Fluorescence-Guided Surgery for Gliomas: Past, Present, and Future
Simple Summary
Abstract
1. Introduction
2. Historical Perspective
3. Fluorophores
3.1. Indocyanine Green (ICG)
3.2. Fluorescein
3.3. 5-Aminolevulinic Acid (5-ALA)
4. Practical Clinical Application
4.1. Complementary Technologies
4.2. Therapeutic Applications
4.3. Adoption and Outcomes
5. Future Directions
5.1. Improved Performance of 5-ALA
5.2. Exploring Other Fluorophores
5.3. Current Clinical US Trials and Therapeutic Adjuncts
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro Oncol. 2023, 25, iv1–iv99. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Y.; Yu, T.-S.; McKay, R.M.; Burns, D.K.; Kernie, S.G.; Parada, L.F. A Restricted Cell Population Propagates Glioblastoma Growth after Chemotherapy. Nature 2012, 488, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Glas, M.; Rath, B.H.; Simon, M.; Reinartz, R.; Schramme, A.; Trageser, D.; Eisenreich, R.; Leinhaas, A.; Keller, M.; Schildhaus, H.-U.; et al. Residual Tumor Cells Are Unique Cellular Targets in Glioblastoma. Ann. Neurol. 2010, 68, 264–269. [Google Scholar] [CrossRef]
- Oppenlander, M.E.; Wolf, A.B.; Snyder, L.A.; Bina, R.; Wilson, J.R.; Coons, S.W.; Ashby, L.S.; Brachman, D.; Nakaji, P.; Porter, R.W.; et al. An Extent of Resection Threshold for Recurrent Glioblastoma and Its Risk for Neurological Morbidity. J. Neurosurg. 2014, 120, 846–853. [Google Scholar] [CrossRef]
- Chaichana, K.L.; Zadnik, P.; Weingart, J.D.; Olivi, A.; Gallia, G.L.; Blakeley, J.; Lim, M.; Brem, H.; Quiñones-Hinojosa, A. Multiple Resections for Patients with Glioblastoma: Prolonging Survival. J. Neurosurg. 2013, 118, 812–820. [Google Scholar] [CrossRef]
- Schupper, A.J.; Hadjipanayis, C.G. Novel Approaches to Targeting Gliomas at the Leading/Cutting Edge. J. Neurosurg. 2023, 139, 760–768. [Google Scholar] [CrossRef]
- Jiang, S.; Chai, H.; Tang, Q. Advances in the Intraoperative Delineation of Malignant Glioma Margin. Front. Oncol. 2023, 13, 1114450. [Google Scholar] [CrossRef]
- Molinaro, A.M.; Hervey-Jumper, S.; Morshed, R.A.; Young, J.; Han, S.J.; Chunduru, P.; Zhang, Y.; Phillips, J.J.; Shai, A.; Lafontaine, M.; et al. Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced Tumor With Survival Within Molecular Subgroups of Patients With Newly Diagnosed Glioblastoma. JAMA Oncol. 2020, 6, 495–503. [Google Scholar] [CrossRef]
- Chohan, M.O.; Berger, M.S. 5-Aminolevulinic Acid Fluorescence Guided Surgery for Recurrent High-Grade Gliomas. J. Neurooncol. 2019, 141, 517–522. [Google Scholar] [CrossRef]
- Acerbi, F.; Cavallo, C.; Broggi, M.; Cordella, R.; Anghileri, E.; Eoli, M.; Schiariti, M.; Broggi, G.; Ferroli, P. Fluorescein-Guided Surgery for Malignant Gliomas: A Review. Neurosurg. Rev. 2014, 37, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J.; ALA-Glioma Study Group. Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Richards-Kortum, R.; Sevick-Muraca, E. Quantitative Optical Spectroscopy for Tissue Diagnosis. Annu. Rev. Phys. Chem. 1996, 47, 555–606. [Google Scholar] [CrossRef] [PubMed]
- Hilderbrand, S.A.; Weissleder, R. Near-Infrared Fluorescence: Application to in Vivo Molecular Imaging. Curr. Opin. Chem. Biol. 2010, 14, 71–79. [Google Scholar] [CrossRef]
- Chance, B. Near-Infrared Images Using Continuous, Phase-Modulated, and Pulsed Light with Quantitation of Blood and Blood Oxygenation. Ann. N. Y. Acad. Sci. 1998, 838, 29–45. [Google Scholar] [CrossRef]
- Wollman, A.J.M.; Nudd, R.; Hedlund, E.G.; Leake, M.C. From Animaculum to Single Molecules: 300 Years of the Light Microscope. Open Biol. 2015, 5, 150019. [Google Scholar] [CrossRef]
- Stokes, G.G. XXX. On the Change of Refrangibility of Light. Philos. Trans. R. Soc. Lond. 1997, 142, 463–562. [Google Scholar]
- Baeyer, A. Ueber Eine Neue Klasse von Farbstoffen. Ber. Dtsch. Chem. Ges. 1871, 4, 555–558. [Google Scholar] [CrossRef]
- Moore, G.E. Fluorescein as an Agent in the Differentiation of Normal and Malignant Tissues. Science 1947, 106, 130–131. [Google Scholar] [CrossRef]
- Nagaya, T.; Nakamura, Y.A.; Choyke, P.L.; Kobayashi, H. Fluorescence-Guided Surgery. Front. Oncol. 2017, 7, 314. [Google Scholar] [CrossRef]
- Moore, G.E.; Peyton, W.T. The Clinical Use of Fluorescein in Neurosurgery; the Localization of Brain Tumors. J. Neurosurg. 1948, 5, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.S.; Salinas, R.; Lee, J.Y.K. Indocyanine-Green for Fluorescence-Guided Surgery of Brain Tumors: Evidence, Techniques, and Practical Experience. Front. Surg. 2019, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Medac GmbH. Fluorescence-Guided Resection of Malignant Gliomas with 5-Aminolevulinic Acid. Available online: https://clinicaltrials.gov/study/NCT00241670 (accessed on 21 August 2024).
- Sutton, P.A.; van Dam, M.A.; Cahill, R.A.; Mieog, S.; Polom, K.; Vahrmeijer, A.L.; van der Vorst, J. Fluorescence-Guided Surgery: Comprehensive Review. BJS Open 2023, 7, zrad049. [Google Scholar] [CrossRef] [PubMed]
- DailyMed. INDOCYANINE GREEN Kit INDOCYANINE GREEN Injection, Powder, Lyophilized, for Solution. Available online: https://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=c1031b17-b6e3-4153-869f-30d9c7e66bc3 (accessed on 21 August 2024).
- Engel, E.; Schraml, R.; Maisch, T.; Kobuch, K.; König, B.; Szeimies, R.-M.; Hillenkamp, J.; Bäumler, W.; Vasold, R. Light-Induced Decomposition of Indocyanine Green. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1777–1783. [Google Scholar] [CrossRef]
- Desmettre, T.; Devoisselle, J.M.; Mordon, S. Fluorescence Properties and Metabolic Features of Indocyanine Green (ICG) as Related to Angiography. Surv. Ophthalmol. 2000, 45, 15–27. [Google Scholar] [CrossRef]
- Landsman, M.L.; Kwant, G.; Mook, G.A.; Zijlstra, W.G. Light-Absorbing Properties, Stability, and Spectral Stabilization of Indocyanine Green. J. Appl. Physiol. 1976, 40, 575–583. [Google Scholar] [CrossRef]
- Alander, J.T.; Kaartinen, I.; Laakso, A.; Pätilä, T.; Spillmann, T.; Tuchin, V.V.; Venermo, M.; Välisuo, P. A Review of Indocyanine Green Fluorescent Imaging in Surgery. Int. J. Biomed. Imaging 2012, 2012, 940585. [Google Scholar] [CrossRef]
- Reinhart, M.B.; Huntington, C.R.; Blair, L.J.; Heniford, B.T.; Augenstein, V.A. Indocyanine Green: Historical Context, Current Applications, and Future Considerations. Surg. Innov. 2016, 23, 166–175. [Google Scholar] [CrossRef]
- Mordon, S.; Devoisselle, J.M.; Soulie-Begu, S.; Desmettre, T. Indocyanine Green: Physicochemical Factors Affecting Its Fluorescence in Vivo. Microvasc. Res. 1998, 55, 146–152. [Google Scholar] [CrossRef]
- Cherrick, G.R.; Stein, S.W.; Leevy, C.M.; Davidson, C.S. Indocyanine Green: Observations on Its Physical Properties, Plasma Decay, and Hepatic Extraction. J. Clin. Investig. 1960, 39, 592–600. [Google Scholar] [CrossRef]
- Burchell, H.B. Assessment of Clinical Value: Symposium on Diagnostic Applications of Indicator-Dilution Technics. Proc. Staff Meet. Mayo Clin. 1957, 32, 551–553. [Google Scholar] [PubMed]
- Kogure, K.; Choromokos, E. Infrared Absorption Angiography. J. Appl. Physiol. 1969, 26, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Hochheimer, B.F. Angiography of the Retina with Indocyanine Green. Arch. Ophthalmol. 1971, 86, 564–565. [Google Scholar] [CrossRef] [PubMed]
- Flower, R.W. Infrared Absorption Angiography of the Choroid and Some Observations on the Effects of High Intraocular Pressures. Am. J. Ophthalmol. 1972, 74, 600–614. [Google Scholar] [CrossRef]
- Gandorfer, A.; Haritoglou, C.; Gass, C.A.; Ulbig, M.W.; Kampik, A. Indocyanine Green-Assisted Peeling of the Internal Limiting Membrane May Cause Retinal Damage. Am. J. Ophthalmol. 2001, 132, 431–433. [Google Scholar] [CrossRef]
- Iinuma, Y.; Hirayama, Y.; Yokoyama, N.; Otani, T.; Nitta, K.; Hashidate, H.; Yoshida, M.; Iida, H.; Masui, D.; Manabe, S. Intraoperative Near-Infrared Indocyanine Green Fluorescence Angiography (NIR-ICG AG) Can Predict Delayed Small Bowel Stricture after Ischemic Intestinal Injury: Report of a Case. J. Pediatr. Surg. 2013, 48, 1123–1128. [Google Scholar] [CrossRef]
- Carus, T.; Dammer, R. Laparoscop Fluorescence Angiography with Indocyanine Green to Control the Perfusion of Gastrointestinal Anastomoses Intraoperatively. Surg. Technol. Int. 2012, 22, 27–32. [Google Scholar]
- Jafari, M.D.; Lee, K.H.; Halabi, W.J.; Mills, S.D.; Carmichael, J.C.; Stamos, M.J.; Pigazzi, A. The Use of Indocyanine Green Fluorescence to Assess Anastomotic Perfusion during Robotic Assisted Laparoscopic Rectal Surgery. Surg. Endosc. 2013, 27, 3003–3008. [Google Scholar] [CrossRef]
- Ishiguro, T.; Kumagai, Y.; Ono, T.; Imaizumi, H.; Honjo, H.; Suzuki, O.; Ito, T.; Haga, N.; Kuwabara, K.; Sobajima, J.; et al. Usefulness of Indocyanine Green Angiography for Evaluation of Blood Supply in a Reconstructed Gastric Tube during Esophagectomy. Int. Surg. 2012, 97, 340–344. [Google Scholar] [CrossRef]
- Kumagai, Y.; Ishiguro, T.; Haga, N.; Kuwabara, K.; Kawano, T.; Ishida, H. Hemodynamics of the Reconstructed Gastric Tube during Esophagectomy: Assessment of Outcomes with Indocyanine Green Fluorescence. World J. Surg. 2014, 38, 138–143. [Google Scholar] [CrossRef]
- Rino, Y.; Yukawa, N.; Sato, T.; Yamamoto, N.; Tamagawa, H.; Hasegawa, S.; Oshima, T.; Yoshikawa, T.; Masuda, M.; Imada, T. Visualization of Blood Supply Route to the Reconstructed Stomach by Indocyanine Green Fluorescence Imaging during Esophagectomy. BMC Med. Imaging 2014, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Raabe, A.; Nakaji, P.; Beck, J.; Kim, L.J.; Hsu, F.P.K.; Kamerman, J.D.; Seifert, V.; Spetzler, R.F. Prospective Evaluation of Surgical Microscope-Integrated Intraoperative near-Infrared Indocyanine Green Videoangiography during Aneurysm Surgery. J. Neurosurg. 2005, 103, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Norat, P.; Soldozy, S.; Elsarrag, M.; Sokolowski, J.; Yaǧmurlu, K.; Park, M.S.; Tvrdik, P.; Kalani, M.Y.S. Application of Indocyanine Green Videoangiography in Aneurysm Surgery: Evidence, Techniques, Practical Tips. Front. Surg. 2019, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Gurtner, G.C.; Jones, G.E.; Neligan, P.C.; Newman, M.I.; Phillips, B.T.; Sacks, J.M.; Zenn, M.R. Intraoperative Laser Angiography Using the SPY System: Review of the Literature and Recommendations for Use. Ann. Surg. Innov. Res. 2013, 7, 1. [Google Scholar] [CrossRef]
- Holm, C.; Mayr, M.; Höfter, E.; Becker, A.; Pfeiffer, U.J.; Mühlbauer, W. Intraoperative Evaluation of Skin-Flap Viability Using Laser-Induced Fluorescence of Indocyanine Green. Br. J. Plast. Surg. 2002, 55, 635–644. [Google Scholar] [CrossRef]
- Moyer, H.R.; Losken, A. Predicting Mastectomy Skin Flap Necrosis with Indocyanine Green Angiography: The Gray Area Defined. Plast. Reconstr. Surg. 2012, 129, 1043–1048. [Google Scholar] [CrossRef]
- Kitai, T.; Inomoto, T.; Miwa, M.; Shikayama, T. Fluorescence Navigation with Indocyanine Green for Detecting Sentinel Lymph Nodes in Breast Cancer. Breast Cancer 2005, 12, 211–215. [Google Scholar] [CrossRef]
- Muhammad, N.; Ajmera, S.; Lee, J.Y.K. Intraoperative Visualization of Cranial Nerve Schwannomas Using Second-Window Indocyanine Green: A Case Series. Clin. Neurol. Neurosurg. 2024, 240, 108241. [Google Scholar] [CrossRef]
- Pothen, A.-G.; Parmar, M. Fluorescein; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Jin, E.; Yin, H.; Gui, Y.; Chen, J.; Zhang, J.; Liang, J.; Li, X.-X.; Zhao, M. Fluorescein Angiographic Findings of Peripheral Retinal Vasculature after Intravitreal Conbercept versus Ranibizumab for Retinopathy of Prematurity. J. Ophthalmol. 2019, 2019, 3935945. [Google Scholar] [CrossRef]
- Paugh, J.R.; Tse, J.; Nguyen, T.; Sasai, A.; Chen, E.; De Jesus, M.T.; Kwan, J.; Nguyen, A.L.; Farid, M.; Garg, S.; et al. Efficacy of the Fluorescein Tear Breakup Time Test in Dry Eye. Cornea 2020, 39, 92–98. [Google Scholar] [CrossRef]
- Olson, J.L.; Mandava, N. Chapter 1—Fluorescein Angiography. In Retinal Imaging; Huang, D., Kaiser, P.K., Lowder, C.Y., Traboulsi, E.I., Eds.; Mosby: Philadelphia, PA, USA, 2006; pp. 3–21. ISBN 9780323023467. [Google Scholar]
- Food and Drug Administration. FLUORESCITE® (Fluorescein Injection, USP) 10%; Department of Health & Human Services: Rockville, MD, USA, 2006. [Google Scholar]
- Novotny, H.R.; Alvis, D.L. A Method of Photographing Fluorescence in Circulating Blood in the Human Retina. Circulation 1961, 24, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Orosco, R.K.; Tsien, R.Y.; Nguyen, Q.T. Fluorescence Imaging in Surgery. IEEE Rev. Biomed. Eng. 2013, 6, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Prieto, S.P.; Lai, K.K.; Laryea, J.A.; Mizell, J.S.; Mustain, W.C.; Muldoon, T.J. Fluorescein as a Topical Fluorescent Contrast Agent for Quantitative Microendoscopic Inspection of Colorectal Epithelium. Biomed. Opt. Express 2017, 8, 2324–2338. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Uchida, Y. Dye-Staining Angioscopy for Coronary Artery Disease. Curr. Cardiovasc. Imaging Rep. 2015, 8, 10. [Google Scholar] [CrossRef]
- Save, A.V.; Gill, B.J.; D’amico, R.S.; Canoll, P.; Bruce, J.N. Fluorescein-Guided Resection of Gliomas. J. Neurosurg. Sci. 2019, 63, 648–655. [Google Scholar] [CrossRef]
- Zhao, X.; Belykh, E.; Cavallo, C.; Valli, D.; Gandhi, S.; Preul, M.C.; Vajkoczy, P.; Lawton, M.T.; Nakaji, P. Application of Fluorescein Fluorescence in Vascular Neurosurgery. Front. Surg. 2019, 6, 52. [Google Scholar] [CrossRef]
- Lakomkin, N.; Hadjipanayis, C.G. Fluorescence-Guided Surgery for High-Grade Gliomas. J. Surg. Oncol. 2018, 118, 356–361. [Google Scholar] [CrossRef]
- Díez Valle, R.; Hadjipanayis, C.G.; Stummer, W. Established and Emerging Uses of 5-ALA in the Brain: An Overview. J. Neurooncol. 2019, 141, 487–494. [Google Scholar] [CrossRef]
- Fujino, M.; Nishio, Y.; Ito, H.; Tanaka, T.; Li, X.-K. 5-Aminolevulinic Acid Regulates the Inflammatory Response and Alloimmune Reaction. Int. Immunopharmacol. 2016, 37, 71–78. [Google Scholar] [CrossRef]
- Schupper, A.J.; Baron, R.B.; Cheung, W.; Rodriguez, J.; Kalkanis, S.N.; Chohan, M.O.; Andersen, B.J.; Chamoun, R.; Nahed, B.V.; Zacharia, B.E.; et al. 5-Aminolevulinic Acid for Enhanced Surgical Visualization of High-Grade Gliomas: A Prospective, Multicenter Study. J. Neurosurg. 2022, 136, 1525–1534. [Google Scholar] [CrossRef]
- Stummer, W.; Tonn, J.-C.; Goetz, C.; Ullrich, W.; Stepp, H.; Bink, A.; Pietsch, T.; Pichlmeier, U. 5-Aminolevulinic Acid-Derived Tumor Fluorescence: The Diagnostic Accuracy of Visible Fluorescence Qualities as Corroborated by Spectrometry and Histology and Postoperative Imaging. Neurosurgery 2014, 74, 310–319; discussion 319–320. [Google Scholar] [CrossRef] [PubMed]
- Coburger, J.; Engelke, J.; Scheuerle, A.; Thal, D.R.; Hlavac, M.; Wirtz, C.R.; König, R. Tumor Detection with 5-Aminolevulinic Acid Fluorescence and Gd-DTPA-Enhanced Intraoperative MRI at the Border of Contrast-Enhancing Lesions: A Prospective Study Based on Histopathological Assessment. Neurosurg. Focus 2014, 36, E3. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Stepp, H.; Möller, G.; Ehrhardt, A.; Leonhard, M.; Reulen, H.J. Technical Principles for Protoporphyrin-IX-Fluorescence Guided Microsurgical Resection of Malignant Glioma Tissue. Acta Neurochir. 1998, 140, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Novotny, A.; Stepp, H.; Goetz, C.; Bise, K.; Reulen, H.J. Fluorescence-Guided Resection of Glioblastoma Multiforme by Using 5-Aminolevulinic Acid-Induced Porphyrins: A Prospective Study in 52 Consecutive Patients. J. Neurosurg. 2000, 93, 1003–1013. [Google Scholar] [CrossRef]
- Hadjipanayis, C.G.; Widhalm, G.; Stummer, W. What Is the Surgical Benefit of Utilizing 5-Aminolevulinic Acid for Fluorescence-Guided Surgery of Malignant Gliomas? Neurosurgery 2015, 77, 663–673. [Google Scholar] [CrossRef]
- Stepp, H.; Stummer, W. 5-ALA in the Management of Malignant Glioma. Lasers Surg. Med. 2018, 50, 399–419. [Google Scholar] [CrossRef]
- Eljamel, S. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature. Int. J. Mol. Sci. 2015, 16, 10443–10456. [Google Scholar] [CrossRef]
- Picart, T.; Pallud, J.; Berthiller, J.; Dumot, C.; Berhouma, M.; Ducray, F.; Armoiry, X.; Margier, J.; Guerre, P.; Varlet, P.; et al. Use of 5-ALA Fluorescence-Guided Surgery versus White-Light Conventional Microsurgery for the Resection of Newly Diagnosed Glioblastomas (RESECT Study): A French Multicenter Randomized Phase III Study. J. Neurosurg. 2024, 140, 987–1000. [Google Scholar] [CrossRef]
- Filip, P.; Lerner, D.K.; Kominsky, E.; Schupper, A.; Liu, K.; Khan, N.M.; Roof, S.; Hadjipanayis, C.; Genden, E.; Iloreta, A.M.C. 5-Aminolevulinic Acid Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma. Laryngoscope 2024, 134, 741–748. [Google Scholar] [CrossRef]
- Bickels, J.; Gortzak, Y.; Sternheim, A. 5-ALA Photodynamic Ablation of Fibroblastic Soft-Tissue Tumors. Photodiagn. Photodyn. Ther. 2023, 42, 103624. [Google Scholar] [CrossRef]
- Guder, W.K.; Hartmann, W.; Buhles, C.; Burdack, M.; Busch, M.; Dünker, N.; Hardes, J.; Dirksen, U.; Bauer, S.; Streitbürger, A. 5-ALA-Mediated Fluorescence of Musculoskeletal Tumors in a Chick Chorio-Allantoic Membrane Model: Preclinical in Vivo Qualification Analysis as a Fluorescence-Guided Surgery Agent in Orthopedic Oncology. J. Orthop. Surg. Res. 2022, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Stocker, S.; Novotny, A.; Heimann, A.; Sauer, O.; Kempski, O.; Plesnila, N.; Wietzorrek, J.; Reulen, H.J. In Vitro and in Vivo Porphyrin Accumulation by C6 Glioma Cells after Exposure to 5-Aminolevulinic Acid. J. Photochem. Photobiol. B 1998, 45, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Suero Molina, E.; Ewelt, C.; Warneke, N.; Stummer, W. Fluorescence-Based Measurement of Real-Time Kinetics of Protoporphyrin IX After 5-Aminolevulinic Acid Administration in Human In Situ Malignant Gliomas. Neurosurgery 2019, 85, E739–E746. [Google Scholar] [CrossRef] [PubMed]
- Maragkos, G.A.; Schüpper, A.J.; Lakomkin, N.; Sideras, P.; Price, G.; Baron, R.; Hamilton, T.; Haider, S.; Lee, I.Y.; Hadjipanayis, C.G.; et al. Fluorescence-Guided High-Grade Glioma Surgery More Than Four Hours After 5-Aminolevulinic Acid Administration. Front. Neurol. 2021, 12, 644804. [Google Scholar] [CrossRef]
- Schupper, A.J.; Rao, M.; Mohammadi, N.; Baron, R.; Lee, J.Y.K.; Acerbi, F.; Hadjipanayis, C.G. Fluorescence-Guided Surgery: A Review on Timing and Use in Brain Tumor Surgery. Front. Neurol. 2021, 12, 682151. [Google Scholar] [CrossRef]
- Guyotat, J.; Pallud, J.; Armoiry, X.; Pavlov, V.; Metellus, P. 5-Aminolevulinic Acid–Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review. In Advances and Technical Standards in Neurosurgery; Schramm, J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 43, pp. 61–90. ISBN 9783319213590. [Google Scholar]
- Wei, L.; Roberts, D.W.; Sanai, N.; Liu, J.T.C. Visualization Technologies for 5-ALA-Based Fluorescence-Guided Surgeries. J. Neurooncol. 2019, 141, 495–505. [Google Scholar] [CrossRef]
- Utzinger, U.; Richards-Kortum, R.R. Fiber Optic Probes for Biomedical Optical Spectroscopy. J. Biomed. Opt. 2003, 8, 121–147. [Google Scholar] [CrossRef]
- Valdés, P.A.; Leblond, F.; Kim, A.; Harris, B.T.; Wilson, B.C.; Fan, X.; Tosteson, T.D.; Hartov, A.; Ji, S.; Erkmen, K.; et al. Quantitative Fluorescence in Intracranial Tumor: Implications for ALA-Induced PpIX as an Intraoperative Biomarker. J. Neurosurg. 2011, 115, 11–17. [Google Scholar] [CrossRef]
- Haj-Hosseini, N.; Richter, J.; Andersson-Engels, S.; Wårdell, K. Optical Touch Pointer for Fluorescence Guided Glioblastoma Resection Using 5-Aminolevulinic Acid. Lasers Surg. Med. 2010, 42, 9–14. [Google Scholar] [CrossRef]
- Kim, A.; Khurana, M.; Moriyama, Y.; Wilson, B.C. Quantification of in Vivo Fluorescence Decoupled from the Effects of Tissue Optical Properties Using Fiber-Optic Spectroscopy Measurements. J. Biomed. Opt. 2010, 15, 067006. [Google Scholar] [CrossRef]
- Ishihara, R.; Katayama, Y.; Watanabe, T.; Yoshino, A.; Fukushima, T.; Sakatani, K. Quantitative Spectroscopic Analysis of 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence Intensity in Diffusely Infiltrating Astrocytomas. Neurol. Med. Chir. 2007, 47, 53–57; discussion 57. [Google Scholar] [CrossRef] [PubMed]
- Utsuki, S.; Oka, H.; Sato, S.; Suzuki, S.; Shimizu, S.; Tanaka, S.; Fujii, K. Possibility of Using Laser Spectroscopy for the Intraoperative Detection of Nonfluorescing Brain Tumors and the Boundaries of Brain Tumor Infiltrates. J. Neurosurg. 2006, 104, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, N.; Scerrati, A.; Ricciardi, L.; Trevisi, G. The Exoscope in Neurosurgery: An Overview of the Current Literature of Intraoperative Use in Brain and Spine Surgery. J. Clin. Med. Res. 2021, 11, 223. [Google Scholar] [CrossRef] [PubMed]
- Schupper, A.J.; Roa, J.A.; Hadjipanayis, C.G. Contemporary Intraoperative Visualization for GBM with Use of Exoscope, 5-ALA Fluorescence-Guided Surgery and Tractography. Neurosurg. Focus Video 2022, 6, V5. [Google Scholar] [CrossRef]
- Muscas, G.; Battista, F.; Boschi, A.; Morone, F.; Della Puppa, A. A Single-Center Experience with the Olympus ORBEYE 4K-3D Exoscope for Microsurgery of Complex Cranial Cases: Technical Nuances and Learning Curve. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2021, 82, 484–489. [Google Scholar] [CrossRef]
- Schupper, A.J.; Price, G.; Hadjipanayis, C.G. Robotic-Assisted Digital Exoscope for Resection of Cerebral Metastases: A Case Series. Oper. Neurosurg. 2021, 21, 436–444. [Google Scholar] [CrossRef]
- Pafitanis, G.; Hadjiandreou, M.; Alamri, A.; Uff, C.; Walsh, D.; Myers, S. The Exoscope versus Operating Microscope in Microvascular Surgery: A Simulation Non-Inferiority Trial. Arch. Plast. Surg. 2020, 47, 242–249. [Google Scholar] [CrossRef]
- Abunimer, A.M.; Abou-Al-Shaar, H.; White, T.G.; Park, J.; Schulder, M. The Utility of High-Definition 2-Dimensional Stereotactic Exoscope in Cranial and Spinal Procedures. World Neurosurg. 2022, 158, e231–e236. [Google Scholar] [CrossRef]
- Baron, R.B.; Lakomkin, N.; Schupper, A.J.; Nistal, D.; Nael, K.; Price, G.; Hadjipanayis, C.G. Postoperative Outcomes Following Glioblastoma Resection Using a Robot-Assisted Digital Surgical Exoscope: A Case Series. J. Neurooncol. 2020, 148, 519–527. [Google Scholar] [CrossRef]
- Witten, A.J.; Ben-Shalom, N.; Ellis, J.A.; Boockvar, J.A.; D’Amico, R.S. Optimization of Novel Exoscopic Blue Light Filter during Fluorescence-Guided Resection of Glioblastoma. J. Neurooncol. 2023, 161, 617–623. [Google Scholar] [CrossRef]
- Goehre, F.; Ludtka, C.; Schwan, S. Ergonomics of Surgical Microscopes for the Sitting Position as Determined by Ocular-Corpus Length. Surg. Neurol. Int. 2020, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Della Pepa, G.M.; Mattogno, P.; Menna, G.; Agostini, L.; Olivi, A.; Doglietto, F. A Comparative Analysis with Exoscope and Optical Microscope for Intraoperative Visualization and Surgical Workflow in 5-Aminolevulinic Acid-Guided Resection of High-Grade Gliomas. World Neurosurg. 2023, 170, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jaman, E.; Habib, A.; Ozpinar, A.; Andrews, E.; Amankulor, N.M.; Zinn, P.O. A Novel 5-Aminolevulinic Acid-Enabled Surgical Loupe System-A Consecutive Brain Tumor Series of 11 Cases. Oper. Neurosurg. 2022, 22, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Giantini-Larsen, A.M.; Parker, W.E.; Cho, S.S.; Goldberg, J.L.; Carnevale, J.A.; Michael, A.P.; Teng, C.W.; De Ravin, E.; Brennan, C.W.; Lee, J.Y.K.; et al. The Evolution of 5-Aminolevulinic Acid Fluorescence Visualization: Time for a Headlamp/Loupe Combination. World Neurosurg. 2022, 159, 136–143. [Google Scholar] [CrossRef]
- Tonn, J.-C.; Stummer, W. Fluorescence-Guided Resection of Malignant Gliomas Using 5-Aminolevulinic Acid: Practical Use, Risks, and Pitfalls. Clin. Neurosurg. 2008, 55, 20–26. [Google Scholar]
- Valdés, P.A.; Leblond, F.; Jacobs, V.L.; Wilson, B.C.; Paulsen, K.D.; Roberts, D.W. Quantitative, Spectrally-Resolved Intraoperative Fluorescence Imaging. Sci. Rep. 2012, 2, 798. [Google Scholar] [CrossRef]
- Diamond, K.R.; Patterson, M.S.; Farrell, T.J. Quantification of Fluorophore Concentration in Tissue-Simulating Media by Fluorescence Measurements with a Single Optical Fiber. Appl. Opt. 2003, 42, 2436–2442. [Google Scholar] [CrossRef]
- Müller, M.G.; Georgakoudi, I.; Zhang, Q.; Wu, J.; Feld, M.S. Intrinsic Fluorescence Spectroscopy in Turbid Media: Disentangling Effects of Scattering and Absorption. Appl. Opt. 2001, 40, 4633–4646. [Google Scholar] [CrossRef]
- Wu, J.; Feld, M.S.; Rava, R.P. Analytical Model for Extracting Intrinsic Fluorescence in Turbid Media. Appl. Opt. 1993, 32, 3585–3595. [Google Scholar] [CrossRef]
- Mahmoudi, K.; Garvey, K.L.; Bouras, A.; Cramer, G.; Stepp, H.; Jesu Raj, J.G.; Bozec, D.; Busch, T.M.; Hadjipanayis, C.G. 5-Aminolevulinic Acid Photodynamic Therapy for the Treatment of High-Grade Gliomas. J. Neurooncol. 2019, 141, 595–607. [Google Scholar] [CrossRef]
- Wu, S.-K.; Santos, M.A.; Marcus, S.L.; Hynynen, K. MR-Guided Focused Ultrasound Facilitates Sonodynamic Therapy with 5-Aminolevulinic Acid in a Rat Glioma Model. Sci. Rep. 2019, 9, 10465. [Google Scholar] [CrossRef] [PubMed]
- Vermandel, M.; Quidet, M.; Vignion-Dewalle, A.-S.; Leroy, H.-A.; Leroux, B.; Mordon, S.; Reyns, N. Comparison of Different Treatment Schemes in 5-ALA Interstitial Photodynamic Therapy for High-Grade Glioma in a Preclinical Model: An MRI Study. Photodiagn. Photodyn. Ther. 2019, 25, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Leroy, H.-A.; Vermandel, M.; Leroux, B.; Duhamel, A.; Lejeune, J.-P.; Mordon, S.; Reyns, N. MRI Assessment of Treatment Delivery for Interstitial Photodynamic Therapy of High-Grade Glioma in a Preclinical Model. Lasers Surg. Med. 2018, 50, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Vermandel, M.; Dupont, C.; Lecomte, F.; Leroy, H.-A.; Tuleasca, C.; Mordon, S.; Hadjipanayis, C.G.; Reyns, N. Standardized Intraoperative 5-ALA Photodynamic Therapy for Newly Diagnosed Glioblastoma Patients: A Preliminary Analysis of the INDYGO Clinical Trial. J. Neurooncol. 2021, 152, 501–514. [Google Scholar] [CrossRef]
- Peciu-Florianu, I.; Vannod-Michel, Q.; Vauleon, E.; Bonneterre, M.-E.; Reyns, N. Long Term Follow-up of Patients with Newly Diagnosed Glioblastoma Treated by Intraoperative Photodynamic Therapy: An Update from the INDYGO Trial (NCT03048240). J. Neurooncol. 2024, 168, 495–505. [Google Scholar] [CrossRef]
- Scanlon, S.E.; Shanahan, R.M.; Bin-Alamer, O.; Bouras, A.; Mattioli, M.; Huq, S.; Hadjipanayis, C.G. Sonodynamic Therapy for Adult-Type Diffuse Gliomas: Past, Present, and Future. J. Neurooncol. 2024, 169, 507–516. [Google Scholar] [CrossRef]
- Shayan Moosa, MD, University of Virginia Sonodynamic Therapy in Patients with Recurrent GBM (GBM 001). Available online: https://clinicaltrials.gov/study/NCT06039709?intr=5-ALA&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=3 (accessed on 21 August 2024).
- SonALAsense, Inc. A Study of Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2.0 in Subjects with Recurrent GBM. Available online: https://clinicaltrials.gov/study/NCT05370508?intr=5-ALA&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=4 (accessed on 21 August 2024).
- Nader Sanai, St. Joseph’s Hospital and Medical Center, Phoenix Study of Sonodynamic Therapy in Participants with Recurrent High-Grade Glioma. Available online: https://clinicaltrials.gov/study/NCT04559685?intr=5-ALA&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=7 (accessed on 21 August 2024).
- SonALAsense, Inc. A Phase 2 Study of Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2.0 in Patients with DIPG. Available online: https://clinicaltrials.gov/study/NCT05123534?intr=5-ALA&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=5 (accessed on 21 August 2024).
- Photolitec, L.L.C. Intracavitary Photodynamic Therapy as an Adjuvant to Resection of Glioblastoma or Gliosarcoma Using IV Photobac®. Available online: https://clinicaltrials.gov/study/NCT05363826?intr=photodynamic%20therapy&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=1 (accessed on 21 August 2024).
- Therapeutics, H. A Dose-Escalation Clinical Study of Intraoperative Photodynamic Therapy of Glioblastoma. Available online: https://clinicaltrials.gov/study/NCT05736406 (accessed on 21 August 2024).
- Mansouri, A.; Mansouri, S.; Hachem, L.D.; Klironomos, G.; Vogelbaum, M.A.; Bernstein, M.; Zadeh, G. The Role of 5-Aminolevulinic Acid in Enhancing Surgery for High-Grade Glioma, Its Current Boundaries, and Future Perspectives: A Systematic Review. Cancer 2016, 122, 2469–2478. [Google Scholar] [CrossRef]
- Ferraro, N.; Barbarite, E.; Albert, T.R.; Berchmans, E.; Shah, A.H.; Bregy, A.; Ivan, M.E.; Brown, T.; Komotar, R.J. The Role of 5-Aminolevulinic Acid in Brain Tumor Surgery: A Systematic Review. Neurosurg. Rev. 2016, 39, 545–555. [Google Scholar] [CrossRef]
- Zhang, C.; Boop, F.A.; Ruge, J. The Use of 5-Aminolevulinic Acid in Resection of Pediatric Brain Tumors: A Critical Review. J. Neurooncol. 2019, 141, 567–573. [Google Scholar] [CrossRef]
- Widhalm, G.; Kiesel, B.; Woehrer, A.; Traub-Weidinger, T.; Preusser, M.; Marosi, C.; Prayer, D.; Hainfellner, J.A.; Knosp, E.; Wolfsberger, S. 5-Aminolevulinic Acid Induced Fluorescence Is a Powerful Intraoperative Marker for Precise Histopathological Grading of Gliomas with Non-Significant Contrast-Enhancement. PLoS ONE 2013, 8, e76988. [Google Scholar] [CrossRef]
- Boschi, A.; Della Puppa, A. 5-ALA Fluorescence on Tumors Different from Malignant Gliomas. Review of the Literature and Our Experience. J. Neurosurg. Sci. 2019, 63, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Valdes, P.A.; Bekelis, K.; Harris, B.T.; Wilson, B.C.; Leblond, F.; Kim, A.; Simmons, N.E.; Erkmen, K.; Paulsen, K.D.; Roberts, D.W. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements in Vivo. Neurosurgery 2014, 10 (Suppl. S1), 74–82; discussion 82–83. [Google Scholar] [CrossRef] [PubMed]
- Wadiura, L.I.; Millesi, M.; Makolli, J.; Wais, J.; Kiesel, B.; Mischkulnig, M.; Mercea, P.A.; Roetzer, T.; Knosp, E.; Rössler, K.; et al. High Diagnostic Accuracy of Visible 5-ALA Fluorescence in Meningioma Surgery According to Histopathological Analysis of Tumor Bulk and Peritumoral Tissue. Lasers Surg. Med. 2021, 53, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Milos, P.; Haj-Hosseini, N.; Hillman, J.; Wårdell, K. 5-ALA Fluorescence in Randomly Selected Pediatric Brain Tumors Assessed by Spectroscopy and Surgical Microscope. Acta Neurochir. 2023, 165, 71–81. [Google Scholar] [CrossRef]
- Universität Münster. Clinical Safety Study on 5-Aminolevulinic Acid (5-ALA) in Children and Adolescents With Supratentorial Brain Tumors. Available online: https://clinicaltrials.gov/study/NCT04738162?cond=brain%20tumor&intr=5-ALA&rank=2 (accessed on 21 August 2024).
- Alston, L.; Mahieu-Williame, L.; Hebert, M.; Kantapareddy, P.; Meyronet, D.; Rousseau, D.; Guyotat, J.; Montcel, B. Spectral Complexity of 5-ALA Induced PpIX Fluorescence in Guided Surgery: A Clinical Study towards the Discrimination of Healthy Tissue and Margin Boundaries in High and Low Grade Gliomas. Biomed. Opt. Express 2019, 10, 2478–2492. [Google Scholar] [CrossRef]
- Muraleedharan, S.; Tripathy, K. Indocyanine Green (ICG) Angiography. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Lee, J.Y.K.; Thawani, J.P.; Pierce, J.; Zeh, R.; Martinez-Lage, M.; Chanin, M.; Venegas, O.; Nims, S.; Learned, K.; Keating, J.; et al. Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery. Neurosurgery 2016, 79, 856–871. [Google Scholar] [CrossRef]
- Karsalia, R.; Cheng, N.H.; Teng, C.W.; Cho, S.S.; Harmsen, S.; Lee, J.Y.K. Second Window ICG Predicts Postoperative MRI Gadolinium Enhancement in High Grade Gliomas and Brain Metastases. Neurosurg. Focus Video 2022, 6, V8. [Google Scholar] [CrossRef]
- Hansen, R.W.; Pedersen, C.B.; Halle, B.; Korshoej, A.R.; Schulz, M.K.; Kristensen, B.W.; Poulsen, F.R. Comparison of 5-Aminolevulinic Acid and Sodium Fluorescein for Intraoperative Tumor Visualization in Patients with High-Grade Gliomas: A Single-Center Retrospective Study. J. Neurosurg. 2020, 133, 1324–1331. [Google Scholar] [CrossRef]
- Ahrens, L.C.; Krabbenhøft, M.G.; Hansen, R.W.; Mikic, N.; Pedersen, C.B.; Poulsen, F.R.; Korshoej, A.R. Effect of 5-Aminolevulinic Acid and Sodium Fluorescein on the Extent of Resection in High-Grade Gliomas and Brain Metastasis. Cancers 2022, 14, 617. [Google Scholar] [CrossRef]
- Xi, C.; Jinli, S.; Jianyao, M.; Yan, C.; Huijuan, L.; Zhongjie, S.; Zhangyu, L.; Liwei, Z.; Yukui, L.; Sifang, C.; et al. Fluorescein-Guided Surgery for High-Grade Glioma Resection: A Five-Year-Long Retrospective Study at Our Institute. Front. Oncol. 2023, 13, 1191470. [Google Scholar] [CrossRef]
- Suero Molina, E.; Wölfer, J.; Ewelt, C.; Ehrhardt, A.; Brokinkel, B.; Stummer, W. Dual-Labeling with 5-Aminolevulinic Acid and Fluorescein for Fluorescence-Guided Resection of High-Grade Gliomas: Technical Note. J. Neurosurg. 2018, 128, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Schwake, M.; Stummer, W.; Suero Molina, E.J.; Wölfer, J. Simultaneous Fluorescein Sodium and 5-ALA in Fluorescence-Guided Glioma Surgery. Acta Neurochir. 2015, 157, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Parakh, S.; Nicolazzo, J.; Scott, A.M.; Gan, H.K. Antibody Drug Conjugates in Glioblastoma—Is there a Future for Them? Front. Oncol. 2021, 11, 718590. [Google Scholar] [CrossRef] [PubMed]
- Alfred-Marc Iloreta, Icahn School of Medicine at Mount Sinai. The Role of 5-Aminolevulinic Acid Fluorescence-Guided Surgery in Head and Neck Cancers: A Pilot Trial. Available online: https://clinicaltrials.gov/study/NCT05101798?intr=5-ALA&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=8 (accessed on 21 August 2024).
- Roberts, D.W. Dartmouth-Hitchcock Medical Center ALA-Induced PpIX Fluorescence During Brain Tumor Resection. Available online: https://clinicaltrials.gov/study/NCT02191488?intr=5-ALA&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=6 (accessed on 21 August 2024).
- Abramson Cancer Center at Penn Medicine. Second Window Indocyanine Green for All Nervous System Tumors. Available online: https://clinicaltrials.gov/study/NCT05746104?intr=icg&aggFilters=status:act%20rec%20not&term=brain&rank=1 (accessed on 21 August 2024).
- Roberts, D.W. Dartmouth-Hitchcock Medical Center Diagnostic Performance of Fluorescein as an Intraoperative Brain Tumor Biomarker. Available online: https://clinicaltrials.gov/study/NCT02691923?intr=5-ALA&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=2 (accessed on 21 August 2024).
- Linton, T. Evans, Dartmouth-Hitchcock Medical Center Evaluation of the CONVIVO System. Available online: https://clinicaltrials.gov/study/NCT05139277?intr=fluorescein&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=3 (accessed on 21 August 2024).
- Yu, G.; University of Kentucky. Loupe-Based Intraoperative Fluorescence Imaging. Available online: https://clinicaltrials.gov/study/NCT04780009?intr=5-ALA&aggFilters=status:act%20rec%20not&term=brain&locStr=USA&country=United%20States&rank=9 (accessed on 21 August 2024).
- Chen, H.; Xu, H.; Peng, B.; Huang, X.; Hu, Y.; Zheng, C.; Zhang, Z. Illuminating the future of precision cancer surgery with fluorescence imaging and artificial intelligence convergence. Npj Precis. Oncol. 2024, 8, 196. [Google Scholar] [CrossRef]
Fluorophore | Tumor Specificity | Depth of Penetration | GTR Rate | PFS (Months) | OS (Months) | Cost | Key Limitations |
---|---|---|---|---|---|---|---|
5-ALA | High | ~1 to 2 mm | 65–75% | 6.8 | 15–20 | $$$ | Phototoxicity, limited depth |
Fluorescein | Moderate | ~1 mm | ~60 to 70% | ~9.2 | ~15 | $ | Non-specific, absorption interference |
ICG (SWIG) | Low–Moderate | Deep (NIR, ~5 to 10 mm) | Not well defined | N/A | N/A | $$ | Non-specific uptake, experimental |
Title | Clinical Trial Number | Sponsor | Indication | Fluorescence Type | Enrollment | Phase | Company |
---|---|---|---|---|---|---|---|
Second Window Indocyanine Green for All Nervous System Tumors | NCT05746104 | Abramson Cancer Center at Penn Medicine | All CNS Tumors | ICG | 105 | 1 | TumorGlow (Pennsylvania, USA) |
Study to Evaluate 5-ALA Combined With CV01 Delivery of Ultrasound in Recurrent High-Grade Glioma | NCT05362409 | Alpheus Medical, Inc. | HGG | 5-ALA | 48 | 1 | Alpheus Medical, Inc. (Minnesota, USA) |
Diagnostic Performance of Fluorescein as an Intraoperative Brain Tumor Biomarker | NCT02691923 | David W. Roberts, Dartmouth-Hitchcock Medical Center | HGG & LGG | Fluorescein | 30 | 2 | - |
Sonodynamic Therapy in Patients With Recurrent GBM | NCT06039709 | Shayan Moosa, MD, University of Virginia | rGBM | 5-ALA | 11 | 1 | - |
A Study of Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2.0 in Subjects With Recurrent GBM | NCT05370508 | SonALAsense, Inc. | rGBM | 5-ALA | 44 | 1 and 2 | SonALAsense, Inc. (California, USA) |
A Phase 2 Study of Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2.0 in Patients With DIPG | NCT05123534 | SonALAsense, Inc. | DIPG | 5-ALA | 27 | 1 and 2 | SonALAsense, Inc. |
ALA-Induced PpIX Fluorescence During Brain Tumor Resection | NCT02191488 | David W. Roberts, Dartmouth-Hitchcock Medical Center | HGG, LGG, rHGG, Mets, Meningioma | 5-ALA | 540 | 1 | - |
Study of Sonodynamic Therapy in Participants With Recurrent High-Grade Glioma | NCT04559685 | Nader Sanai, St. Joseph’s Hospital and Medical Center, Phoenix | rHGG | 5-ALA | 30 | 1 | - |
The Role of 5-Aminolevulinic Acid Fluorescence-Guided Surgery in Head and Neck Cancers: a Pilot Trial | NCT05101798 | Alfred-Marc Iloreta, Icahn School of Medicine at Mount Sinai | Recurrent Head, Neck, or Skull Base | 5-ALA | 26 | 2 | - |
Loupe-Based Intraoperative Fluorescence Imaging | NCT04780009 | Guoqiang Yu, University of Kentucky | GBM and AA | Fluorescein and 5-ALA | 30 | Observational | - |
Evaluation of the CONVIVO System | NCT05139277 | Linton T. Evans, Dartmouth-Hitchcock Medical Center | HGG, GBM, Mets, Meningioma, Acoustic Neuroma, Pituitary Adenoma | Fluorescein | 30 | Pre-Clinical | Zeiss (Oberkochen, Germany) |
Intracavitary Photodynamic Therapy as an Adjuvant to Resection of Glioblastoma or Gliosarcoma Using IV Photobac | NCT05363826 | Photolitec LLC | GBM Gliosarcoma | Photobac | 30 | 1 | Photolitec LLC (New York, USA) |
A Dose-escalation Clinical Study of Intraoperative Photodynamic Therapy of Glioblastoma | NCT05736406 | Hemerion Therapeutics | Newly diagnosed GBM | Pentalafen | 12 | 1 | Hemerion Therapeutics (Villeneuve-d’Ascq, France) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, B.; Brown, C.S.; Colan, J.A.; Zhang, J.Y.; Huq, S.; Rivera, D.; Young, T.; Williams, T.; Subramaniam, V.; Hadjipanayis, C. Fluorescence-Guided Surgery for Gliomas: Past, Present, and Future. Cancers 2025, 17, 1837. https://doi.org/10.3390/cancers17111837
Rodriguez B, Brown CS, Colan JA, Zhang JY, Huq S, Rivera D, Young T, Williams T, Subramaniam V, Hadjipanayis C. Fluorescence-Guided Surgery for Gliomas: Past, Present, and Future. Cancers. 2025; 17(11):1837. https://doi.org/10.3390/cancers17111837
Chicago/Turabian StyleRodriguez, Benjamin, Cole S. Brown, Jhair Alejandro Colan, Jack Yin Zhang, Sakibul Huq, Daniel Rivera, Tirone Young, Tyree Williams, Varun Subramaniam, and Constantinos Hadjipanayis. 2025. "Fluorescence-Guided Surgery for Gliomas: Past, Present, and Future" Cancers 17, no. 11: 1837. https://doi.org/10.3390/cancers17111837
APA StyleRodriguez, B., Brown, C. S., Colan, J. A., Zhang, J. Y., Huq, S., Rivera, D., Young, T., Williams, T., Subramaniam, V., & Hadjipanayis, C. (2025). Fluorescence-Guided Surgery for Gliomas: Past, Present, and Future. Cancers, 17(11), 1837. https://doi.org/10.3390/cancers17111837