The Impact of Minimal Residual Disease Measurement in the Management of Chronic Lymphocytic Leukemia
Simple Summary
Abstract
1. Introduction
2. Definition and Detection of MRD
3. MRD with Continuous Treatment with Targeted Agents
4. MRD in Frontline Fixed-Duration Treatment of CLL with Targeted Treatments
- CLL14
- FLAIR Trial
- GAIA/CLL13
- CAPTIVATE
- GLOW
- Triplet Combinations:
- AVO:
- BOVen
- AMPLIFY
5. MRD for Relapsed/Refractory Disease with Targeted Agents
- MURANO
- CLARITY
- VENICE
6. MRD with Cellular Therapy
- CLL3X
- TRANSCEND CLL004
7. Ongoing Clinical Trials
8. MRD: What Are the Next Steps?
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncol. 2016, 17, 779–790. [CrossRef] [PubMed]
- Wierda, W.G.; Brown, J.; Abramson, J.S.; Awan, F.; Bilgrami, S.F.; Bociek, G.; Brander, D.; Cortese, M.; Cripe, L.; Davis, R.S.; et al. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 2.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 175–204. [Google Scholar]
- Thompson, P.A.; Srivastava, J.; Peterson, C.; Strati, P.; Jorgensen, J.L.; Hether, T.; Keating, M.J.; O’brien, S.M.; Ferrajoli, A.; Burger, J.A.; et al. Minimal residual disease undetectable by next-generation sequencing predicts improved outcome in CLL after chemoimmunotherapy. Blood 2019, 134, 1951–1959. [Google Scholar] [CrossRef]
- Ladetto, M.; Buske, C.; Hutchings, M.; Dreyling, M.; Gaidano, G.; Le Gouill, S.; Luminari, S.; Pott, C.; Zamò, A.; Zucca, E.; et al. ESMO consensus conference on malignant lymphoma: General perspectives and recommendations for prognostic tools in mature B-cell lymphomas and chronic lymphocytic leukaemia. Ann. Oncol. 2016, 27, 2149–2160. [Google Scholar] [CrossRef]
- Wierda, W.G.; Rawstron, A.; Cymbalista, F.; Badoux, X.; Rossi, D.; Brown, J.R.; Egle, A.; Abello, V.; Ceballos, E.C.; Herishanu, Y.; et al. Measurable residual disease in chronic lymphocytic leukemia: Expert review and consensus recommendations. Leukemia 2021, 35, 3059–3072. [Google Scholar] [CrossRef]
- Moreno, C.; Mora, A. MRD in CLL: Some answers, many questions. Blood 2021, 138, 2746–2747. [Google Scholar] [CrossRef]
- Furstenau, M.; Weiss, J.; Giza, A.; Franzen, F.; Robrecht, S.; Fink, A.M.; Fischer, K.; Schneider, C.; Tausch, E.; Stilgenbauer, S.; et al. Circulating Tumor DNA-Based MRD Assessment in Patients with CLL Treated with Obinutuzumab, Acalabrutinib, and Venetoclax. Clin. Cancer Res. 2022, 28, 4203–4211. [Google Scholar] [CrossRef]
- Rawstron, A.C.; Fazi, C.; Agathangelidis, A.; Villamor, N.; Letestu, R.; Nomdedeu, J.; Palacio, C.; Stehlikova, O.; Kreuzer, K.A.; Liptrot, S.; et al. A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: An European Research Initiative on CLL study. Leukemia 2016, 30, 929–936. [Google Scholar] [CrossRef]
- Bottcher, S.; Ritgen, M.; Pott, C.; Brüggemann, M.; Raff, T.; Stilgenbauer, S.; Döhner, H.; Dreger, P.; Kneba, M. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation. Leukemia 2004, 18, 1637–1645. [Google Scholar] [CrossRef]
- van der Velden, V.H.; Cazzaniga, G.; Schrauder, A.; Hancock, J.; Bader, P.; Panzer-Grumayer, E.R.; Flohr, T.; Sutton, R.; Cave, H.; Madsen, H.O.; et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: Guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007, 21, 604–611. [Google Scholar] [CrossRef]
- Bottcher, S.; Hallek, M.; Ritgen, M.; Kneba, M. The role of minimal residual disease measurements in the therapy for CLL: Is it ready for prime time? Hematol. Oncol. Clin. N. Am. 2013, 27, 267–288. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C.; Gao, H.; Wang, C.; Sahaf, B.; Jones, C.D.; Marshall, E.L.; Buño, I.; Armstrong, R.; Fire, A.Z.; Weinberg, K.I.; et al. High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc. Natl. Acad. Sci. USA 2011, 108, 21194–21199. [Google Scholar] [CrossRef] [PubMed]
- Ching, T.; Duncan, M.E.; Newman-Eerkes, T.; McWhorter, M.M.E.; Tracy, J.M.; Steen, M.S.; Brown, R.P.; Venkatasubbarao, S.; Akers, N.K.; Vignali, M.; et al. Analytical evaluation of the clonoSEQ Assay for establishing measurable (minimal) residual disease in acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. BMC Cancer 2020, 20, 612. [Google Scholar] [CrossRef] [PubMed]
- clonoSEQ® Assay Technical Information. Available online: https://www.clonoseq.com/wp-content/uploads/2024/07/PNL-10027-Rev-04-clonoSEQ-Assay-Technical-Information.PDF.pdf (accessed on 15 September 2024).
- Logan, A.C.; Zhang, B.; Narasimhan, B.; Carlton, V.; Zheng, J.; Moorhead, M.; Krampf, M.R.; Jones, C.D.; Waqar, A.N.; Faham, M.; et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia 2013, 27, 1659–1665. [Google Scholar] [CrossRef]
- Frazzi, R.; Bizzarri, V.; Albertazzi, L.; Cusenza, V.Y.; Coppolecchia, L.; Luminari, S.; Ilariucci, F. Droplet digital PCR is a sensitive tool for the detection of TP53 deletions and point mutations in chronic lymphocytic leukaemia. Br. J. Haematol. 2020, 189, e49–e52. [Google Scholar] [CrossRef]
- Del Giudice, I.; Raponi, S.; Della Starza, I.; De Propris, M.S.; Cavalli, M.; De Novi, L.A.; Cappelli, L.V.; Ilari, C.; Cafforio, L.; Guarini, A.; et al. Minimal Residual Disease in Chronic Lymphocytic Leukemia: A New Goal? Front. Oncol. 2019, 9, 689. [Google Scholar] [CrossRef]
- Yeh, P.; Hunter, T.; Sinha, D.; Ftouni, S.; Wallach, E.; Jiang, D.; Chan, Y.-C.; Wong, S.Q.; Silva, M.J.; Vedururu, R.; et al. Circulating tumour DNA reflects treatment response and clonal evolution in chronic lymphocytic leukaemia. Nat. Commun. 2017, 8, 14756. [Google Scholar] [CrossRef]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Flinn, I.W.; Burger, J.A.; Blum, K.A.; Grant, B.; Sharman, J.P.; Coleman, M.; Wierda, W.G.; et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2013, 369, 32–42. [Google Scholar] [CrossRef]
- Woyach, J.A.; Ruppert, A.S.; Heerema, N.A.; Zhao, W.; Booth, A.M.; Ding, W.; Bartlett, N.L.; Brander, D.M.; Barr, P.M.; Rogers, K.A.; et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N. Engl. J. Med. 2018, 379, 2517–2528. [Google Scholar] [CrossRef] [PubMed]
- Shanafelt, T.D.; Wang, X.V.; Kay, N.E.; Hanson, C.A.; O’brien, S.; Barrientos, J.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhang, C.C.; et al. Ibrutinib–Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2019, 381, 432–443. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Wang, X.V.; Hanson, C.A.; Paietta, E.M.; O’brien, S.; Barrientos, J.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhang, C.C.; et al. Long-term outcomes for ibrutinib–rituximab and chemoimmunotherapy in CLL: Updated results of the E1912 trial. Blood 2022, 140, 112–120. [Google Scholar] [CrossRef]
- Ahn, I.E.; Farooqui, M.Z.H.; Tian, X.; Valdez, J.; Sun, C.; Soto, S.; Lotter, J.; Housel, S.; Stetler-Stevenson, M.; Yuan, C.M.; et al. Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study. Blood 2018, 131, 2357–2366. [Google Scholar] [CrossRef]
- Wang, X.V.; Hanson, C.A.; Tschumper, R.C.; Lesnick, C.E.; Braggio, E.; Paietta, E.M.; O’Brien, S.M.; Barrientos, J.C.; Leis, J.F.; Zhang, C.; et al. Measurable residual disease does not preclude prolonged progression-free survival in CLL treated with ibrutinib. Blood 2021, 138, 2810–2827. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): A randomised, controlled, phase 3 trial. Lancet 2020, 395, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naive chronic lymphocytic leukemia. Leukemia 2022, 36, 1171–1175. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Tandon, M.; Sinha, A.; Fink, A.-M.; Robrecht, S.; Samoylova, O.; Liberati, A.M.; Pinilla-Ibarz, J.; Opat, S.; et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): Follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1188–1200. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Lu, T.; Liao, M.Z.; Panchal, A.; Robrecht, S.; Ching, T.; Tandon, M.; Fink, A.-M.; Tausch, E.; et al. Minimal Residual Disease Dynamics after Venetoclax-Obinutuzumab Treatment: Extended Off-Treatment Follow-up From the Randomized CLL14 Study. J. Clin. Oncol. 2021, 39, 4049–4060. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Robrecht, S.; Zhang, C.; Olivieri, S.; Chang, Y.M.; Fink, A.M.; Tausch, E.; Schneider, C.; Ritgen, M.; Kreuzer, K.-A.; et al. Venetoclax-Obinutuzumab for previously untreated chronic lymphocytic leukemia: 6-year results of the phase 3 CLL14 study. Blood 2024, 144, 1924–1935. [Google Scholar] [CrossRef]
- Munir, T.; Cairns, D.A.; Bloor, A.; Allsup, D.; Cwynarski, K.; Pettitt, A.; Paneesha, S.; Fox, C.P.; Eyre, T.A.; Forconi, F.; et al. Chronic Lymphocytic Leukemia Therapy Guided by Measurable Residual Disease. N. Engl. J. Med. 2024, 390, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Furstenau, M.; Kater, A.P.; Robrecht, S.; von Tresckow, J.; Zhang, C.; Gregor, M.; Thornton, P.; Staber, P.B.; Tadmor, T.; Lindström, V.; et al. First-line venetoclax combinations versus chemoimmunotherapy in fit patients with chronic lymphocytic leukaemia (GAIA/CLL13): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2024, 25, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Wierda, W.G.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Opat, S.; Tedeschi, A.; Badoux, X.C.; Kuss, B.J.; Jackson, S.; Moreno, C.; et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results from the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J. Clin. Oncol. 2021, 39, 3853–3865. [Google Scholar] [CrossRef]
- Tam, C.S.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Jacobs, R.; Opat, S.; Barr, P.M.; Tedeschi, A.; Trentin, L.; Bannerji, R.; et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: Primary analysis of the CAPTIVATE FD cohort. Blood 2022, 139, 3278–3289. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.N.; Flinn, I.W.; Siddiqi, T.; Ghia, P.; Tam, C.S.; Kipps, T.J.; Barr, P.M.; Camburn, A.E.; Tedeschi, A.; Badoux, X.C.; et al. Outcomes in Patients with High-Risk Features after Fixed-Duration Ibrutinib plus Venetoclax: Phase II CAPTIVATE Study in First-Line Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2023, 29, 2593–2601. [Google Scholar] [CrossRef]
- Kater, A.P.; Owen, C.; Moreno, C.; Follows, G.; Munir, T.; Levin, M.-D.; Benjamini, O.; Janssens, A.; Osterborg, A.; Robak, T.; et al. Fixed-Duration Ibrutinib-Venetoclax in Patients with Chronic Lymphocytic Leukemia and Comorbidities. NEJM Evid. 2022, 1, EVIDoa2200006. [Google Scholar] [CrossRef]
- Munir, T.; Moreno, C.; Owen, C.; Follows, G.; Benjamini, O.; Janssens, A.; Levin, M.-D.; Osterborg, A.; Robak, T.; Simkovic, M.; et al. Impact of Minimal Residual Disease on Progression-Free Survival Outcomes After Fixed-Duration Ibrutinib-Venetoclax Versus Chlorambucil-Obinutuzumab in the GLOW Study. J. Clin. Oncol. 2023, 41, 3689–3699. [Google Scholar] [CrossRef]
- Niemann, C.U.; Munir, T.; Moreno, C.; Owen, C.; Follows, G.A.; Benjamini, O.; Janssens, A.; Levin, M.D.; Robak, T.; Simkovic, M.; et al. Fixed-duration ibrutinib-venetoclax versus chlorambucil-obinutuzumab in previously untreated chronic lymphocytic leukaemia (GLOW): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 1423–1433. [Google Scholar] [CrossRef]
- Ryan, C.E.; Lampson, B.L.; Tyekucheva, S.; Hackett, L.R.; Ren, Y.; Shupe, S.J.; Fernandes, S.M.; Crombie, J.L.; Ng, S.; Kim, A.I.; et al. Updated Results from a Multicenter, Phase 2 Study of Acalabrutinib, Venetoclax, Obinutuzumab (AVO) in a Population of Previously Untreated Patients with CLL Enriched for High-Risk Disease. Blood 2022, 140, 837–838. [Google Scholar] [CrossRef]
- Soumerai, J.D.; Mato, A.R.; Dogan, A.; Seshan, V.E.; Joffe, E.; Flaherty, K.; Carter, J.; Hochberg, E.; Barnes, J.A.; Hamilton, A.M.; et al. Zanubrutinib, obinutuzumab, and venetoclax with minimal residual disease-driven discontinuation in previously untreated patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2021, 8, e879–e890. [Google Scholar] [CrossRef]
- Brown, J.R.; Seymour, J.F.; Jurczak, W.; Aw, A.; Wach, M.; Illes, A.; Tedeschi, A.; Owen, C.; Skarbnik, A.; Lysak, D.; et al. Fixed-Duration Acalabrutinib Combinations in Untreated Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2025, 392, 748–762. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; De la Serna, J.; et al. Venetoclax-Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2018, 378, 1107–1120. [Google Scholar] [CrossRef]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.F.; D’rozario, J.; Owen, C.J.; Assouline, S.; Lamanna, N.; Robak, T.; de la Serna, J.; Jaeger, U.; et al. Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab. Blood 2022, 140, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Kater, A.P.; Harrup, R.; Kipps, T.J.; Eichhorst, B.; Owen, C.J.; Assouline, S.; Lamanna, N.; Robak, T.; Serna, J.D.L.; Jaeger, U.; et al. MURANO: Final 7 year follow up and retreatment analysis in venetoclax-rituximab (VenR)-treated patients with relapsed/refractory chronic lymphocytic leukemia (R/R CLL). Hematol. Oncol. 2023, 41 (Suppl. 2), 239–242. [Google Scholar] [CrossRef]
- Hillmen, P.; Rawstron, A.C.; Brock, K.; Muñoz-Vicente, S.; Yates, F.J.; Bishop, R.; Boucher, R.; MacDonald, D.; Fegan, C.; McCaig, A.; et al. Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study. J. Clin. Oncol. 2019, 37, 2722–2729. [Google Scholar] [CrossRef] [PubMed]
- Munir, T.; Cherrill, L.R.; Webster, N.; Dalal, S.; Boucher, R.H.; Sankhalpara, C.; Yates, F.; Fox, S.; Macdonald, D.; Fegan, C.; et al. MRD4 eradication at 6 months and early clearance of MRD with combination of ibrutinib plus venetoclax results in sustained clinical and MRD responses: Exploratory analysis of the blood cancer UK TAP Clarity Study. Blood 2022, 140 (Suppl. 1), 222–223. [Google Scholar] [CrossRef]
- Kater, A.P.; Arslan, Ö.; Demirkan, F.; Herishanu, Y.; Ferhanoglu, B.; Diaz, M.G.; Leber, B.; Montillo, M.; Panayiotidis, P.; Rossi, D.; et al. Activity of venetoclax in patients with relapsed or refractory chronic lymphocytic leukaemia: Analysis of the VENICE-1 multicentre, open-label, single-arm, phase 3b trial. Lancet Oncol. 2024, 25, 463–473. [Google Scholar] [CrossRef]
- Siddiqi, T.; Maloney, D.G.; Kenderian, S.S.; Brander, D.M.; Dorritie, K.; Soumerai, J.; Riedell, P.A.; Shah, N.N.; Nath, R.; Fakhri, B.; et al. Lisocabtagene maraleucel in chronic lymphocytic leukaemia and small lymphocytic lymphoma (TRANSCEND CLL 004): A multicentre, open-label, single-arm, phase 1–2 study. Lancet 2023, 402, 641–654. [Google Scholar] [CrossRef]
- Dreger, P.; Döhner, H.; Ritgen, M.; Böttcher, S.; Busch, R.; Dietrich, S.; Bunjes, D.; Cohen, S.; Schubert, J.; Hegenbart, U.; et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: Long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood 2010, 116, 2438–2447. [Google Scholar] [CrossRef]
- Dreger, P.; Schnaiter, A.; Zenz, T.; Böttcher, S.; Rossi, M.; Paschka, P.; Bühler, A.; Dietrich, S.; Busch, R.; Ritgen, M.; et al. TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia: Six-year follow-up of the GCLLSG CLL3X trial. Blood 2013, 121, 3284–3288. [Google Scholar] [CrossRef]
- Juno Therapeutics Inc., A Bristol-Myers Squibb Company. BREYANZI® (Lisocabtagene Maraleucel) [Package Insert]. U.S. Food and Drug Administration Website. Available online: https://www.fda.gov/media/145711/download?attachment (accessed on 1 September 2024).
- Ryan, C.E.; Davids, M.S.; Hermann, R.; Shahkarami, M.; Biondo, J.; Abhyankar, S.; Alhasani, H.; Sharman, J.P.; Mato, A.R.; Roeker, L.E. MAJIC: A phase III trial of acalabrutinib + venetoclax versus venetoclax + obinutuzumab in previously untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Future Oncol. 2022, 18, 3689–3699. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). Identifier NCT04608318, Ibrutinib Monotherapy Versus Fixed-duration Venetoclax Plus Obinutuzumab Versus Fixed-duration Ibrutinib Plus Venetoclax in Patients with Previously Untreated Chronic Lymphocytic Leukaemia (CLL) (CLL17). Available online: https://clinicaltrials.gov/study/NCT04608318 (accessed on 24 September 2024).
- Chong, E.A.; Yuda, J.; Izutsu, K.; Fletcher, L.B.; Assaily, W.; Sahtout, M.; Badawi, M.; Burke, J.M.; Dean, J.P.; Stevenson, C.; et al. A first-in-human study of the potent and highly selective BTK degrader ABBV-101 in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. 2024, 42, TPS7091. [Google Scholar] [CrossRef]
- Eyre, T.A.; Riches, J.C. The Evolution of Therapies Targeting Bruton Tyrosine Kinase for the Treatment of Chronic Lymphocytic Leukaemia: Future Perspectives. Cancers 2023, 15, 2596. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.L.; Choi, M.Y.; Wang, H.-Y.; Kipps, T.J. Mutation in Bruton Tyrosine Kinase (BTK) A428D confers resistance To BTK-degrader therapy in chronic lymphocytic leukemia. Leukemia 2024, 38, 1818–1821. [Google Scholar] [CrossRef]
- Mhibik, M.; Gaglione, E.M.; Eik, D.; Herrick, J.; Le, J.; Ahn, I.E.; Chiu, C.; Wielgos-Bonvallet, M.; Hiemstra, I.H.; Breij, E.C.W.; et al. Cytotoxicity of the CD3xCD20 bispecific antibody epcoritamab in CLL is increased by concurrent BTK or BCL-2 targeting. Blood Adv. 2023, 7, 4089–4101. [Google Scholar] [CrossRef]
- Woyach, J.A.; Yin, J.; Brown, J.R.; Dinner, S.; Lozanski, G.; Little, R.F.; Miller, C.; Damarla, V.K.; Coutre, S.E.; Ding, W.; et al. Results of a phase 3 study of IVO vs IO for previously untreated older patients (pts) with chronic lymphocytic leukemia (CLL) and impact of COVID-19 (Alliance). J. Clin. Oncol. 2023, 41, 7500. [Google Scholar] [CrossRef]
Modality | Methods | Limit of Detection (LOD) | Advantages | Disadvantages | Additional Information |
---|---|---|---|---|---|
FC |
| 10−4–10−6 |
|
|
|
ASO-RQ-PCR |
| 10−5 |
|
|
|
NGS |
| 10−6 |
|
|
|
dd-PCR |
| 10−5 |
|
|
|
Treatment Setting | Trial | Phase | Primary Outcome | MRD Endpoint | MRD Detection Method | Treatment Duration | Treatment | Study Size | PFS | OS |
---|---|---|---|---|---|---|---|---|---|---|
Previously untreated CLL | CLL14 | 3 | PFS | Secondary | ASO-RQ-PCR, NGS, FC | Time-limited, 12 cycles | VO CO | 216 216 | 6 yr: 53% 6 yr: 22% | 6 yr: 79% 6 yr: 69% |
FLAIR | 3 | PFS | Secondary | FC | Time-limited by uMRD stopping algorithm | IV FCR | 260 263 | 3 yr: 97% 3 yr: 77% | 3 yr: 98% 3 yr: 93% | |
CLL13 | 3 | uMRD, PFS | Primary | FC | Time-limited, 12 cycles with uMRD stopping algorithm in VOI cohort | FCR/BR VR VO VOI | 229 209 229 231 | 4 yr: 62% 4 yr: 70% 4 yr: 82% 4 yr: 86% | 4 yr: 94% 4 yr: 96% 4 yr: 95% 4 yr: 95% | |
GLOW | 3 | PFS | Secondary | NGS | Time-limited, 12 cycles | IV CO | 106 105 | 4.5 yr: 66% 4.5 yr: 25% | 4.5 yr: 88% 4.5 yr: 78% | |
CAPTIVATE-FD | 2 | CRR | Secondary | FC | Time-limited, 15 total cycles | IV | 164 | 5 yr: 67% | 5 yr: 96% | |
CAPTIVATE-MRD | 2 | CRR | Secondary | FC | Continuous until MRD or disease progression | IV IV + I | 31 32 | 4 yr: 88% 4 yr: 95% | 4 yr: 100% 4 yr: 98% | |
AVO | 2 | uMRD | Primary | FC, NGS | Time-limited, uMRD stopping algorithm | AVO | 68 | 3 yr: 93% | NR | |
BOVen | 2 | PFS | Primary | FC | Time-limited, 2 years | BOVen | 39 | 2.5 yr: 97% | NR | |
E1912 | 3 | PFS | Exploratory | FC, ASO-RQ-PCR | Continuous | IR FCR | 354 175 | 5 yr: 78% 5 yr: 51% | 5 yr: 95% 5 yr: 85% | |
ELEVATE TN | 3 | PFS | Exploratory | FC | Continuous | A AO CO | 179 179 177 | 6 yr: 62% 6 yr: 78% 6 yr: 17% | 6 yr: 76% 6 yr: 84% 6 yr: 75% | |
AMPLIFY | 3 | PFS | Secondary | FC NGS | Time-limited | AV AVO FCR/BR | 291 286 290 | 3 yr: 76.5% 3 yr: 83.1% 3 yr: 66.5% | 3 yr: 94.1% 3 yr: 87.7% 3 yr: 85.9% | |
Relapsed, refractory CLL | MURANO | 3 | PFS | Secondary | ASO-RQ-PCR, FC | Time-limited, 2 years | VR BR | 194 195 | mPFS: 54 mo mPFS: 17 mo | 5 yr: 82% 5 yr: 62% |
CLARITY | 2 | uMRD | Primary | FC | Time-limited, uMRD stopping algorithm | IV | 45 | NR | NR | |
VENICE | 3 | CRR | Secondary | NGS | Time-limited, 2 years | V | 258 | mPFS: 28 mo | 5 yr: 71% | |
CLL3X | 2 | Safety | Exploratory | ASO-RQ-PCR | One-time | Allo-HSCT | 90 | 5 yr: 38% | 5 yr: 58% | |
TRANSCEND CLL004 | 1–2 | Safety | Exploratory | NGS, FC | One-time | Liso-cel | 25 | mPFS: 18 mo | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greenberg, M.R.; Lucido, T.; Singh, K.; Rhodes, J.M. The Impact of Minimal Residual Disease Measurement in the Management of Chronic Lymphocytic Leukemia. Cancers 2025, 17, 1708. https://doi.org/10.3390/cancers17101708
Greenberg MR, Lucido T, Singh K, Rhodes JM. The Impact of Minimal Residual Disease Measurement in the Management of Chronic Lymphocytic Leukemia. Cancers. 2025; 17(10):1708. https://doi.org/10.3390/cancers17101708
Chicago/Turabian StyleGreenberg, Megan R., Thomas Lucido, Kritika Singh, and Joanna M. Rhodes. 2025. "The Impact of Minimal Residual Disease Measurement in the Management of Chronic Lymphocytic Leukemia" Cancers 17, no. 10: 1708. https://doi.org/10.3390/cancers17101708
APA StyleGreenberg, M. R., Lucido, T., Singh, K., & Rhodes, J. M. (2025). The Impact of Minimal Residual Disease Measurement in the Management of Chronic Lymphocytic Leukemia. Cancers, 17(10), 1708. https://doi.org/10.3390/cancers17101708