Spread Through Air Spaces (STAS) as a Predictive and Prognostic Factor in Patients with Non-Small Cell Lung Cancer—Systematic Review
Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Results
3.1. STAS in Different Histological Subtypes of NSCLC
3.2. Intraoperative Discussion
3.3. Imaging Diagnostics
3.3.1. Positron Emission Tomography (PET)
3.3.2. Computed Tomography
3.4. Chemotherapy
3.5. Radiotherapy
3.6. Immunotherapy
3.7. Surgical Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
STAS | Shared Through Air Space |
NSCLC | Non-small cell lung cancer |
ADC | Adenocarcinoma |
SCC | Squamous cell carcinoma |
VEGF | Vascular endothelial growth factor |
VHL | von Hippen–Lindau protein |
LCC | Large cell carcinoma |
SCLC | Small cell lung cancer |
CEA | Carcinoembryonic antigen |
NSE | Nerve-specific enolase |
CYFRA 21-1 | Cytokeratin 19 fragment |
SCC-AG | Squamous cell carcinoma antigen |
ProGRP | Pro-gastrin-releasing peptide |
LAC | Lung adenocarcinoma |
LSCC | Lung squamous cell carcinoma |
WHO | World Health Organization |
MIP | Micropapillary |
SOL | Solid |
LR | Limited resection |
ACT | Adjuvant chemotherapy |
SBRT | Stereotactic body radiation therapy |
TCIAS | Tumor-cell invasion through air spaces |
RFS | Recurrence-free survival |
DEF | Distant failure-free survival |
PES | Progression-free survival |
ALK | Anaplastic lymphoma kinase |
PD-L1 | Programmed death-ligand 1 |
BRAF | v-Raf murine sarcoma viral oncogene homolog B1 |
HER2 | Human epidermal growth factor receptor 2 |
EGFR | Epidermal growth factor receptor |
OS | Overall survival |
MTA1 | Metastasis-associated protein 1 |
SUVmax | Maximal standardized uptake value |
PET | Position emission tomography |
MTV | Metabolic tumor volume |
TLG | Total lesion glycolysis |
GGO | Ground glass opacity |
PSC | Proportion of the solid component |
IMA | Invasive mucinous ADC |
PSC | Proportion of the solid component |
FAK | Focal adhesion kinase |
E-cadherin | Epithelial cadherin |
N-cadherin | Neural cadherin |
EMT | Epithelial–mesenchymal transition |
MMP-7 | Matrix metalloproteinase 7 |
ECM | Extracellular matrix |
CAFs | Tumor-associated fibroblasts |
SMA | α-Smooth muscle actin |
TAMs | Tumor-associated macrophages |
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Cancer Today. In Proceedings of the 66th Session of the Governing Council of the International Agency for Research on Cancer, Lyon, France, 15–16 May 2024. [Google Scholar]
- Zhang, Y.; Vaccarella, S.; Morgan, E.; Li, M.; Etxeberria, J.; Chokunonga, E.; Manraj, S.S.; Kamate, B.; Omonisi, A.; Bray, F. Global variations in lung cancer incidence by histological subtype in 2020: A population-based study. Lancet Oncol. 2023, 24, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.Y.; Huang, J.Y.; Chen, H.C.; Lin, C.-H.; Lin, S.-H.; Hung, W.-H.; Cheng, Y.-F. The comparison between adenocarcinoma and squamous cell carcinoma in lung cancer patients. J. Cancer Res. Clin. Oncol. 2020, 146, 43–52. [Google Scholar] [CrossRef]
- Uruga, H.; Fujii, T.; Fujimori, S.; Kohno, T.; Kishi, K. Semiquantitative Assessment of Tumor Spread through Air Spaces (STAS) in Early-Stage Lung Adenocarcinomas. J. Thorac. Oncol. 2017, 12, 1046–1051. [Google Scholar] [CrossRef]
- Kagimoto, A.; Tsutani, Y.; Kushitani, K.; Kai, Y.; Kambara, T.; Miyata, Y.; Takeshima, Y.; Okada, M. Segmentectomy vs Lobectomy for Clinical Stage IA Lung Adenocarcinoma With Spread Through Air Spaces. Ann. Thorac. Surg. 2021, 112, 935–943. [Google Scholar] [CrossRef]
- Su, Y.; Tao, J.; Lan, X.; Liang, C.; Huang, X.; Zhang, J.; Li, K.; Chen, L. CT-based intratumoral and peritumoral radiomics nomogram to predict spread through air spaces in lung adenocarcinoma with diameter ≤3 cm: A multicenter study. Eur. J. Radiol. Open 2025, 14, 100630. [Google Scholar] [CrossRef]
- Eguchi, T.; Kameda, K.; Lu, S.; Bott, M.J.; Tan, K.S.; Montecalvo, J.; Chang, J.C.; Rekhtman, N.; Jones, D.R.; Travis, W.D.; et al. Lobectomy Is Associated with Better Outcomes than Sublobar Resection in Spread through Air Spaces (STAS)-Positive T1 Lung Adenocarcinoma: A Propensity Score–Matched Analysis. J. Thorac. Oncol. 2019, 14, 87–98. [Google Scholar] [CrossRef]
- Yanagawa, N.; Shiono, S.; Endo, M. Ogata Sya Tumor spread through air spaces is a useful predictor of recurrence prognosis in stage Ilung squamous cell carcinoma but not in stage II and III. Lung Cancer 2018, 120, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Villalba, J.A.; Sayo, T.M.S.; Narula, N.; Pass, H.; Mino-Kenudson, M.; Moreira, A.L. Assessment of the feasibility of frozen sections for the detection of spread through air spaces (STAS) in pulmonary adenocarcinoma. Mod. Pathol. 2022, 35, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Nishimori, M.; Iwasa, H.; Miyatake, K.; Shikama, N.; Takeda, K.; Nakajima, R.; Yamamoto, T.; Sato, H.; Suzuki, M.; Tanaka, Y.; et al. 18F FDG-PET/CT analysis of spread through air spaces (STAS) in clinical stage I lung adenocarcinoma. Ann. Nucl. Med. 2022, 36, 897–903. [Google Scholar] [CrossRef]
- Warth, A. Spread through air spaces (STAS): A comprehensive update. Transl. Lung Cancer Res. 2017, 6, 501–507. [Google Scholar] [CrossRef]
- Gross, D.J.; Hsieh, M.S.; Li, Y.; Dux, J.; Rekhtman, N.; Jones, D.R.; Travis, W.D.; Adusumilli, P.S. Spread Through Air Spaces (STAS) in Non-Small Cell Lung Carcinoma: Evidence Supportive of an In Vivo Phenomenon. Am. J. Surg. Pathol. 2021, 45, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Bains, S.; Eguchi, T.; Warth, A.; Yeh, Y.C.; Nitadori, J.I.; Woo, K.M.; Chou, T.Y.; Dienemann, H.; Muley, T.; Nakajima, J.; et al. Procedure-Specific Risk Prediction for Recurrence in Patients Undergoing Lobectomy or Sublobar Resection for Small (≤2 cm) Lung Adenocarcinoma: An International Cohort Analysis. J. Thorac. Oncol. 2019, 14, 72–86. [Google Scholar] [CrossRef]
- Nicholson, A. GR03.02 Adenocarcinoma. J. Thorac. Oncol. 2019, 14, S86–S87. [Google Scholar] [CrossRef]
- Ito, H.; Suzuki, K.; Mizutani, T.; Aokage, K.; Wakabayashi, M.; Fukuda, H.; Watanabe, S.-I.; Japan Clinical Oncology Group Lung Cancer Surgical Study Group. Long-term survival outcome after lobectomy in patients with clinical T1 N0 lung cancer. J. Thorac. Cardiovasc. Surg. 2021, 161, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Cai, G. Intraoperative frozen section diagnosis of lung specimens: An updated review. Semin. Diagn. Pathol. 2025, 42, 150901. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Herbst, R.S.; Morgensztern, D. Immunotherapy in Lung Cancer. Hematol. Oncol. Clin. N. Am. 2017, 31, 131–141. [Google Scholar] [CrossRef]
- Jokoji, R.; Yamasaki, T.; Minami, S.; Akiyama, H.; Nakajima, M.; Tanaka, F.; Matsumoto, S.; Saito, Y.; Suzuki, K.; Ito, H. Combination of morphological feature analysis and immunohistochemistry is useful for screening of EML4-ALK-positive lung adenocarcinoma. J. Clin. Pathol. 2010, 63, 1066–1070. [Google Scholar] [CrossRef]
- Zavin, A.; Amith Shenoy, M.; Bender, M. Spontaneous Enterococus faecalis Empyema in a Patient With COVID-19. Chest 2020, 158, A774. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, X.; Wang, Y.; Chen, L.; Liu, Q.; Zhang, J.; Zhao, H.; Li, X.; Liu, Z.; Sun, Y.; et al. A systematic review and meta-analysis of the influence of STAS on the long-term prognosis of stage I lung adenocarcinoma. Transl. Cancer Res. 2021, 10, 2428–2436. [Google Scholar] [CrossRef]
- Lu, S.; Tan, K.S.; Kadota, K.; Sica, G.L.; Travis, W.D.; Rekhtman, N.; Jones, D.R.; Chang, J.C.; Bains, S.; Moreira, A.L.; et al. Spread through Air Spaces (STAS) Is an Independent Predictor of Recurrence and Lung Cancer–Specific Death in Squamous Cell Carcinoma. J. Thorac. Oncol. 2017, 12, 223–234. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, Y.; Liu, L.; Zhang, C.; Sun, K.; Xu, J.; Li, Q.; Chen, Z.; Wu, J.; Zhou, X.; et al. Immunohistochemistry identifies E-cadherin, N-cadherin and focal adhesion kinase (FAK) as predictors of stage I non-small cell lung carcinoma spread through the air spaces (STAS), and the combinations as prognostic factors. Transl. Lung Cancer Res. 2024, 13, 1450–1462. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Kadota, K.; Fujimoto, S.; Suzuki, K.; Kameda, K.; Lu, S.; Bott, M.J.; Chang, J.C.; Rekhtman, N.; Jones, D.R.; et al. MMP-7 expression is associated with a higher rate of tumor spread through air spaces in resected lung adenocarcinomas. Lung Cancer 2023, 175, 125–130. [Google Scholar] [CrossRef]
- Ii, M.; Yamamoto, H.; Adachi, Y.; Maruyama, Y.; Shinomura, Y. Role of Matrix Metalloproteinase-7 (Matrilysin) in Human Cancer Invasion, Apoptosis, Growth, and Angiogenesis. Exp. Biol. Med. 2006, 231, 20–27. [Google Scholar] [CrossRef]
- Rasheed, S.A.K.; Efferth, T.; Asangani, I.A.; Allgayer, H. First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int. J. Cancer 2010, 127, 1475–1485. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, D.; Liu, Y.; Wang, Z.; Xu, H.; Shen, J.; Li, X.; Zhang, P.; Huang, L.; Zhao, S.; et al. Relationship between stromal cells and tumor spread through air spaces in lung adenocarcinoma. Thorac. Cancer 2019, 10, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, N.A.; Rasool, R.; Shah, S.; Ahangar, A.G.; Siddiqi, M.A.; Shah, Z.A. Upregulation of vascular endothelial growth factor (VEGF), its role in progression and prognosis of non-small cell lung carcinoma. Cancer Genet. 2017, 216–217, 67–73. [Google Scholar] [CrossRef]
- Shweiki, D.; Itin, A.; Soffer, D.; Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992, 359, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, S.; Deng, J.; Huang, C.; Li, T.; Wang, L.; Chen, X.; Xu, Y.; Sun, Z.; Liu, D.; et al. VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment. Int. J. Biol. Sci. 2022, 18, 3845–3858. [Google Scholar] [CrossRef]
- Jia, M.; Yu, S.; Gao, H.; Sun, P.L. Spread through air spaces (STAS) in lung cancer: A multiple-perspective and update review. Cancer Manag. Res. 2020, 12, 2743–2752. [Google Scholar] [CrossRef]
- Lee, M.A.; Kang, J.; Lee, H.Y.; Kim, W.; Shon, I.; Hwang, N.Y.; Kim, H.K.; Choi, Y.S.; Kim, J.; Zo, J.I.; et al. Spread through air spaces (STAS) in invasive mucinous adenocarcinoma of the lung: Incidence, prognostic impact, and prediction based on clinicoradiologic factors. Thorac. Cancer 2020, 11, 3145–3154. [Google Scholar] [CrossRef]
- Liu, J.; Cao, B.; Shi, Z.H.; Liu, X.; Liu, J. Correlation Between the Number of Pathological Risk Factors and Postoperative Prognosis in Patients with Stage I Lung Adenocarcinoma. Ann. Surg. Oncol. 2024, 31, 9310–9320. [Google Scholar] [CrossRef] [PubMed]
- Kadota, K.; Kushida, Y.; Kagawa, S.; Ishikawa, R.; Ibuki, E.; Inoue, K.; Go, T.; Yokomise, H.; Ishii, T.; Kadowaki, N. Limited Resection Is Associated with a Higher Risk of Locoregional Recurrence than Lobectomy in Stage i Lung Adenocarcinoma with Tumor Spread Through Air Spaces. Am. J. Surg. Pathol. 2019, 43, 1033–1041. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Zhang, F.; Han, R.; Ding, Q.; Xu, X.; Shu, J.; Ye, F.; Shi, L.; Mao, Y.; et al. Could tumor spread through air spaces benefit from adjuvant chemotherapy in stage I lung adenocarcinoma? A multi-institutional study. Ther. Adv. Med. Oncol. 2020, 12, 1758835920978147. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.P.; Emoto, K.; Dux, J.; Travis, W.D.; Adusumilli, P.S. Predicting spread through air spaces (STAS) preoperatively: Can imaging help? J. Thorac. Dis. 2019, 11 (Suppl. S15), S1938–S1941. [Google Scholar] [CrossRef]
- de Margerie-Mellon, C.; VanderLaan, P.A.; Heidinger, B.H.; Bankier, A.A. Role of imaging in predicting tumor spread through airspaces (STAS): What are the next steps. J. Thorac. Dis. 2020, 12, 1154–1156. [Google Scholar] [CrossRef]
- Toyokawa, G.; Yamada, Y.; Tagawa, T.; Ohba, M.; Yoshida, S.; Nakashima, Y.; Okamoto, T.; Suzuki, K.; Fujii, Y.; Taniguchi, T.; et al. Computed tomography features of resected lung adenocarcinomas with spread through air spaces. J. Thorac. Cardiovasc. Surg. 2018, 156, 1670–1676.E4. [Google Scholar] [CrossRef] [PubMed]
- Shiono, S.; Yanagawa, N. Spread through air spaces is a predictive factor of recurrence and a prognostic factor in stage I lung adenocarcinoma. Interact. Cardiovasc. Thorac. Surg. 2016, 23, 567–572. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, T.J.; Chung, M.J.; Lee, J.; Lee, E.Y.; Kim, H.; Park, C.M.; Goo, J.M.; Lee, S.M.; Choi, Y.S.; et al. Lung Adenocarcinoma: CT Features Associated with Spread through Air Spaces. Radiology 2018, 289, 831–840. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, C.; Kang, W.; Li, X.; Zhang, L.; Huang, P.; Wang, Z.; Liu, Q.; Sun, Y.; Zhao, H.; et al. Development and validation of a CT-based nomogram to predict spread through air space (STAS) in peripheral stage IA lung adenocarcinoma. Jpn. J. Radiol. 2022, 40, 586–594. [Google Scholar] [CrossRef]
- Lv, Y.; Li, S.; Liu, Z.; Wang, X.; Zhang, Y.; Chen, J.; Zhou, L.; Huang, J.; Zhao, Q.; Xu, H.; et al. Impact of surgery and adjuvant chemotherapy on the survival of stage I lung adenocarcinoma patients with tumor spread through air spaces. Lung Cancer 2023, 177, 51–58. [Google Scholar] [CrossRef]
- Dohopolski, M.; Gottumukkala, S.; Gomez, D.; Iyengar, P. Radiation therapy in non-small-cell lung cancer. Cold Spring Harb. Perspect. Med. 2021, 11(10), a037713. [Google Scholar] [CrossRef] [PubMed]
- Makita, K.; Hamamoto, Y.; Kanzaki, H.; Nagasaki, K.; Matsuki, H.; Inoue, K.; Kozuki, T. Association between tumor cell in air space and treatment outcomes in early-stage lung cancer treated with stereotactic body radiation therapy. Clin. Transl. Radiat. Oncol. 2024, 47, 100795. [Google Scholar] [CrossRef]
- Toyokawa, G.; Yamada, Y.; Tagawa, T.; Ohba, M.; Yoshida, S.; Nakashima, Y.; Okamoto, T.; Suzuki, K.; Fujii, Y.; Taniguchi, T. Significance of Spread Through Air Spaces in Resected Pathological Stage I Lung Adenocarcinoma. Ann. Thorac. Surg. 2018, 105, 1655–1663. [Google Scholar] [CrossRef]
- Saji, H.; Okada, M.; Tsuboi, M.; Suzuki, K.; Nakajima, R.; Asamura, H.; Misawa, K.; Miura, K.; Takahashi, K.; Yoshida, S.; et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): A multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet 2022, 399, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, M.; Miyagawa-Hayashino, A.; Omatsu, I.; Kanda, R.; Nakazato, Y.; Hashimoto, H.; Kanai, O.; Kataoka, A.; Takamochi, K.; Suzuki, K. Spread through air spaces is a powerful prognostic predictor in patients with completely resected pathological stage I lung adenocarcinoma. Lung Cancer 2022, 174, 165–171. [Google Scholar] [CrossRef]
- Jin, W.; Shen, L.; Tian, Y.; Wang, X.; Xu, H.; Xu, W.; Li, M.; Yan, J.; Zhang, L.; Liu, J.; et al. Improving the prediction of Spreading Through Air Spaces (STAS) in primary lung cancer with a dynamic dual-delta hybrid machine learning model: A multicenter cohort study. Biomark. Res. 2023, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, R.; Wakabayashi, I. HDGF enhances VEGF-dependent angiogenesis and FGF-2 is a VEGF-independent angiogenic factor in non-small cell lung cancer. Oncol. Rep. 2020, 44, 14–28. [Google Scholar] [CrossRef]
- Guo, L.; Li, S.; Wang, X.; Zhu, Y.; Li, J. Overexpression of VEGFA mediated by HIF-1 is associated with higher rate of spread through air spaces in resected lung adenocarcinomas. J. Gene Med. 2024, 26, e3625. [Google Scholar] [CrossRef]
- Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef]
- Bui, B.P.; Nguyen, P.L.; Lee, K.; Cho, J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers 2022, 14, 6054. [Google Scholar] [CrossRef]
- Takasaki, C.; Kobayashi, M.; Ishibashi, H.; Akashi, T.; Okubo, K. Expression of hypoxia-inducible factor-1α affects tumor proliferation and antiapoptosis in surgically resected lung cancer. Mol. Clin. Oncol. 2016, 5, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Lan, F.; Yan, X.; Xiao, Z.; Wu, Y.; Zhang, Q. Hypoxia exposure induced cisplatin resistance partially via activating p53 and hypoxia inducible factor-1α in non-small cell lung cancer A549 cells. Oncol Lett. 2018, 16, 801–808. [Google Scholar] [CrossRef]
- Rydel, M.; Chirurgii, K.; Piersiowej, K.; Katedry, K.; Czy, D. Ocena Stężeń Potencjalnych Biomarkerów: VEGF, HIF-1α I YKL-40 U Pacjentów Z Niedrobnokomórkowym Rakiem Płuca Leczonych Operacyjnie; SUM Wydział Nauk Medycznyc: Katowice, Poland, 2020; pp. 1–74. [Google Scholar]
- Roslind, A.; Johansen, J.S. YKL-40: A novel marker shared by chronic inflammation and oncogenic transformation. Methods Mol. Biol. 2009, 511, 159–184. [Google Scholar] [CrossRef]
- Vázquez-Del Mercado, M.; Pérez-Vázquez, F.; Márquez-Aguirre, A.L.; Martínez-García, E.-A.; Chavarria-Avila, E.; Ramos-Becerra, C.G.; Aguilar-Vázquez, A.; Godínez-Rubí, M.; Martín-Márquez, B.-T.; Gómez-Limón, L.; et al. YKL-40 serum levels are predicted by inflammatory state, age and diagnosis of idiopathic inflammatory myopathies. Sci. Rep. 2023, 13, 19172. [Google Scholar] [CrossRef] [PubMed]
- Rehli, M.; Krause, S.W.; Andreesen, R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics 1997, 43, 221–225. [Google Scholar] [CrossRef]
- Johansen, J.S.; Jensen, B.V.; Roslind, A.; Nielsen, D.; Price, P.A. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol. Biomark. Prev. 2006, 15, 194–202. [Google Scholar] [CrossRef]
- Bi, H.; Yin, L.; Fang, W.; Song, S.; Wu, S.; Shen, J. Association of CEA, NSE, CYFRA 21-1, SCC-Ag, and ProGRP with Clinicopathological Characteristics and Chemotherapeutic Outcomes of Lung Cancer. Lab. Med. 2023, 54, 372–379. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herba, M.; Boczek, S.; Smyła-Gruca, W.; Kost, K.; Czyżewski, D.; Rydel, M. Spread Through Air Spaces (STAS) as a Predictive and Prognostic Factor in Patients with Non-Small Cell Lung Cancer—Systematic Review. Cancers 2025, 17, 1696. https://doi.org/10.3390/cancers17101696
Herba M, Boczek S, Smyła-Gruca W, Kost K, Czyżewski D, Rydel M. Spread Through Air Spaces (STAS) as a Predictive and Prognostic Factor in Patients with Non-Small Cell Lung Cancer—Systematic Review. Cancers. 2025; 17(10):1696. https://doi.org/10.3390/cancers17101696
Chicago/Turabian StyleHerba, Mikołaj, Sylwia Boczek, Wiktoria Smyła-Gruca, Katarzyna Kost, Damian Czyżewski, and Mateusz Rydel. 2025. "Spread Through Air Spaces (STAS) as a Predictive and Prognostic Factor in Patients with Non-Small Cell Lung Cancer—Systematic Review" Cancers 17, no. 10: 1696. https://doi.org/10.3390/cancers17101696
APA StyleHerba, M., Boczek, S., Smyła-Gruca, W., Kost, K., Czyżewski, D., & Rydel, M. (2025). Spread Through Air Spaces (STAS) as a Predictive and Prognostic Factor in Patients with Non-Small Cell Lung Cancer—Systematic Review. Cancers, 17(10), 1696. https://doi.org/10.3390/cancers17101696