Re-Operation Rate for Breast Conserving Surgery Using Confocal Histolog Scanner for Intraoperative Margin Assessment—SHIELD Study
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patient Population
2.2. Equipment
2.3. Surgeon Training
2.4. Margin Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Collective
3.2. Intraoperative Assessments
3.3. Re-Operation Rates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.A.; Rubenstein, R.N.; Haglich, K.; Chu, J.J.; Yin, S.; Stern, C.S.; Morrow, M.; Mehrara, B.J.; Gemignani, M.L.; Matros, E. Analysis of a trend reversal in US lumpectomy rates from 2005 through 2017 using 3 nationwide data sets. JAMA Surg. 2022, 157, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Baliski, C.; Hughes, L.; Bakos, B. Lowering Re-excision Rates After Breast Conserving Surgery: Unraveling the Intersection Between Surgeon Case Volumes and Techniques. Ann. Surg. Oncol. 2021, 28, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Wilke, L.G.; Czechura, T.; Wang, C.; Lapin, B.; Liederbach, E.; Winchester, D.P.; Yao, K. Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: A report from the national cancer data base, 2004–2010. JAMA Surg. 2014, 149, 1296–1305. [Google Scholar] [CrossRef]
- MacNeill, F.; Karakatsanis, A. Over surgery in breast cancer. Breast 2017, 31, 284–289. [Google Scholar] [CrossRef]
- Bundred, J.R.; Michael, S.; Stuart, B.; Cutress, R.I.; Beckmann, K.; Holleczek, B.; Dahlstrom, J.E.; Gath, J.; Dodwell, D.; Bundred, N.J. Margin status and survival outcomes after breast cancer conservation surgery: Prospectively registered systematic review and meta-analysis. Br. Med. J. 2022, 378, e070346. [Google Scholar] [CrossRef]
- Moran, M.S.; Schnitt, S.J.; Giuliano, A.E.; Harris, J.R.; Khan, S.A.; Horton, J.; Klimberg, S.; Chavez-MacGregor, M.; Freedman, G.; Houssami, N.; et al. Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. J. Clin. Oncol. 2014, 32, 1507–1515. [Google Scholar] [CrossRef]
- Boughey, J.C.; Hieken, T.J.; Jakub, J.W.; Degnim, A.C.; Grant, C.S.; Farley, D.R.; Thomsen, K.M.; Osborn, J.B.; Keeney, G.L.; Habermann, E.B. Impact of analysis of frozen-section margin on reoperation rates in women undergoing lumpectomy for breast cancer: Evaluation of the National Surgical Quality Improvement Program data. Surgery 2014, 156, 190–197. [Google Scholar] [CrossRef]
- Esbona, K.; Li, Z.; Wilke, L.G. Intraoperative imprint cytology and frozen section pathology for margin assessment in breast conservation surgery: A systematic review. Ann. Surg. Oncol. 2012, 19, 3236–3245. [Google Scholar] [CrossRef]
- Funk, A.; Heil, J.; Harcos, A.; Gomez, C.; Stieber, A.; Junkermann, H.; Hennigs, A.; Rauch, G.; Sinn, H.-P.; Riedel, F.; et al. Efficacy of intraoperative specimen radiography as margin assessment tool in breast conserving surgery. Breast Cancer Res. Treat. 2020, 179, 425–433. [Google Scholar] [CrossRef]
- Olsha, O.; Shemesh, D.; Carmon, M.; Sibirsky, O.; Abu Dalo, R.; Rivkin, L.; Ashkenazi, I. Resection margins in ultrasound-guided breast conserving surgery. Ann. Surg. Oncol. 2011, 18, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Wu, N.; Ding, H.; Ding, Q.; Dai, J.; Ling, L.; Chen, L.; Zha, X.; Liu, X.; Zhou, W.; et al. Intraoperative Ultrasound Guidance Is Associated with Clear Lumpectomy Margins for Breast Cancer: A Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, e74028. [Google Scholar] [CrossRef] [PubMed]
- Pradipta, A.R.; Tanei, T.; Morimoto, K.; Shimazu, K.; Noguchi, S.; Tanaka, K. Emerging Technologies for Real-Time Intraoperative Margin Assessment in Future Breast Conserving Surgery. Adv. Sci. 2020, 7, 1901519. [Google Scholar] [CrossRef] [PubMed]
- Ragazzi, M.; Piana, S.; Longo, C.; Castagnetti, F.; Foroni, M.; Ferrari, G.; Gardini, G.; Pellacani, G. Fluorescence confocal microscopy for pathologists. Mod. Pathol. 2014, 27, 460–471. [Google Scholar] [CrossRef]
- Ragazzi, M.; Longo, C.; Piana, S. Ex Vivo (fluorescence) confocal microscopy in surgical pathology: State of the art. Adv. Anat. Pathol. 2016, 23, 159–169. [Google Scholar] [CrossRef]
- Dobbs, J.L.; Ding, H.; Benveniste, A.P.; Kuerer, H.M.; Krishnamurthy, S.; Yang, W.T.; Richards-Kortum, R.R. Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue. J. Biomed. Opt. 2013, 18, 106016. [Google Scholar] [CrossRef]
- Grizzetti, L.; Kuonen, F. Ex vivo confocal microscopy for surgical margin assessment: A histology-compared study on 109 specimens. Ski. Heal. Dis. 2022, 2, e91. [Google Scholar] [CrossRef]
- Abbaci, M.; Villard, A.; Auperin, A.; Asmandar, S.; Moya-Plana, A.; Casiraghi, O.; Breuskin, I. Ultra-fast confocal fluorescence microscopy for neck lymph node imaging in head and neck cancer. Oral Oncol. 2024, 154, 106862. [Google Scholar] [CrossRef]
- Almeida-Magana, R.; Au, M.; Al-Hammouri, T.; Mathew, M.; Dinneen, K.; Mendes, L.S.T.; Dinneen, E.; Vreuls, W.; Shaw, G.; Freeman, A.; et al. Accuracy of the LaserSAFE technique for detecting positive surgical margins during robot-assisted radical prostatectomy: Blind assessment and inter-rater agreement analysis. Histopathology 2024, 86, 433–440. [Google Scholar] [CrossRef]
- Baas, D.J.; Vreuls, W.; Sedelaar, J.M.; Vrijhof, H.J.; Hoekstra, R.J.; Zomer, S.F.; van Leenders, G.J.; van Basten, J.A.; Somford, D.M. Confocal laser microscopy for assessment of surgical margins during radical prostatectomy. BJU Int. 2023, 132, 40–46. [Google Scholar] [CrossRef]
- Elfgen, C.; Papassotiropoulos, B.; Varga, Z.; Moskovszky, L.; Nap, M.; Güth, U.; Tausch, C. Correction to: Comparative analysis of confocal microscopy on fresh breast core needle biopsies and conventional histology (Diagn Pathol (2019) 14:58. Diagn. Pathol. 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Conversano, A.; Abbaci, M.; van Diest, P.; Roulot, A.; Falco, G.; Ferchiou, M.; Coiro, S.; Richir, M.; Genolet, P.-M.; Clement, C.; et al. Breast carcinoma detection in ex vivo fresh human breast surgical specimens using a fast slide-free confocal microscopy scanner. BJS Open 2023, 7, zrad046. [Google Scholar] [CrossRef] [PubMed]
- Sandor, M.-F.; Schwalbach, B.; Hofmann, V.; Istrate, S.-E.; Schuller, Z.; Ionescu, E.; Heimann, S.; Ragazzi, M.; Lux, M.P. Imaging of lumpectomy surface with large field-of-view confocal laser scanning microscope for intraoperative margin assessment—POLARHIS study. Breast 2022, 66, 118–125. [Google Scholar] [CrossRef]
- Togawa, R.; Hederer, J.; Ragazzi, M.; Bruckner, T.; Fastner, S.; Gomez, C.; Hennigs, A.; Nees, J.; Pfob, A.; Riedel, F.; et al. Imaging of lumpectomy surface with large field-of-view confocal laser scanning microscopy ‘Histolog® scanner’ for breast margin assessment in comparison with conventional specimen radiography. Breast 2023, 68, 194–200. [Google Scholar] [CrossRef]
- Wernly, D.; Beniere, C.; Besse, V.; Seidler, S.; Lachat, R.; Letovanec, I.; Huber, D.; Simonson, C. SENOSI: «Confocal Microscopy: A New and Innovating Way to Detect Positive Margins in Non-Palpable Breast Cancer?». Life 2024, 14, 204. [Google Scholar] [CrossRef]
- Mathieu, M.-C.; Ragazzi, M.; Ferchiou, M.; van Diest, P.J.; Casiraghi, O.; Ben Lakhdar, A.; Labaied, N.; Conversano, A.; Abbaci, M. Breast tissue imaging atlas using ultra-fast confocal microscopy to identify cancer lesions. Virchows Arch. 2025, 486, 299–311. [Google Scholar] [CrossRef]
- Guani, B.; Cattacin, I. Intraoperative Margin Analysis with Confocal Microscopy in Breast Cancer: The Learning Curve for Surgeons. Oral presentation at the Senology-Urology-ENT Transverse Symposium on Real Time Histology in the Operating Room with Confocal Microscopy During the 2024 French Society of Surgical Oncology Congress. Submitted for Peer-Review as “Confocal Microscopy for Intraoperative Margin Assessment of Breast Lumpectomies by Surgeons: Training and Implementation in Our Routine Practice with Two Years Retrospective Analysis”. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5214790 (accessed on 5 May 2025).
- Nguyen, A.H.; Algoe, M.; Nap, M.; van Kemenade, F.J. Selection of FFPE blocks with confocal microscope to reduce routine workload in pathology department. Int. Clin. Img. Med. Rew. 2023, 4, 1150. [Google Scholar] [CrossRef]
- Garganese, G.; Fragomeni, S.M.; Bove, S.; Evangelista, M.T.; Paris, I.; Di Giorgio, D.; Terribile, D.A.; Masetti, R. Current controversies in the treatment of ductal carcinoma in situ of the breast. Transl. Cancer Res. 2018, 7, S307–S318. [Google Scholar] [CrossRef]
- Salvatorelli, L.; Puzzo, L.; Vecchio, G.M.; Caltabiano, R.; Virzì, V.; Magro, G. Ductal carcinoma in situ of the breast: An update with emphasis on radiological and morphological features as predictive prognostic factors. Cancers 2020, 12, 609. [Google Scholar] [CrossRef]
- Lange, M.; Reimer, T.; Hartmann, S.; Glass, A.; Stachs, A. The role of specimen radiography in breast conserving therapy of ductal carcinoma in situ. Breast 2016, 26, 73–79. [Google Scholar] [CrossRef]
Parameter | SHIELD | Control | p-Value |
---|---|---|---|
n Patients | 50 | 40 | - |
Mean Age (SD) | 63.56 (10.32) | 62.60 (9.56) | 0.6517 |
Breast cancer type | 0.9283 | ||
| 32.0% (16/50) | 32.5% (13/40) | |
| 18.0% (9/50) | 15.0% (6/40) | |
| 50.0% (25/50) | 52.5% (21/40) | |
Invasive Subtypes | 0.9545 | ||
| 10.0% (5/50) | 10.0% (4/40) | |
| 72.0% (36/50) | 75.0% (30/40) | |
Palpable Lesions | 50.0% (25/50) | 45.0% (18/40) | 0.6370 |
Size of Palpable Lesions [cm] | 1.81 (0.92) | 1.62 (0.63) | 0.4636 |
Size of Non-Palpable Lesions [cm] | 1.02 (0.60) | 1.10 (0.85) | 0.7138 |
Mean Specimen Sizes (SD) [cm] | |||
| 5.80 (2.83) | 5.97 (1.48) | 0.7201 |
| 4.27 (2.26) | 4.56 (1.36) | 0.4541 |
| 3.67 (3.06) | 3.10 (2.18) | 0.3113 |
Palpation and Visual Inspection | Ultrasound | Radiography | |
---|---|---|---|
SHIELD | 48/50 (96.0%) | 34/50 (68.0%) | 20/50 (40.0%) |
Control | 37/40 (92.5%) | 27/40 (67.5%) | 13/40 (32.5%) |
Mean Time per Patient (SD) | Mean Time per Margin (SD) | |
---|---|---|
Overall | 13 min 50 s (5 min 29 s) | 2 min 57 s (1 min 21 s) |
Image acquisition | 6 min 31 s (1 min 40 s) | 1 min 23 s (0 min 29 s) |
Image analysis | 7 min 19 s (4 min 53 s) | 1 min 34 s (1 min 03 s) |
Parameter | HLS N = 227 | Standard-of-Care Techniques N = 461 |
---|---|---|
Sensitivity | 80.95% (64.16–97.75%) | 19.05% (2.25–35.84%) |
Specificity | 99.51% (98.57–100.0%) | 97.27% (95.75–98.79%) |
Accuracy | 97.80% (95.89–99.71%) | 93.71% (91.49–95.93%) |
PPV | 94.44% (83.86–100.0%) | 25.00% (3.78–46.22%) |
NPV | 98.09% (96.23–99.94%) | 96.18% (94.40–97.96%) |
Cancer Type | Final Assessment | HLS | Standard-of-Care |
DCIS | 11 | 10/11 (90.9%) | 1/11 (9.1%) |
IDC/NST | 8 | 5/8 (62.5%) | 3/8 (37.5%) |
ILC | 2 | 2/2 (100%) | 0/2 (0%) |
TOTAL | 21 | 17/21 (80.9%) | 4/21 (19.0%) |
Re-Operation Rates | |||
---|---|---|---|
SHIELD | Control | p-Values | |
Re-operation Rate (95% CI) | 10.0% (5/50) (3.3–21.81%) | 30.0% (12/40) (16.56–46.53%) | 0.016 |
Cancer type of patients with Re-operations | |||
DCIS | 0.00% (0/50) | 10.0% (4/40) | |
Non-lobular invasive cancer | 0.00% (0/50) | 0.00% (0/40) | |
Non-lobular invasive cancer with DCIS | 10.0% (5/50) | 15.0% (6/40) | |
Lobular invasive cancer | 0.00% (0/50) | 5.0% (2/40) | |
Positive margins in Patients and Re-operations | |||
Patients with positive margins | 12/50 | 13/40 | |
Patients without a Re-operation due to efficient intraoperative assessment | 7/12 | 1/13 | |
| 5/12 | Not Applicable | |
| 0/12 | 1/13 | |
| 2/12 | Not Applicable | |
Patients with Re-operation due to positive margin(s) missed by intraoperative assessments | 4/12 | 12/13 | |
Patients with Re-operation due to insufficient recut(s) accurately triggered using HLS | 1/12 | Not Applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lux, M.P.; Schuller, Z.; Heimann, S.; Reichert, V.M.C.; Kersting, C.; Buerger, H.; Sandor, M.-F. Re-Operation Rate for Breast Conserving Surgery Using Confocal Histolog Scanner for Intraoperative Margin Assessment—SHIELD Study. Cancers 2025, 17, 1640. https://doi.org/10.3390/cancers17101640
Lux MP, Schuller Z, Heimann S, Reichert VMC, Kersting C, Buerger H, Sandor M-F. Re-Operation Rate for Breast Conserving Surgery Using Confocal Histolog Scanner for Intraoperative Margin Assessment—SHIELD Study. Cancers. 2025; 17(10):1640. https://doi.org/10.3390/cancers17101640
Chicago/Turabian StyleLux, Michael P., Zlatna Schuller, Sara Heimann, Verena M. C. Reichert, Christian Kersting, Horst Buerger, and Mariana-Felicia Sandor. 2025. "Re-Operation Rate for Breast Conserving Surgery Using Confocal Histolog Scanner for Intraoperative Margin Assessment—SHIELD Study" Cancers 17, no. 10: 1640. https://doi.org/10.3390/cancers17101640
APA StyleLux, M. P., Schuller, Z., Heimann, S., Reichert, V. M. C., Kersting, C., Buerger, H., & Sandor, M.-F. (2025). Re-Operation Rate for Breast Conserving Surgery Using Confocal Histolog Scanner for Intraoperative Margin Assessment—SHIELD Study. Cancers, 17(10), 1640. https://doi.org/10.3390/cancers17101640