Investigating the Use of a Liquid Immunogenic Fiducial Eluter Biomaterial in Cervical Cancer Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of LIFE Biomaterial
2.2. TC1 Cell Culture Preparation and Tumor Growth in Mice
2.3. Imaging and Efficacy Study
2.4. Pharmacodynamics of LIFE Biomaterial in Healthy Mice
3. Results
3.1. Potential of LIFE Biomaterial for Image-Guided Radiotherapy
3.2. Efficacy of the LIFE Biomaterial in Cervical Cancer
3.3. Pharmacodynamics of LIFE Biomaterial in Healthy Female Mice
3.3.1. Hepatic Function
3.3.2. Renal Function
3.3.3. Cell Blood Count Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Vu, M.; Yu, J.; Awolude, O.A.; Chuang, L. Cervical Cancer Worldwide. Curr. Probl. Cancer 2018, 42, 457–465. [Google Scholar] [CrossRef]
- Luckett, R.; Feldman, S. Impact of 2-, 4- and 9-Valent HPV Vaccines on Morbidity and Mortality from Cervical Cancer. Hum. Vaccin. Immunother. 2016, 12, 1332–1342. [Google Scholar] [CrossRef]
- Choi, S.; Ismail, A.; Pappas-Gogos, G.; Boussios, S. HPV and Cervical Cancer: A Review of Epidemiology and Screening Uptake in the UK. Pathogens 2023, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Aarnio, R.; Östensson, E.; Olovsson, M.; Gustavsson, I.; Gyllensten, U. Cost-Effectiveness Analysis of Repeated Self-Sampling for HPV Testing in Primary Cervical Screening: A Randomized Study. BMC Cancer 2020, 20, 645. [Google Scholar] [CrossRef] [PubMed]
- Shojaeizadeh, D.; Hashemi, S.Z.; Moeini, B.; Poorolajal, J. The Effect of Educational Program on Increasing Cervical Cancer Screening Behavior among Women in Hamadan, Iran: Applying Health Belief Model. J. Res. Health Sci. 2011, 11, 20–25. [Google Scholar]
- Srinath, A.; van Merode, F.; Rao, S.V.; Pavlova, M. Barriers to Cervical Cancer and Breast Cancer Screening Uptake in Low- and Middle-Income Countries: A Systematic Review. Health Policy Plan. 2023, 38, 509–527. [Google Scholar] [CrossRef]
- Akinlotan, M.; Bolin, J.N.; Helduser, J.; Ojinnaka, C.; Lichorad, A.; McClellan, D. Cervical Cancer Screening Barriers and Risk Factor Knowledge Among Uninsured Women. J. Community Health 2017, 42, 770–778. [Google Scholar] [CrossRef]
- Al-amro, S.Q.; Gharaibeh, M.K.; Oweis, A.I. Factors Associated with Cervical Cancer Screening Uptake: Implications for the Health of Women in Jordan. Infect. Dis. Obstet. Gynecol. 2020, 2020, 9690473. [Google Scholar] [CrossRef] [PubMed]
- Fusegi, A.; Kanao, H.; Tsumura, S.; Murakami, A.; Abe, A.; Aoki, Y.; Nomura, H. Minimally Invasive Radical Hysterectomy and the Importance of Avoiding Cancer Cell Spillage for Early-Stage Cervical Cancer: A Narrative Review. J. Gynecol. Oncol. 2023, 34, e5. [Google Scholar] [CrossRef]
- Marth, C.; Landoni, F.; Mahner, S.; McCormack, M.; Gonzalez-Martin, A.; Colombo, N. Cervical Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv72–iv83. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Herzog, T.J.; Shaw, R.E.; Burke, W.M.; Deutsch, I.; Wright, J.D. Primary Therapy for Early-Stage Cervical Cancer: Radical Hysterectomy vs Radiation. Am. J. Obstet. Gynecol. 2009, 201, e1–e485. [Google Scholar] [CrossRef] [PubMed]
- Sagae, S.; Toita, T.; Matsuura, M.; Saito, M.; Matsuda, T.; Sato, N.; Shimizu, A.; Endo, T.; Fujii, M.; Gaffney, D.K.; et al. Improvement in Radiation Techniques for Locally Advanced Cervical Cancer during the Last Two Decades. Int. J. Gynecol. Cancer 2023, 33, 1295–1303. [Google Scholar] [CrossRef]
- Pötter, R.; Georg, P.; Dimopoulos, J.C.A.; Grimm, M.; Berger, D.; Nesvacil, N.; Georg, D.; Schmid, M.P.; Reinthaller, A.; Sturdza, A.; et al. Clinical Outcome of Protocol Based Image (MRI) Guided Adaptive Brachytherapy Combined with 3D Conformal Radiotherapy with or without Chemotherapy in Patients with Locally Advanced Cervical Cancer. Radiother. Oncol. 2011, 100, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Mileshkin, L.R.; Moore, K.N.; Barnes, E.H.; Gebski, V.; Narayan, K.; King, M.T.; Bradshaw, N.; Lee, Y.C.; Diamante, K.; Fyles, A.W.; et al. Adjuvant Chemotherapy Following Chemoradiotherapy as Primary Treatment for Locally Advanced Cervical Cancer versus Chemoradiotherapy Alone (OUTBACK): An International, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2023, 24, 468–482. [Google Scholar] [CrossRef]
- Vittrup, A.S.; Kirchheiner, K.; Pötter, R.; Fokdal, L.U.; Jensen, N.B.K.; Spampinato, S.; Haie-Meder, C.; Schmid, M.P.; Sturdza, A.E.; Mahantshetty, U.; et al. Overall Severe Morbidity After Chemo-Radiation Therapy and Magnetic Resonance Imaging-Guided Adaptive Brachytherapy in Locally Advanced Cervical Cancer: Results From the EMBRACE-I Study. Int. J. Radiat. Oncol. 2023, 116, 807–824. [Google Scholar] [CrossRef]
- Chargari, C.; Peignaux, K.; Escande, A.; Renard, S.; Lafond, C.; Petit, A.; Lam Cham Kee, D.; Durdux, C.; Haie-Méder, C. Radiotherapy of Cervical Cancer. Cancer/Radiothérapie 2022, 26, 298–308. [Google Scholar] [CrossRef]
- Peng, Y.; Yan, H.; Mei, W.; Zhang, P.; Zeng, C. Combining Radiotherapy with Immunotherapy in Cervical Cancer: Where Do We Stand and Where Are We Going? Curr. Treat. Options Oncol. 2023, 24, 1378–1391. [Google Scholar] [CrossRef]
- Vora, C.; Gupta, S. Targeted Therapy in Cervical Cancer. ESMO Open 2018, 3, e000462. [Google Scholar] [CrossRef] [PubMed]
- Crafton, S.M.; Salani, R. Beyond Chemotherapy: An Overview and Review of Targeted Therapy in Cervical Cancer. Clin. Ther. 2016, 38, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Menderes, G.; Black, J.; Schwab, C.L.; Santin, A.D. Immunotherapy and Targeted Therapy for Cervical Cancer: An Update. Expert Rev. Anticancer Ther. 2016, 16, 83–98. [Google Scholar] [CrossRef]
- Doghish, A.S.; Ali, M.A.; Elyan, S.S.; Elrebehy, M.A.; Mohamed, H.H.; Mansour, R.M.; Elgohary, A.; Ghanem, A.; Faraag, A.H.I.; Abdelmaksoud, N.M.; et al. MiRNAs Role in Cervical Cancer Pathogenesis and Targeted Therapy: Signaling Pathways Interplay. Pathol. Res. Pract. 2023, 244, 154386. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Cui, H.; Qin, S.; Yu, S. Manipulating TGF-β Signaling to Optimize Immunotherapy for Cervical Cancer. Biomed. Pharmacother. 2023, 166, 115355. [Google Scholar] [CrossRef] [PubMed]
- Grau, J.-F.; Farinas-Madrid, L.; Garcia-Duran, C.; Garcia-Illescas, D.; Oaknin, A. Advances in Immunotherapy in Cervical Cancer. Int. J. Gynecol. Cancer 2023, 33, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Gottschlich, A.; Payne, B.A.; Trawin, J.; Albert, A.; Jeronimo, J.; Mitchell-Foster, S.; Mithani, N.; Namugosa, R.; Naguti, P.; Orem, J.; et al. Experiences with Thermal Ablation for Cervical Precancer Treatment after Self-collection HPV-based Screening in the ASPIRE Mayuge Randomized Trial. Int. J. Cancer 2023, 152, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, K.; Yu, Z.; Zhang, B.; Chen, C.; Lin, L.; Li, Z.; Li, Z.; Zheng, Y.; Yu, Z. Targeting Self-Enhanced ROS-Responsive Artesunatum Prodrug Nanoassembly Potentiates Gemcitabine Activity by down-Regulating CDA Expression in Cervical Cancer. Chin. Chem. Lett. 2023, 34, 108184. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J.; Jiang, P.; Wang, X.; Zhang, L.; Zhang, Y. Clinical Research of the Value of High-Risk CTV Setting on Intensity-Modulated Radiotherapy for Stage IIB-IVA Cervical Cancer. BMC Cancer 2023, 23, 481. [Google Scholar] [CrossRef] [PubMed]
- Babakanrad, E.; Mohammadian, T.; Esmaeili, D.; Behzadi, P. Cervical Cancer: A Review of Epidemiology, Treatments and Anticancer Drugs. Curr. Cancer Ther. Rev. 2023, 19, 198–212. [Google Scholar] [CrossRef]
- Moreau, M.; Yasmin-Karim, S.; Kunjachan, S.; Sinha, N.; Gremse, F.; Kumar, R.; Chow, K.F.; Ngwa, W. Priming the Abscopal Effect Using Multifunctional Smart Radiotherapy Biomaterials Loaded with Immunoadjuvants. Front. Oncol. 2018, 8, 56. [Google Scholar] [CrossRef]
- Wood, J.; Yasmin-Karim, S.; Mueller, R.; Viswanathan, A.N.; Ngwa, W. Single Radiotherapy Fraction with Local Anti-CD40 Therapy Generates Effective Abscopal Responses in Mouse Models of Cervical Cancer. Cancers 2020, 12, 1026. [Google Scholar] [CrossRef]
- Bishnoi, A.; Chanda, S.; Bonde, G.V.; Tiwari, R.K. Advanced Drug Delivery System for Treating Inflammation. In Recent Developments in Anti-Inflammatory Therapy; Elsevier: Amsterdam, The Netherlands, 2023; pp. 155–161. [Google Scholar]
- Charman, W.N.; Chan, H.-K.; Finnin, B.C.; Charman, S.A. Drug Delivery: A Key Factor in Realising the Full Therapeutic Potential of Drugs. Drug Dev. Res. 1999, 46, 316–327. [Google Scholar] [CrossRef]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-Related Inflammation and Treatment Effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef] [PubMed]
- Ogino, I.; Kitagawa, M.; Watanabe, S.; Yoshida, H.; Hata, M. Calcium Phosphate Cement Paste Injection as a Fiducial Marker of Cervical Cancer. In Vivo 2018, 32, 1609–1615. [Google Scholar] [CrossRef]
- Sadraeian, M.; Khoshnood Mansoorkhani, M.J.; Mohkam, M.; Rasoul-Amini, S.; Hesaraki, M.; Ghasemi, Y. Prevention and Inhibition of TC-1 Cell Growth in Tumor Bearing Mice by HPV16 E7 Protein in Fusion with Shiga Toxin B-Subunit from Shigella Dysenteriae. Cell J. 2013, 15, 176–181. [Google Scholar]
- Yasmin-Karim, S.; Bruck, P.T.; Moreau, M.; Kunjachan, S.; Chen, G.Z.; Kumar, R.; Grabow, S.; Dougan, S.K.; Ngwa, W. Radiation and Local Anti-CD40 Generate an Effective in Situ Vaccine in Preclinical Models of Pancreatic Cancer. Front. Immunol. 2018, 9, 2030. [Google Scholar] [CrossRef] [PubMed]
- Lanzavecchia, A. Licence to Kill. Nature 1998, 393, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Ziebold, J.L.; Hixon, J.; Boyd, A.; Murphy, W.J. Differential Effects of CD40 Stimulation on Normal and Neoplastic Cell Growth. Arch. Immunol. Ther. Exp. 2000, 48, 225–233. [Google Scholar]
- Costello, R.T.; Gastaut, J.-A.; Olive, D. What Is the Real Role of CD40 in Cancer Immunotherapy? Immunol. Today 1999, 20, 488–493. [Google Scholar] [CrossRef]
- Wu, R.C.; Luke, J.J. Uncovering the Potential of CD40 Agonism to Enhance Immune Checkpoint Blockade. Clin. Cancer Res. 2024, 30, 9–11. [Google Scholar] [CrossRef]
- Sarode, A.Y.; Jha, M.K.; Zutshi, S.; Ghosh, S.K.; Mahor, H.; Sarma, U.; Saha, B. Residue-Specific Message Encoding in CD40-Ligand. iScience 2020, 23, 101441. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S.; Gurjar, D.; Saha, B.; Bodhale, N. Decoding the Contextual Duality of CD40 Functions. Hum. Immunol. 2023, 84, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Yasmin-Karim, S.; Ziberi, B.; Wirtz, J.; Bih, N.; Moreau, M.; Guthier, R.; Ainsworth, V.; Hesser, J.; Makrigiorgos, G.M.; Chuong, M.D.; et al. Boosting the Abscopal Effect Using Immunogenic Biomaterials With Varying Radiation Therapy Field Sizes. Int. J. Radiat. Oncol. 2022, 112, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Moreau, M.; Acter, S.; Ngema, L.M.; Bih, N.; Sy, G.; Keno, L.S.; Chow, K.F.; Sajo, E.; Nebangwa, O.; Walker, J.; et al. Pre-Clinical Investigations of the Pharmacodynamics of Immunogenic Smart Radiotherapy Biomaterials (ISRB). Pharmaceutics 2023, 15, 2778. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreau, M.; Keno, L.S.; China, D.; Mao, S.; Acter, S.; Sy, G.; Hooshangnejad, H.; Chow, K.F.; Sajo, E.; Walker, J.; et al. Investigating the Use of a Liquid Immunogenic Fiducial Eluter Biomaterial in Cervical Cancer Treatment. Cancers 2024, 16, 1212. https://doi.org/10.3390/cancers16061212
Moreau M, Keno LS, China D, Mao S, Acter S, Sy G, Hooshangnejad H, Chow KF, Sajo E, Walker J, et al. Investigating the Use of a Liquid Immunogenic Fiducial Eluter Biomaterial in Cervical Cancer Treatment. Cancers. 2024; 16(6):1212. https://doi.org/10.3390/cancers16061212
Chicago/Turabian StyleMoreau, Michele, Lensa S. Keno, Debarghya China, Serena Mao, Shahinur Acter, Gnagna Sy, Hamed Hooshangnejad, Kwok Fan Chow, Erno Sajo, Jacques Walker, and et al. 2024. "Investigating the Use of a Liquid Immunogenic Fiducial Eluter Biomaterial in Cervical Cancer Treatment" Cancers 16, no. 6: 1212. https://doi.org/10.3390/cancers16061212
APA StyleMoreau, M., Keno, L. S., China, D., Mao, S., Acter, S., Sy, G., Hooshangnejad, H., Chow, K. F., Sajo, E., Walker, J., Oh, P., Broyles, E., Ding, K., Viswanathan, A., & Ngwa, W. (2024). Investigating the Use of a Liquid Immunogenic Fiducial Eluter Biomaterial in Cervical Cancer Treatment. Cancers, 16(6), 1212. https://doi.org/10.3390/cancers16061212