Delay in Cutaneous Squamous Cell Carcinoma Diagnosis Due to Interrupted Services Is Associated with Worse Prognoses and Modified Surgical Approaches
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Data Collection
2.2. Surgical Approach
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puricelli Perin, D.M.; Christensen, T.; Burón, A.; Haas, J.S.; Kamineni, A.; Pashayan, N.; Rabeneck, L.; Smith, R.; Elfström, M.; Broeders, M.J.M.; et al. Interruption of cancer screening services due to COVID-19 pandemic: Lessons from previous disasters. Prev. Med. Rep. 2021, 23, 101399. [Google Scholar] [CrossRef] [PubMed]
- Papautsky, E.L.; Rice, D.R.; Ghoneima, H.; McKowen, A.L.W.; Anderson, N.; Wootton, A.R.; Veldhuis, C. Characterizing Health Care Delays and Interruptions in the United States During the COVID-19 Pandemic: Internet-Based, Cross-sectional Survey Study. J. Med. Internet Res. 2021, 23, e25446. [Google Scholar] [CrossRef]
- Sohrabizadeh, S.; Yousefian, S.; Bahramzadeh, A.; Vaziri, M.H. A systematic review of health sector responses to the coincidence of disasters and COVID-19. BMC Public Health 2021, 21, 709. [Google Scholar] [CrossRef] [PubMed]
- Maringe, C.; Spicer, J.; Morris, M.; Purushotham, A.; Nolte, E.; Sullivan, R.; Rachet, B.; Aggarwal, A. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: A national, population-based, modelling study. Lancet Oncol. 2020, 21, 1023–1034. [Google Scholar] [CrossRef]
- Hamilton, W. Cancer diagnostic delay in the COVID-19 era: What happens next? Lancet Oncol. 2020, 21, 1000–1002. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair Allocation of Scarce Medical Resources in the Time of COVID-19. N. Engl. J. Med. 2020, 382, 2049–2055. [Google Scholar] [CrossRef]
- Gasteiger, L.; Putzer, G.; Hoerner, E.; Joannidis, M.; Mayerhoefer, T.; Hell, T.; Stundner, O.; Martini, J. ASO Author Reflections: What the COVID-19 Pandemic Could Teach-It’s All About Building Healthcare Systems Resilience. Ann. Surg. Oncol. 2023, 30, 7319–7320. [Google Scholar] [CrossRef]
- Wilke, J.; Hollander, K.; Mohr, L.; Edouard, P.; Fossati, C.; González-Gross, M.; Sánchez Ramírez, C.; Laiño, F.; Tan, B.; Pillay, J.D.; et al. Drastic Reductions in Mental Well-Being Observed Globally During the COVID-19 Pandemic: Results From the ASAP Survey. Front. Med. 2021, 8, 578959. [Google Scholar] [CrossRef] [PubMed]
- Stratigos, A.; Garbe, C.; Lebbe, C.; Malvehy, J.; del Marmol, V.; Pehamberger, H.; Peris, K.; Becker, J.C.; Zalaudek, I.; Saiag, P.; et al. Diagnosis and treatment of invasive squamous cell carcinoma of the skin: European consensus-based interdisciplinary guideline. Eur. J. Cancer 2015, 51, 1989–2007. [Google Scholar] [CrossRef] [PubMed]
- AIOM—Associazione Italiana Oncologia Medica. Linee Guida Tumori Cutanei Non Melanoma: Carcinoma Squamocellulare Cu-Taneo. 2021. Available online: https://www.aiom.it/linee-guida-aiom-2021-tumori-cutanei-non-melanoma/ (accessed on 25 January 2023).
- Work Group; Invited Reviewers; Kim, J.Y.S.; Kozlow, J.H.; Mittal, B.; Moyer, J.; Olenecki, T.; Rodgers, P. Guidelines of care for the management of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2018, 78, 560–578. [Google Scholar] [CrossRef] [PubMed]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; Bataille, V.; Bastholt, L.; Dreno, B.; Concetta Fargnoli, M.; Forsea, A.M.; Frenard, C.; et al. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 2. Treatment. Eur. J. Cancer 2020, 128, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Green, A.C.; Olsen, C.M. Cutaneous squamous cell carcinoma: An epidemiological review. Br. J. Dermatol. 2017, 177, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Dreyfuss, I.; Kamath, P.; Frech, F.; Hernandez, L.; Nouri, K. Squamous cell carcinoma: 2021 updated review of treatment. Dermatol. Ther. 2022, 35, e15308. [Google Scholar] [CrossRef] [PubMed]
- Maubec, E. Update of the Management of Cutaneous Squamous-cell Carcinoma. Acta Derm. Venereol. 2020, 100, adv00143. [Google Scholar] [CrossRef] [PubMed]
- Genders, R.E.; Marsidi, N.; Michi, M.; Henny, E.P.; Goeman, J.J.; van Kester, M.S. Incomplete Excision of Cutaneous Squamous Cell Carcinoma, Systematic Review of the Literature. Acta Derm. Venereol. 2020, 100, adv00084. [Google Scholar] [CrossRef]
- Simman, R. Wound closure and the reconstructive ladder in plastic surgery. J. Am. Coll. Certif. Wound Spec. 2009, 1, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Mihalečko, J.; Boháč, M.; Danišovič, Ľ.; Koller, J.; Varga, I.; Kuniaková, M. Acellular Dermal Matrix in Plastic and Reconstructive Surgery. Physiol. Res. 2022, 71 (Suppl. 1), S51–S57. [Google Scholar] [CrossRef] [PubMed]
- NCCN—National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Squamous Cell Skin Cancer. 2023. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1465 (accessed on 25 November 2023).
- Rossi, E.; Trakatelli, M.; Giacomelli, L.; Ferrari, B.; Francomano, M.; Pellacani, G.; Magnoni, C. The COVID-19 outbreak in dermato-logic surgery: Resetting clinical priorities. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e543–e545. [Google Scholar] [CrossRef]
- Molinier, O.; Guguen, C.; Marcq, M.; Chene, A.L.; Masson, P.; Bigot, F.; Denis, F.; Empereur, F.; Saulnier, P.; Urban, T. A Comparative Multicenter Cohort Study Evaluating the Long-Term Influence of the Strict Lockdown during the First COVID-19 Wave on Lung Cancer Patients (ARTEMISIA Trial). Cancers 2023, 15, 5729. [Google Scholar] [CrossRef] [PubMed]
- Calapkulu, M.; Sencar, M.E.; Ozturk Unsal, I.; Sakiz, D.; Tekinyildiz, M.; Ozbek, M.; Cakal, E. The effect of COVID-19 pandemic restrictions on the management of differentiated thyroid cancer in Turkey: A single tertiary centre experience. Eur. Arch. Otorhinolaryngol. 2024. Epub ahead of print. [Google Scholar] [CrossRef]
- Maul, L.V.; Jamiolkowski, D.; Lapides, R.A.; Mueller, A.M.; Hauschild, A.; Garbe, C.; Lorigan, P.; Gershenwald, J.E.; Ascierto, P.A.; Long, G.V.; et al. Health Economic Consequences Associated With COVID-19-Related Delay in Melanoma Diagnosis in Europe. JAMA Netw. Open 2024, 7, e2356479. [Google Scholar] [CrossRef]
- Ng, J.N.; Cembrano, K.A.G.; Wanitphakdeedecha, R.; Manuskiatti, W. The aftermath of COVID-19 in dermatology practice: What’s next? J. Cosmet. Dermatol. 2020, 19, 1826–1827. [Google Scholar] [CrossRef]
- McClean, A.; Matteucci, P.; Totty, J. The impact of COVID19 on the presentation, diagnosis and management of cutaneous melanoma and squamous cell carcinoma in a single tertiary referral centre. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 2831–2870. [Google Scholar] [CrossRef]
- COVIDSurg Collaborative. Elective surgery cancellations due to the COVID-19 pandemic: Global predictive modelling to in-form surgical recovery plans. Br. J. Surg. 2020, 107, 1440–1449. [Google Scholar] [CrossRef]
- Díaz-Calvillo, P.; Sánchez-Díaz, M.; Rodríguez-Pozo, J.Á.; Martínez-Ruiz, V.; Martínez-López, A.; Arias-Santiago, S. Impact of COVID-19 pandemic on cutaneous squamous cell carcinoma: A single-centre study of epidemiologic, clinic and histopatho-logical factors. Actas Dermosifiliogr. 2024, 115, 224–230. [Google Scholar] [CrossRef]
- Eigentler, T.K.; Leiter, U.; Hafner, H.M.; Garbe, C.; Rocken, M.; Breuninger, H. Survival of pa-tients with cutaneous squamous cell carcinoma: Results of a prospective cohort study. J. Investig. Dermatol. 2017, 137, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, E.S.; Karia, P.S.; Besaw, R.; Schmults, C.D. Performance of the American Joint Commit-tee on Cancer Staging Manual, 8th Edition vs. the Brigham and Women’s Hospital Tu-mor Classification System for cutaneous squamous cell carcinoma. JAMA Dermatol. 2019, 155, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Goldberg, L.H.; Silapunt, S.; Gardner, E.S.; Strom, S.S.; Rademaker, A.W.; Margolis, D.J. Delayed treatment and continued growth of nonmelanoma skin cancer. J. Am. Acad. Dermatol. 2011, 64, 839–848. [Google Scholar] [CrossRef]
- Baumann, B.C.; MacArthur, K.M.; Brewer, J.D.; Mendenhall, W.M.; Barker, C.A.; Etzkorn, J.R.; Jellinek, N.J.; Scott, J.F.; Gay, H.A.; Baumann, J.C.; et al. Management of primary skin cancer during a pandemic: Multidisciplinary recommendations. Cancer 2020, 126, 3900–3906. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.J.; Saunders, A. Risk factors for positive margins after wide local excision of cutaneous squamous cell carcinoma. J. Dermatolog. Treat. 2018, 29, 706–708. [Google Scholar] [CrossRef]
- Thompson, A.K.; Kelley, B.F.; Prokop, L.J.; Murad, M.H.; Baum, C.L. Risk Factors for Cutaneous Squamous Cell Carcinoma Recurrence, Metastasis, and Disease-Specific Death: A Systematic Review and Meta-analysis. JAMA Dermatol. 2016, 152, 419–428. [Google Scholar] [CrossRef] [PubMed]
- De Jong, E.; Lammerts, M.U.P.A.; Genders, R.E.; Bouwes Bavinck, J.N. Update of advanced cutaneous squamous cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2022, 36 (Suppl. S1), 6–10. [Google Scholar] [CrossRef] [PubMed]
- Burton, K.A.; Ashack, K.A.; Khachemoune, A. Cutaneous Squamous Cell Carci-noma: A Review of High-Risk and Metastatic Disease. Am. J. Clin. Dermatol. 2016, 17, 491–508. [Google Scholar] [CrossRef] [PubMed]
- McConnell, P.; Einav, S. Resource allocation. Curr. Opin. Anaesthesiol. 2023, 36, 246–251. [Google Scholar] [CrossRef]
Patient Characteristics | Total (n = 416) | 2019–2020 (n = 260, 62.5%) | 2021–2022 (n = 156, 37.5%) | |
---|---|---|---|---|
Female | 96 (23.1) | 55 (21.1) | 41 (26.3) | 0.229 |
Age, mean yrs ± SD (range) | 81.3 ± 10.2 (33–101) | 80.7 ± 10.0 (40–101) | 82.3 ± 10.5 (33–101) | 0.126 |
Number of lesion(s)/patient, n (%) | ||||
1 | 357 (85.8) | 221 (85.0) | 136 (87.2) | 0.537 |
≥2 | 59 (14.2) | 32 (12.3) | 17 (10.9) | |
LESION CHARACTERISTICS | Total (n = 498) | 2019–2020 (n = 312, 62.7%) | 2021–2022 (n = 186, 37.3%) | |
Lesion diameter n, mean ± SD (range) | 483, 1.8 ± 1.4 (0.1–12) | 308, 1.7 ± 1.2 (0.1–9.5) | 175, 2.1 ± 1.5 (0.5–12) | 0.006 |
Degree of differentiation | ||||
Well/moderately differentiated | 404 (81.1) | 264 (84.6) | 140 (75.3) | 0.007 |
Poorly differentiated/undifferentiated | 81 (16.3) | 40 (12.8) | 41 (22.0) | |
Missing | 13 (2.6) | 8 (2.6) | 5 (2.7) | |
Tumor invasion | ||||
In situ | 166 (33.3) | 146 (46.8) | 18 (9.7) | <0.001 |
Invasive | 320 (64.3) | 163 (52.2) | 165 (88.7) | |
Microinvasive | 41 (12.8) | 33 (20.2) | 8 (4.8) | 0.010 |
Missing | 12 (2.4) | 3 (1) | 3 (1.6) | |
Depth of invasion | ||||
Papillary dermis | 47 (9.4) | 25 (8.0) | 22 (11.8) | <0.001 |
Reticular dermis | 123 (24.7) | 50 (16.0) | 73 (39.2) | |
Dermis (unspecified) | 81 (16.3) | 37 (11.8) | 44 (23.7) | |
Hypodermis | 27 (5.4) | 21 (6.7) | 6 (3.2) | |
Muscle tissue | 13 (2.6) | 13 (4.2) | 0 (0.0) | |
Missing | 76 (15.3) | 51 (16.3) | 25 (13.4) | |
LVI and PNI | ||||
LVI | 2 (0.4) | 2 (0.6) | 0 (0.0) | 0.162 |
PNI | 34 (6.8) | 17 (5.4) | 17 (9.1) | |
Nodal metastases | 3 (0.6) | 1 (0.3) | 2 (1.1) | 0.292 |
SURGICAL DATA | ||||
Time to surgery, n, mean months ± SD (range) | 496, 1.8 ± 1.8 (0.3–15.6) | 311, 1.9 ± 1.9 (0.5–15.6) | 185, 1.6 ± 1.7 (0.3–15.0) | 0.152 |
Surgical technique | ||||
Direct closure | 243 (48.8) | 166 (53.2) | 767 (41.4) | 0.001 |
Dermo-epidermal graft | 101 (20.3) | 46 (14.7) | 55 (29.6) | |
Dermal matrix | 63 (12.6) | 38 (12.2) | 25 (13.4) | |
Flap | 91 (18.3) | 62 (19.9) | 29 (15.6) | |
Hospitalization | ||||
Day surgery | 276 (66.3) | 169 (65.0) | 107 (68.6) | 0.453 |
Hospitalized | 140 (33.6) | 91 (35.0) | 49 (31.4) | |
Surgical margins | ||||
Positive | 63 (12.7) | 31 (9.9) | 32 (17.2) | 0.019 |
Missing | 1 (0.2) | 1 (0.3) | 0 (0.0) |
Study Variables | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95%CI) | p-Value | OR (95%CI) | p-Value | |
Female | 1.32 (0.83–2.11) | 0.230 | ||
Age, mean yrs ± SD (range) | 1.01 (0.99–1.03) | 0.128 | ||
Number of lesion(s)/patient, n (%) | ||||
1 | ref. | |||
≥2 | 0.93 (0.52–1.63) | 0.802 | ||
Lesion diameter n, mean ± SD (range) | 1.19 (1.05–1.36) | 0.008 | ||
Degree of differentiation | ||||
Well/moderately differentiated | ref. | |||
Poorly differentiated/undifferentiated | 1.93 (1.19–3.12) | 0.007 | ||
Tumor invasion | ||||
In situ | ref. | ref. | ||
Invasive | 7.03 (4.19–111.78) | <0.001 | 4.69 (2.55–8.16) | <0.001 |
Microinvasive | 0.37 (0.17–0.84) | 0.017 | 0.06 (0.01–0.29) | 0.001 |
Depth of invasion | ||||
Papillary dermis | ref. | ref. | ||
Reticular dermis | 6.32 (2.91–13.73) | <0.001 | 9.27 (3.72–23.10) | <0.001 |
Dermis (unspecified) | 10.49 (5.56–19.79) | <0.001 | 7.71 (3.87–15.32) | <0.001 |
Hypodermis | 8.54 (4.32–16.89) | <0.001 | 7.27 (3.41–15.46) | <0.001 |
Muscle tissue | 2.05 (0.72–5.85) | 0.178 | 1.39 (0.42–4.56) | 0.581 |
LVI and PNI | ||||
LVI | - | - | ||
PNI | 1.73 (0.86–3.48) | 0.123 | ||
Time to surgery, n, mean months ± SD (range) | 0.92 (0.83–1.03) | 0.158 | ||
Surgical technique | ||||
Direct closure | ref. | ref. | ||
Dermo-epidermal graft | 2.57 (1.60–4.14) | <0.001 | 2.06 (1.09–3.88) | 0.025 |
Dermal matrix | 1.41 (0.80–2.51) | 0.232 | 0.90 (0.40–2.00) | 0.802 |
Flap | 1.00 (0.60–1.69) | 0.975 | 0.86 (0.44–1.71) | 0.668 |
Hospitalization | ||||
Day surgery | ref. | |||
Hospitalized | 0.99 (0.66–1.47) | 0.970 | ||
Surgical margins | ||||
Positive | 1.87 (1.10–3.19) | 0.020 | 3.21 (1.44–7.17) | 0.004 |
Nodal metastases | 3.38 (0.30–37.53) | 0.321 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taccioli, F.; Blessent, C.G.F.; Paganelli, A.; Fagioli, F.; Chester, J.M.; Kaleci, S.; Costantini, M.; Ferrari, B.; Fiorentini, C.; De Santis, G.; et al. Delay in Cutaneous Squamous Cell Carcinoma Diagnosis Due to Interrupted Services Is Associated with Worse Prognoses and Modified Surgical Approaches. Cancers 2024, 16, 1469. https://doi.org/10.3390/cancers16081469
Taccioli F, Blessent CGF, Paganelli A, Fagioli F, Chester JM, Kaleci S, Costantini M, Ferrari B, Fiorentini C, De Santis G, et al. Delay in Cutaneous Squamous Cell Carcinoma Diagnosis Due to Interrupted Services Is Associated with Worse Prognoses and Modified Surgical Approaches. Cancers. 2024; 16(8):1469. https://doi.org/10.3390/cancers16081469
Chicago/Turabian StyleTaccioli, Filippo, Claudio Gio Francesco Blessent, Alessia Paganelli, Francesca Fagioli, Johanna Mary Chester, Shaniko Kaleci, Matteo Costantini, Barbara Ferrari, Chiara Fiorentini, Giorgio De Santis, and et al. 2024. "Delay in Cutaneous Squamous Cell Carcinoma Diagnosis Due to Interrupted Services Is Associated with Worse Prognoses and Modified Surgical Approaches" Cancers 16, no. 8: 1469. https://doi.org/10.3390/cancers16081469
APA StyleTaccioli, F., Blessent, C. G. F., Paganelli, A., Fagioli, F., Chester, J. M., Kaleci, S., Costantini, M., Ferrari, B., Fiorentini, C., De Santis, G., & Magnoni, C. (2024). Delay in Cutaneous Squamous Cell Carcinoma Diagnosis Due to Interrupted Services Is Associated with Worse Prognoses and Modified Surgical Approaches. Cancers, 16(8), 1469. https://doi.org/10.3390/cancers16081469