–1.99) | - 0.093 |
Vaccine exposure - no (N = 102) - yes (N = 102) | 7.6 (5.8–9.4) 8.2 (6.2–10.2) | 1.00 0.88 (0.66–1.18) | - 0.410 | 1.00 0.92 (0.65–1.29) | - 0.637 |
Covariate | Median OS, Months (95% CI) | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | ||
Age - <70 years (N = 94) - ≥70 years (N = 110) | 12.7 (9.4–16.0) 13.0 (11.3–14.6) | 1.00 1.05 (0.77–1.42) | - 0.740 | 1.00 0.86 (0.59–1.26) | - 0.451 |
Sex - female (N = 67) - male (N = 137) | 11.6 (8.7–14.4) 13.3 (11.2–15.3) | 1.00 0.80 (0.58–1.10) | - 0.172 | 1.00 0.80 (0.55–1.18) | - 0.274 |
ECOG PS - 0 (N = 49) - 1 (N = 12) - 2 (N = 32) | 16.2 (11.7–20.7) 13.0 (11.5–14.6) 9.5 (6.6–12.3) | 1.00 1.70 (1.15–2.51) 2.43 (1.49–3.97) | - 0.007 <0.001 | 1.00 1.19 (0.74–1.93) 1.75 (0.98–3.14) | - 0.459 0.059 |
Histology - non-squamous (N = 147) - squamous (N = 57) | 13.3 (10.9–15.7) 12.7 (11.0–14.4) | 1.00 0.94 (0.67–1.32) | - 0.741 | 1.00 0.87 (0.50–1.50) | - 0.624 |
Metastatic sites - ≤2 (N = 115) - >2 (N = 89) | 13.3 (11.2–15.4) 11.7 (8.4–15.1) | 1.00 0.98 (0.72–1.33) | - 0.910 | 1.00 0.84 (0.50–1.41) | - 0.520 |
Bone metastasis - no (N = 158) - any (N = 46) | 13.2 (11.2–15.1) 10.3 (4.9–15.6) | 1.00 1.40 (0.99–1.99) | - 0.057 | 1.00 0.85 (0.52–1.38) | - 0.515 |
CNS metastasis - no (N = 157) - any (N = 47) | 13.0 (11.2–14.1) 13.1 (9.5–16.8) | 1.00 0.69 (0.48–1.01) | - 0.061 | 1.00 0.65 (0.37–1.12) | - 0.123 |
Liver metastasis - no (N = 186) - any (N = 18) | 13.1 (11.3–14.9) 10.2 (4.2–16.2) | 1.00 1.16 (0.67–2.01) | - 0.590 | 1.00 1.28 (0.67–2.45) | - 0.444 |
PD-L1 TPS - <1% (N = 64) - ≥1% and ≤49% (N = 59) - ≥50% (N = 81) | 10.3 (8.0–12.6) 13.5 (11.4–15.5) 13.8 (9.9–17.6) | 1.00 0.73 (0.50–1.08) 0.77 (0.54–1.11) | - 0.119 0.171 | 1.00 0.70 (0.45–1.10) 0.32 (0.04–2.27) | - 0.129 0.259 |
BMI - <25 kg/m2 (N = 115) - ≥25 kg/m2 (N = 89) | 13.3 (11.4–15.1) 12.0 (9.1–14.8) | 1.00 1.01 (0.74–1.36) | - 0.960 | 1.00 1.13 (0.80–1.60) | - 0.463 |
Smoking habits - never (N = 17) - current or former (N = 187) | 14.1 (8.9–19.3) 12.7 (11.2–14.3) | 1.00 1.07 (0.61–1.85) | - 0.805 | 1.00 1.60 (0.82–3.08) | - 0.161 |
Previous chest radiotherapy - no (N = 169) - yes (N = 35) | 12.6 (10.8–14.4) 13.4 (10.3–16.5) | 1.00 0.99 (0.66–1.41) | - 0.966 | 1.00 1.03 (0.67–1.60) | - 0.863 |
LIPI category - 0 (N = 78) - 1 (N = 84) - 2 (N = 42) | 20.7 (17.3–24.03) 11.6 (9.9–13.3) 6.4 (4.9–7.8) | 1.00 2.47 (1.71–3.56) 6.85 (4.41–10.6) | - <0.001 <0.001 | 1.00 2.91 (1.90–4.43) 7.58 (4.57–12.56) | - <0.001 <0.001 |
Upfront therapy - only pembrolizumab (N = 81) - pemetrexed-based (N = 86) - paclitaxel-based (N = 37) | 13.6 (10.5–16.6) 11.7 (8.4–15.0) 12.6 (10.5–14.6) | 1.00 1.08 (0.77–1.50) 0.96 (0.62–1.48) | - 0.6490.861 | 1.00 0.55 (0.08–3.71) 0.43 (0.06–2.85) | - 0.542 0.389 |
Corticosteroid therapy a - no (N = 116) - yes (N = 88) | 16.2 (13.2–19.2) 10.2 (8.5–12.0) | 1.00 2.05 (1.51–2.78) | - <0.001 | 1.00 1.64 (1.15–2.33) | - 0.006 |
APAP b - no (N = 125) - yes (N = 79) | 13.3 (10.7–15.8) 12.0 (9.2–14.7) | 1.00 1.19 (0.88–1.62) | - 0.252 | 1.00 1.10 (0.75–1.60) | - 0.618 |
Systemic antimicrobial therapy c - no (N = 160) - yes (N = 44) | 14.1 (11.9–16.3) 9.6 (7.7–11.5) | 1.00 1.99 (1.39–2.85) | - <0.001 | 1.00 1.36 (0.89–2.07) | - 0.147 |
PPI d - no (N = 137) - yes (N = 67) | 13.8 (11.3–16.2) 11.6 (9.2–13.9) | 1.00 1.37 (1.00–1.89) | - 0.047 | 1.00 1.31 (0.90–1.92) | - 0.153 |
Vaccine exposure - no (N = 102) - yes (N = 102) | 10.5 (7.7–13.3) 13.8 (12.0–15.5) | 1.00 0.81 (0.59–1.09) | - 0.171 | 1.00 0.69 (0.48–1.01) | - 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbri, A.; Ruggeri, E.M.; Virtuoso, A.; Giannarelli, D.; Raso, A.; Chegai, F.; Remotti, D.; Signorelli, C.; Nelli, F. Periodic Boosters of COVID-19 Vaccines Do Not Affect the Safety and Efficacy of Immune Checkpoint Inhibitors for Advanced Non-Small Cell Lung Cancer: A Longitudinal Analysis of the Vax-On-Third Study. Cancers 2025, 17, 1948. https://doi.org/10.3390/cancers17121948
Fabbri A, Ruggeri EM, Virtuoso A, Giannarelli D, Raso A, Chegai F, Remotti D, Signorelli C, Nelli F. Periodic Boosters of COVID-19 Vaccines Do Not Affect the Safety and Efficacy of Immune Checkpoint Inhibitors for Advanced Non-Small Cell Lung Cancer: A Longitudinal Analysis of the Vax-On-Third Study. Cancers. 2025; 17(12):1948. https://doi.org/10.3390/cancers17121948
Chicago/Turabian StyleFabbri, Agnese, Enzo Maria Ruggeri, Antonella Virtuoso, Diana Giannarelli, Armando Raso, Fabrizio Chegai, Daniele Remotti, Carlo Signorelli, and Fabrizio Nelli. 2025. "Periodic Boosters of COVID-19 Vaccines Do Not Affect the Safety and Efficacy of Immune Checkpoint Inhibitors for Advanced Non-Small Cell Lung Cancer: A Longitudinal Analysis of the Vax-On-Third Study" Cancers 17, no. 12: 1948. https://doi.org/10.3390/cancers17121948
APA StyleFabbri, A., Ruggeri, E. M., Virtuoso, A., Giannarelli, D., Raso, A., Chegai, F., Remotti, D., Signorelli, C., & Nelli, F. (2025). Periodic Boosters of COVID-19 Vaccines Do Not Affect the Safety and Efficacy of Immune Checkpoint Inhibitors for Advanced Non-Small Cell Lung Cancer: A Longitudinal Analysis of the Vax-On-Third Study. Cancers, 17(12), 1948. https://doi.org/10.3390/cancers17121948