Phase Ia/Ib Study of Afatinib with Capecitabine in Patients with Refractory Solid Tumors and Pancreaticobiliary Cancers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Study Design and Treatment
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Dose Escalation and Toxicities
3.3. Antitumor Activity and Survival Outcomes
3.4. Genomic Analysis and Correlative Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, W. ErBb Family Proteins in Cholangiocarcinoma and Clinical Implications. J. Clin. Med. 2020, 9, 2255. [Google Scholar] [CrossRef]
- Nedaeinia, R.; Avan, A.; Manian, M.; Salehi, R.; Ghayour-Mobarhan, M. EGFR as a potential target for the treatment of pancreatic cancer: Dilemma and controversies. Curr. Drug Targets 2014, 15, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Nichetti, F.; Rota, S.; Ambrosini, P.; Pircher, C.; Gusmaroli, E.; Droz Dit Busset, M.; Pusceddu, S.; Sposito, C.; Coppa, J.; Morano, F.; et al. NALIRIFOX, FOLFIRINOX, and Gemcitabine with Nab-Paclitaxel as First-Line Chemotherapy for Metastatic Pancreatic Cancer: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e2350756. [Google Scholar] [CrossRef] [PubMed]
- Tempero, M.A.; Malafa, M.P.; Basturk, O.; Benson, A.B.; Cardin, D.B.; Chiorean, E.G.; Christensen, J.A.; Chung, V.; Czito, B.; Del Chiaro, M.; et al. NCCN Clinical Practice Guidelines Pancreatic Adenocarcinoma Version 2.2025. Available online: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 30 April 2025).
- Safyan, R.A.; Kim, E.; Dekker, E.; Homs, M.; Aguirre, A.J.; Koerkamp, B.G.; Chiorean, E.G. Multidisciplinary Standards and Evolving Therapies for Patients with Pancreatic Cancer. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e438598. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.B.; D’Angelica, M.I.; Abrams, T.; Ahmed, A.; Akce, M.; Anaya, D.A.; Anders, R.; Are, C.; Aye, L.; Bachini, M.; et al. NCCN Clinical Practice Guidelines Biliary Tract Cancers Version 1.2025. Available online: https://www.nccn.org/professionals/physician_gls/pdf/btc.pdf (accessed on 30 April 2025).
- Lamarca, A.; Macarulla, T. Facts and Hopes in the Systemic Therapy of Biliary Tract Carcinomas. Clin. Cancer Res. 2024, 30, 3688–3696. [Google Scholar] [CrossRef]
- Kim, R.D.; McDonough, S.; El-Khoueiry, A.B.; Bekaii-Saab, T.S.; Stein, S.M.; Sahai, V.; Keogh, G.P.; Kim, E.J.; Baron, A.D.; Siegel, A.B.; et al. Randomised phase II trial (SWOG S1310) of single agent MEK inhibitor trametinib Versus 5-fluorouracil or capecitabine in refractory advanced biliary cancer. Eur. J. Cancer 2020, 130, 219–227. [Google Scholar] [CrossRef]
- Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 2007, 25, 1960–1996. [Google Scholar] [CrossRef]
- da Cunha Santos, G.; Dhani, N.; Tu, D.; Chin, K.; Ludkovski, O.; Kamel-Reid, S.; Squire, J.; Parulekar, W.; Moore, M.J.; Tsao, M.S. Molecular predictors of outcome in a phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer: National Cancer Institute of Canada Clinical Trials Group Study PA.3. Cancer 2010, 116, 5599–5607. [Google Scholar] [CrossRef]
- Boeck, S.; Jung, A.; Laubender, R.P.; Neumann, J.; Egg, R.; Goritschan, C.; Vehling-Kaiser, U.; Winkelmann, C.; Fischer von Weikersthal, L.; Clemens, M.R.; et al. EGFR pathway biomarkers in erlotinib-treated patients with advanced pancreatic cancer: Translational results from the randomised, crossover phase 3 trial AIO-PK0104. Br. J. Cancer 2013, 108, 469–476. [Google Scholar] [CrossRef]
- Qin, S.; Li, J.; Bai, Y.; Wang, Z.; Chen, Z.; Xu, R.; Xu, J.; Zhang, H.; Chen, J.; Yuan, Y.; et al. Nimotuzumab Plus Gemcitabine for K-Ras Wild-Type Locally Advanced or Metastatic Pancreatic Cancer. J. Clin. Oncol. 2023, 41, 5163–5173. [Google Scholar] [CrossRef]
- Park, R.; Al-Jumayli, M.; Miller, K.; Saeed, A.; Saeed, A. Exceptional response to Erlotinib monotherapy in EGFR Exon 19-deleted, KRAS wild-type, Chemo-refractory advanced pancreatic adenocarcinoma. Cancer Treat. Res. Commun. 2021, 27, 100342. [Google Scholar] [CrossRef]
- Wang, J.P.; Wu, C.Y.; Yeh, Y.C.; Shyr, Y.M.; Wu, Y.Y.; Kuo, C.Y.; Hung, Y.P.; Chen, M.H.; Lee, W.P.; Luo, J.C.; et al. Erlotinib is effective in pancreatic cancer with epidermal growth factor receptor mutations: A randomized, open-label, prospective trial. Oncotarget 2015, 6, 18162–18173. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, S.H.; Chang, H.M.; Kim, J.S.; Choi, H.J.; Lee, M.A.; Jang, J.S.; Jeung, H.C.; Kang, J.H.; Lee, H.W.; et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2012, 13, 181–188. [Google Scholar] [CrossRef]
- Kim, S.T.; Jang, K.T.; Lee, J.; Jang, H.M.; Choi, H.J.; Jang, H.L.; Park, S.H.; Park, Y.S.; Lim, H.Y.; Kang, W.K.; et al. Molecular Subgroup Analysis of Clinical Outcomes in a Phase 3 Study of Gemcitabine and Oxaliplatin with or without Erlotinib in Advanced Biliary Tract Cancer. Transl. Oncol. 2015, 8, 40–46. [Google Scholar] [CrossRef]
- Budman, D.R.; Soong, R.; Calabro, A.; Tai, J.; Diasio, R. Identification of potentially useful combinations of epidermal growth factor receptor tyrosine kinase antagonists with conventional cytotoxic agents using median effect analysis. Anticancer Drugs 2006, 17, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Ait-Tihyaty, M.; Rachid, Z.; Mihalcioiu, C.; Jean-Claude, B.J. Inhibition of EGFR phosphorylation in a panel of human breast cancer cells correlates with synergistic interactions between gefitinib and 5’-DFUR, the bioactive metabolite of Xeloda. Breast Cancer Res. Treat. 2012, 133, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Magné, N.; Fischel, J.L.; Dubreuil, A.; Formento, P.; Ciccolini, J.; Formento, J.L.; Tiffon, C.; Renée, N.; Marchetti, S.; Etienne, M.C.; et al. ZD1839 (Iressa) modifies the activity of key enzymes linked to fluoropyrimidine activity: Rational basis for a new combination therapy with capecitabine. Clin. Cancer Res. 2003, 9, 4735–4742. [Google Scholar]
- Ioannou, N.; Dalgleish, A.G.; Seddon, A.M.; Mackintosh, D.; Guertler, U.; Solca, F.; Modjtahedi, H. Anti-tumour activity of afatinib, an irreversible ErbB family blocker, in human pancreatic tumour cells. Br. J. Cancer 2011, 105, 1554–1562. [Google Scholar] [CrossRef]
- Takezawa, K.; Okamoto, I.; Tanizaki, J.; Kuwata, K.; Yamaguchi, H.; Fukuoka, M.; Nishio, K.; Nakagawa, K. Enhanced anticancer effect of the combination of BIBW2992 and thymidylate synthase-targeted agents in non-small cell lung cancer with the T790M mutation of epidermal growth factor receptor. Mol. Cancer Ther. 2010, 9, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Keating, G.M. Afatinib: A Review in Advanced Non-Small Cell Lung Cancer. Target. Oncol. 2016, 11, 825–835. [Google Scholar] [CrossRef]
- Chiorean, E.G.; Picozzi, V.; Li, C.P.; Peeters, M.; Maurel, J.; Singh, J.; Golan, T.; Blanc, J.F.; Chapman, S.C.; Hussain, A.M.; et al. Efficacy and safety of abemaciclib alone and with PI3K/mTOR inhibitor LY3023414 or galunisertib versus chemotherapy in previously treated metastatic pancreatic adenocarcinoma: A randomized controlled trial. Cancer Med. 2023, 12, 20353–20364. [Google Scholar] [CrossRef]
- Salati, M.; Rizzo, A.; Merz, V.; Messina, C.; Francesco, C.; Gelsomino, F.; Spallanzani, A.; Ricci, A.D.; Palloni, A.; Frega, G.; et al. Third-line chemotherapy in advanced biliary cancers: Pattern of care, treatment outcome and prognostic factors from a multicenter study. Expert Rev. Gastroenterol. Hepatol. 2022, 16, 73–79. [Google Scholar] [CrossRef]
- Javle, M.; Borad, M.J.; Azad, N.S.; Kurzrock, R.; Abou-Alfa, G.K.; George, B.; Hainsworth, J.; Meric-Bernstam, F.; Swanton, C.; Sweeney, C.J.; et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): A multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2021, 22, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Fan, J.; Oh, D.Y.; Choi, H.J.; Kim, J.W.; Chang, H.M.; Bao, L.; Sun, H.C.; Macarulla, T.; Xie, F.; et al. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): A multicentre, single-arm, phase 2b study. Lancet Oncol. 2023, 24, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Mizuno, N.; Sunakawa, Y.; Canon, J.L.; Galsky, M.D.; Hamilton, E.; Hayashi, H.; Jerusalem, G.; Kim, S.T.; Lee, K.W.; et al. Tucatinib and trastuzumab for previously treated Human Epidermal Growth Factor Receptor 2-positive metastatic biliary tract cancer (SGNTUC-019): A phase II basket study. J. Clin. Oncol. 2023, 41, 5569–5578. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.Y.; Banerjee, S.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: Primary results from the DESTINY-PanTumor02 phase II trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Harder, J.; Ihorst, G.; Heinemann, V.; Hofheinz, R.; Moehler, M.; Buechler, P.; Kloeppel, G.; Röcken, C.; Bitzer, M.; Boeck, S.; et al. Multicentre phase II trial of trastuzumab and capecitabine in patients with HER2 overexpressing metastatic pancreatic cancer. Br. J. Cancer 2012, 106, 1033–1038. [Google Scholar] [CrossRef]
- Sweeney, C.J.; Hainsworth, J.D.; Bose, R.; Burris, H.A.; Kurzrock, R.; Swanton, C.; Friedman, C.F.; Spigel, D.R.; Szado, T.; Schulze, K.; et al. MyPathway Human Epidermal Growth Factor Receptor 2 basket study: Pertuzumab + trastuzumab treatment of a tissue-agnostic cohort of patients with human epidermal growth factor receptor 2-altered advanced solid tumors. J. Clin. Oncol. 2024, 42, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Shayeb, A.M.; Kurzrock, R.; Adashek, J.J.; Kato, S. Comprehensive Analysis of Human Epidermal Growth Factor Receptor 2 Through DNA, mRNA, and Protein in Diverse Malignancies. JCO Precis. Oncol. 2023, 7, e2200604. [Google Scholar] [CrossRef]
- DiPeri, T.P.; Kong, K.; Varadarajan, K.; Karp, D.D.; Ajani, J.A.; Pant, S.; Press, M.F.; Piha-Paul, S.A.; Dumbrava, E.E.; Meric-Bernstam, F. Discordance of HER2 Expression and/or Amplification on Repeat Testing. Mol. Cancer Ther. 2023, 22, 976–984. [Google Scholar] [CrossRef]
- Kim, Y.; Jee, S.; Kim, H.; Paik, S.S.; Choi, D.; Yoo, S.H.; Shin, S.J. EGFR, HER2, and MET gene amplification and protein expression profiles in biliary tract cancer and their prognostic significance. Oncologist 2024, 29, e1051–e1060. [Google Scholar] [CrossRef] [PubMed]
- Moffat, G.T.; Hu, Z.I.; Meric-Bernstam, F.; Kong, E.K.; Pavlick, D.; Ross, J.S.; Murugesan, K.; Kwong, L.; De Armas, A.D.; Korkut, A.; et al. KRAS allelic variants in biliary tract cancers. JAMA Netw. Open 2024, 7, e249840. [Google Scholar] [CrossRef]
- Witkiewicz, A.K.; McMillan, E.A.; Balaji, U.; Baek, G.; Lin, W.C.; Mansour, J.; Mollaee, M.; Wagner, K.U.; Koduru, P.; Yopp, A.; et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 2015, 6, 6744. [Google Scholar] [CrossRef] [PubMed]
- Singhi, A.D.; George, B.; Greenbowe, J.R.; Chung, J.; Suh, J.; Maitra, A.; Klempner, S.J.; Hendifar, A.; Milind, J.M.; Golan, T.; et al. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology 2019, 156, 2242–2253.e4. [Google Scholar] [CrossRef]
- Peeters, M.; Oliner, K.S.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; et al. Analysis of KRAS/NRAS Mutations in a Phase III Study of Panitumumab with FOLFIRI Compared with FOLFIRI Alone as Second-line Treatment for Metastatic Colorectal Cancer. Clin. Cancer Res. 2015, 21, 5469–5479. [Google Scholar] [CrossRef] [PubMed]
- Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 2013, 369, 1023–1034. [Google Scholar] [CrossRef]
- Bertotti, A.; Papp, E.; Jones, S.; Adleff, V.; Anagnostou, V.; Lupo, B.; Sausen, M.; Phallen, J.; Hruban, C.A.; Tokheim, C.; et al. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature 2015, 526, 263–267. [Google Scholar] [CrossRef]
- Geißler, A.L.; Geißler, M.; Kottmann, D.; Lutz, L.; Fichter, C.D.; Fritsch, R.; Weddeling, B.; Makowiec, F.; Werner, M.; Lassmann, S. ATM mutations and E-cadherin expression define sensitivity to EGFR-targeted therapy in colorectal cancer. Oncotarget 2017, 8, 17164–17190. [Google Scholar] [CrossRef]
- Johnson, R.M.; Qu, X.; Lin, C.F.; Huw, L.Y.; Venkatanarayan, A.; Sokol, E.; Ou, F.S.; Ihuegbu, N.; Zill, O.A.; Kabbarah, O.; et al. ARID1A mutations confer intrinsic and acquired resistance to cetuximab treatment in colorectal cancer. Nat. Commun. 2022, 13, 5478. [Google Scholar] [CrossRef]
- Vyse, S.; Howitt, A.; Huang, P.H. Exploiting synthetic lethality and network biology to overcome EGFR inhibitor resistance in lung cancer. J. Mol. Biol. 2017, 429, 1767–1786. [Google Scholar] [CrossRef]
- Huguet, F.; Fernet, M.; Giocanti, N.; Favaudon, V.; Larsen, A.K. Afatinib, an irreversible EGFR family inhibitor, shows activity toward pancreatic cancer cells, alone and in combination with radiotherapy, independent of KRAS status. Target. Oncol. 2016, 11, 371–381. [Google Scholar] [CrossRef]
- Vogel, A.; Kasper, S.; Bitzer, M.; Block, A.; Sinn, M.; Schulze-Bergkamen, H.; Moehler, M.; Pfarr, N.; Endris, V.; Goeppert, B.; et al. PICCA study: Panitumumab in combination with cisplatin/gemcitabine chemotherapy in KRAS wild-type patients with biliary cancer-a randomised biomarker-driven clinical phase II AIO study. Eur. J. Cancer 2018, 92, 11–19. [Google Scholar] [CrossRef]
- Leone, F.; Marino, D.; Cereda, S.; Filippi, R.; Belli, C.; Spadi, R.; Nasti, G.; Montano, M.; Amatu, A.; Aprile, G.; et al. Panitumumab in combination with gemcitabine and oxaliplatin does not prolong survival in wild-type KRAS advanced biliary tract cancer: A randomized phase 2 trial (Vecti-BIL study). Cancer 2016, 122, 5745–5781. [Google Scholar] [CrossRef]
- Chen, J.S.; Hsu, C.; Chiang, N.J.; Tsai, C.S.; Tsou, H.H.; Huang, S.F.; Bai, L.Y.; Chang, I.C.; Shiah, H.S.; Ho, C.L.; et al. A KRAS mutation status-stratified randomized phase II trial of gemcitabine and oxaliplatin alone or in combination with cetuximab in advanced biliary tract cancer. Ann. Oncol. 2015, 26, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Chiang, N.J.; Hsu, C.; Chen, J.S.; Tsou, H.H.; Shen, Y.Y.; Chao, Y.; Chen, M.H.; Yeh, T.S.; Shan, Y.S.; Huang, S.F.; et al. Expression levels of ROS1/ALK/c-MET and therapeutic efficacy of cetuximab plus chemotherapy in advanced biliary tract cancer. Sci. Rep. 2016, 6, 25369. [Google Scholar] [CrossRef]
- Shitara, K.; Muro, K.; Watanabe, J.; Yamazaki, K.; Ohori, H.; Shiozawa, M.; Takashima, A.; Yokota, M.; Makiyama, A.; Akazawa, N.; et al. Baseline ctDNA gene alterations as a biomarker of survival after panitumumab and chemotherapy in metastatic colorectal cancer. Nat. Med. 2024, 30, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Philip, P.A.; Azar, I.; Xiu, J.; Hall, M.J.; Hendifar, A.E.; Lou, E.; Hwang, J.J.; Gong, J.; Feldman, R.; Ellis, M.; et al. Molecular Characterization of KRAS Wild-type Tumors in Patients with Pancreatic Adenocarcinoma. Clin. Cancer Res. 2022, 28, 2704–2714. [Google Scholar] [CrossRef] [PubMed]
- Topham, J.T.; Tsang, E.S.; Karasinska, J.M.; Metcalfe, A.; Ali, H.; Kalloger, S.E.; Csizmok, V.; Williamson, L.M.; Titmuss, E.; Nielsen, K.; et al. Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma. Nat. Commun. 2022, 13, 5941. [Google Scholar] [CrossRef]
- Ashok Kumar, P.; Serinelli, S.; Zaccarini, D.J.; Huang, R.; Danziger, N.; Janovitz, T.; Basnet, A.; Sivapiragasam, A.; Graziano, S.; Ross, J.S. Genomic landscape of clinically advanced KRAS wild-type pancreatic ductal adenocarcinoma. Front. Oncol. 2023, 13, 1169586. [Google Scholar] [CrossRef]
- Rodon, J.; Rothe, M.; Mangat, P.K.; Garrett-Mayer, E.; Cannon, T.L.; Hobbs, E.; Kalemkerian, G.P.; Hinshaw, D.C.; Gregory, A.; Grantham, G.N.; et al. Afatinib in patients with solid tumors with neuregulin 1 (NRG1) fusions: A case series from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. ESMO Open 2025, 10, 104545. [Google Scholar] [CrossRef]
- Haas, M.; Waldschmidt, D.T.; Stahl, M.; Reinacher-Schick, A.; Freiberg-Richter, J.; Fischer von Weikersthal, L.; Kaiser, F.; Kanzler, S.; Frickhofen, N.; Seufferlein, T.; et al. Afatinib plus gemcitabine versus gemcitabine alone as first-line treatment of metastatic pancreatic cancer: The randomised, open-label phase II ACCEPT study of the Arbeitsgemeinschaft Internistische Onkologie with an integrated analysis of the ‘burden of therapy’ method. Eur. J. Cancer 2021, 146, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Benedikt Westphalen, C.; Quante, M.; Waldschmidt, D.T.; Held, S.; Kütting, F.; Dorman, K.; Heinrich, K.; Weiss, L.; Boukovala, M.; et al. Gemcitabine and nab-paclitaxel combined with afatinib in metastatic pancreatic cancer—Results of a phase 1b clinical trial. Eur. J. Cancer 2024, 201, 113926. [Google Scholar] [CrossRef] [PubMed]
- Moehler, M.; Maderer, A.; Ehrlich, A.; Foerster, F.; Schad, A.; Nickolay, T.; Ruckes, C.; Weinmann, A.; Sivanathan, V.; Marquardt, J.U.; et al. Safety and efficacy of afatinib as add-on to standard therapy of gemcitabine/cisplatin in chemotherapy-naive patients with advanced biliary tract cancer: An open-label, phase I trial with an extensive biomarker program. BMC Cancer 2019, 19, 55. [Google Scholar] [CrossRef]
- Salawu, A.; Hansen, A.R.; Spreafico, A.; Al-Ezzi, E.; Webster, S.; Bedard, P.L.; Doi, J.; Wang, L.; Siu, L.L.; Abdul Razak, A.R. A phase 2 trial of afatinib in patients with solid tumors that harbor genomic aberrations in the HER family: The MOBILITY3 basket study. Target. Oncol. 2022, 17, 271–281. [Google Scholar] [CrossRef] [PubMed]
Phase Ia | Phase Ib | |
---|---|---|
Characteristic, n (%) | n = 11 | n = 30 |
Age at Enrollment, median (range) | 63 (24–78) | 65 (31–80) |
Sex | ||
Female | 3 (27.3) | 17 (56.7) |
Male | 8 (72.7) | 13 (43.3) |
ECOG performance status | ||
0 | 3 (27.3) | 9 (30) |
1 | 8 (72.7) | 21 (70) |
Race | ||
Asian | 1 (9) | 2 (6.6) |
African American | 1 (9) | 1 (3.3) |
Pacific Islander/Other | 0 (0) | 1 (3.3) |
Caucasian | 2 (18.2) | 3 (10) |
White | 7 (63.6) | 23 (76.7) |
Primary Cancer | ||
Biliary Tract | 3 (27.3) | 15 (50) |
Fibrolamellar HCC | 1 (9) | 0 (0) |
Gastroesophageal Junction | 1 (9) | 0 (0) |
Gastric | 1 (9) | 0 (0) |
Pancreatic | 5 (45.5) | 15 (50) |
TNM stage | ||
Stage III | 1 (9) | 3 (10) |
Stage IV | 10 (90.9) | 27 (90) |
Prior Lines of Systemic Therapy | ||
1 | 2 (18.2) | 8 (26.7) |
2 | 4 (36.4) | 19 (63.3) |
3+ | 5 (45.5) | 3 (10) |
Phase Ia, n = 11 | Phase Ib, n = 30 | Total n = 41 | |||
---|---|---|---|---|---|
Related AEs, n (%) | All | Grade ≥ 3 | All | Grade ≥ 3 | All |
Diarrhea | 6 (54%) | 0 (0%) | 22 (73%) | 5 (17%) | 28 (68%) |
Oral Mucositis | 6 (54%) | 0 (0%) | 18 (60%) | 1 (3%) | 24 (58%) |
Nausea | 3 (27%) | 0 (0%) | 19 (63%) | 2 (7%) | 22 (54%) |
Fatigue | 5 (45%) | 0 (0%) | 16 (53%) | 1 (3%) | 21 (51%) |
Rash | 4 (36%) | 0 (0%) | 16 (53%) | 0 (0%) | 20 (41%) |
Anorexia | 2 (18%) | 0 (0%) | 15 (50%) | 1 (3%) | 17 (41%) |
Vomiting | 3 (27%) | 0 (0%) | 13 (43%) | 0 (0%) | 16 (39%) |
Palmar–plantar erythrodysesthesia (PPE) | 6 (54%) | 0 (0%) | 7 (23%) | 1 (3%) | 13 (32%) |
Dysgeusia | 3 (27%) | 0 (0%) | 7 (23%) | 0 (0%) | 10 (24%) |
Epistaxis | 0 (0%) | 0 (0%) | 7 (23%) | 0 (0%) | 7 (17%) |
Abdominal Pain | 4 (36%) | 0 (0%) | 3 (10%) | 0 (0%) | 7 (17%) |
Peripheral Neuropathy | 1 (9%) | 0 (0%) | 3 (10%) | 0 (0%) | 4 (10%) |
Abnormal Liver Enzymes | 0 (0%) | 0 (0%) | 3 (10%) | 0 (0%) | 3 (7%) |
Back Pain | 0 (0%) | 0 (0%) | 3 (10%) | 0 (0%) | 3 (7%) |
Muscle Weakness | 0 (0%) | 0 (0%) | 3 (10%) | 0 (0%) | 3 (7%) |
Regurgitation | 0 (0%) | 0 (0%) | 3 (10%) | 0 (0%) | 3 (7%) |
Flatulence | 2 (18%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (5%) |
Phase Ia | Phase Ib | All Patients | ||
---|---|---|---|---|
n = 11 | PDA n = 12 | BTC n = 13 | N = 36 | |
Best Response | ||||
Complete Response | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Partial Response | 0 (0%) | 0 (0%) | 1 (8%) | 1 (3%) |
Stable Disease | 2 (18%) | 3 (25%) | 3 (23%) | 8 (22%) |
Progressive Disease | 9 (82%) | 9 (75%) | 9 (69%) | 27 (75%) |
Objective Response Rate [CR, PR] | 0/11 (0%) | 0/12 (0%) | 1/13 (8%) | 1 (3%) |
Disease Control Rate [CR, PR, SD] | 2/11 (18%) | 3/12 (25%) | 4/13 (31%) | 9 (25%) |
Tumor Type | Study Phase | Treatment | Line of Treatment | OS/PFS |
---|---|---|---|---|
PDA [53] | 2 | Afatinib + Gemcitabine vs. Gemcitabine | First line | OS 7.3 vs. 7.4 mo PFS 3.9 vs. 3.9 mo |
PDA [54] | 1 | Afatinib + Gemcitabine + nab-Paclitaxel | First line | OS 7.5 mo PFS 3.5 mo |
BTC [55] | 1 | Afatinib + Gemcitabine + Cisplatin | First line | OS 7.7 mo PFS 6 mo |
PDA * KRASWT PDA | 1 | Afatinib + capecitabine | Third line | OS 3.2 mo PFS 1.9 mo |
OS 5.8 mo PFS 3.7 mo | ||||
BTC * KRASWT BTC | 1 | Afatinib + capecitabine | Third line | OS 4.6 mo PFS 1.9 mo |
OS 5.0 mo PFS 2.0 mo | ||||
NRG1+ PDA [52] | Afatinib | Fourth line | OS 22 mo PFS 15 mo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
King, G.G.; Baker, K.K.; Coveler, A.L.; Harris, W.P.; Cohen, S.A.; Shankaran, V.; Zhen, D.B.; Safyan, R.A.; Lee, H.H.; Alidina, A.; et al. Phase Ia/Ib Study of Afatinib with Capecitabine in Patients with Refractory Solid Tumors and Pancreaticobiliary Cancers. Cancers 2025, 17, 1830. https://doi.org/10.3390/cancers17111830
King GG, Baker KK, Coveler AL, Harris WP, Cohen SA, Shankaran V, Zhen DB, Safyan RA, Lee HH, Alidina A, et al. Phase Ia/Ib Study of Afatinib with Capecitabine in Patients with Refractory Solid Tumors and Pancreaticobiliary Cancers. Cancers. 2025; 17(11):1830. https://doi.org/10.3390/cancers17111830
Chicago/Turabian StyleKing, Gentry G., Kelsey K. Baker, Andrew L. Coveler, William P. Harris, Stacey A. Cohen, Veena Shankaran, David B. Zhen, Rachael A. Safyan, Hannah H. Lee, Annie Alidina, and et al. 2025. "Phase Ia/Ib Study of Afatinib with Capecitabine in Patients with Refractory Solid Tumors and Pancreaticobiliary Cancers" Cancers 17, no. 11: 1830. https://doi.org/10.3390/cancers17111830
APA StyleKing, G. G., Baker, K. K., Coveler, A. L., Harris, W. P., Cohen, S. A., Shankaran, V., Zhen, D. B., Safyan, R. A., Lee, H. H., Alidina, A., Hensel, J., Hibbert, R., Durm, G. A., LaFary, Y. C., Younger, A., Kugel, S., Collisson, E., Konnick, E. Q., Redman, M. W., ... Chiorean, E. G. (2025). Phase Ia/Ib Study of Afatinib with Capecitabine in Patients with Refractory Solid Tumors and Pancreaticobiliary Cancers. Cancers, 17(11), 1830. https://doi.org/10.3390/cancers17111830