Comprehensive 3DCRT Hypofractionated Radiotherapy Schedule for Localized Prostate Adenocarcinoma in the Era of IMRT: Dosimetric and Endoscopic Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials & Methods
2.1. Study Design and Motivation
2.2. Patients
2.3. Radiotherapy
2.4. Toxicity and Follow-Up
2.5. Endpoints
2.6. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Toxicity
3.2.1. Acute Toxicity
3.2.2. Late Toxicity
3.3. Dosimetric Analysis
3.4. Dosimetry and Rectoscopy
3.5. Biochemical Recurrence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, S.C.; Hoffman, K.; Loblaw, D.A.; Buyyounouski, M.K.; Patton, C.; Barocas, D.; Bentzen, S.; Chang, M.; Efstathiou, J.; Greany, P.; et al. Hypofractionated Radiation Therapy for Local-ized Prostate Cancer: An ASTRO, ASCO, and AUA Evidence-Based Guideline. J. Clin. Oncol. 2018, 36, JCO1801097. [Google Scholar] [CrossRef]
- Yeoh, E.E.; Fraser, R.J.; E McGowan, R.; Botten, R.J.; Di Matteo, A.C.; E Roos, D.; Penniment, M.G.; Borg, M.F. Evidence for efficacy without increased toxicity of hypofractionated radiotherapy for prostate carcinoma: Early results of a Phase III randomized trial. Endocrine 2003, 55, 943–955. [Google Scholar] [CrossRef]
- Lukka, H.; Hayter, C.; Julian, J.A.; Warde, P.; Morris, W.J.; Gospodarowicz, M.; Levine, M.; Sathya, J.; Choo, R.; Prichard, H.; et al. Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J. Clin. Oncol. 2005, 23, 6132–6138. [Google Scholar] [CrossRef]
- Shaikh, T.; Li, T.; Handorf, E.A.; Johnson, M.E.; Wang, L.S.; Hallman, M.A.; Greenberg, R.E.; Price, R.A.; Uzzo, R.G.; Ma, C.; et al. Long-Term Patient-Reported Outcomes From a Phase 3 Randomized Prospective Trial of Conventional Versus Hypofractionated Radiation Therapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.E.; Voong, K.R.; Levy, L.B.; Allen, P.K.; Choi, S.; Schlembach, P.J.; Lee, A.K.; McGuire, S.E.; Nguyen, Q.; Pugh, T.J.; et al. Randomized Trial of Hypofractionated, Dose-Escalated, Intensity-Modulated Radiation Therapy (IMRT) Versus Conventionally Fractionated IMRT for Localized Prostate Cancer. J. Clin. Oncol. 2018, 36, 2943–2949. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, G.; Saracino, B.; Arcangeli, S.; Gomellini, S.; Petrongari, M.G.; Sanguineti, G.; Strigari, L. Moderate Hypofractionation in High-Risk, Organ-Confined Prostate Cancer: Final Results of a Phase III Randomized Trial. J. Clin. Oncol. 2017, 35, 1891–1897. [Google Scholar] [CrossRef]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. CHHiP Investigators Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- de Vries, K.C.; Wortel, R.C.; Oomen-de Hoop, E.; Heemsbergen, W.D.; Pos, F.J.; Incrocci, L. Hyprofractionated Versus Convention-ally Fractionated Radiation Therapy for Patients with Intermediate- or High-Risk, Localized, Prostate Cancer: 7-Year Outcomes From the Randomized, Multicenter, Open-Label, Phase 3 HYPRO Trial. Int. J. Radiat. Oncolo-GyBiol. Phys. 2020, 106, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.R.; Dignam, J.J.; Amin, M.B.; Bruner, D.W.; Low, D.; Swanson, G.P.; Shah, A.B.; D’Souza, D.P.; Michalski, J.M.; Dayes, I.S.; et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients with Low-Risk Prostate Cancer. J. Clin. Oncol. 2016, 34, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Catton, C.N.; Lukka, H.; Gu, C.-S.; Martin, J.M.; Supiot, S.; Chung, P.W.M.; Bauman, G.S.; Bahary, J.-P.; Ahmed, S.; Cheung, P.; et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J. Clin. Oncol. 2017, 35, 1884–1890. [Google Scholar] [CrossRef] [PubMed]
- Miralbell, R.; Roberts, S.A.; Zubizarreta, E.; Hendry, J.H. Dose-fractionation sensitivity of prostate cancer deduced from radio-therapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9–2.2) Gy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e17–e24. [Google Scholar] [CrossRef] [PubMed]
- Marzi, S.; Saracino, B.; Petrongari, M.G.; Arcangeli, S.; Gomellini, S.; Arcangeli, G.; Benassi, M.; Landoni, V. Modeling of α/β for late rectal toxicity from a randomized phase II study: Conventional versus hypofractionated scheme for localized prostate cancer. J. Exp. Clin. Cancer Res. 2009, 28, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; Martinez, A.A.; Edmundson, G.K.; Mitchell, C.; Thames, H.D.; Armour, E.P. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 6–13. [Google Scholar] [CrossRef]
- Olsson, C.E.; Jackson, A.; Deasy, J.O.; Thor, M. A Systematic Post-QUANTEC Review of Tolerance Doses for Late Toxicity After Pros-tate Cancer Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1514–1532. [Google Scholar] [CrossRef]
- Hoffman, K.E.; Voong, K.R.; Pugh, T.J.; Skinner, H.; Levy, L.B.; Takiar, V.; Choi, S.; Du, W.; Frank, S.J.; Johnson, J.; et al. Risk of Late Toxicity in Men Receiving Dose-Escalated Hypofrac-tionated Intensity Modulated Prostate Radiation Therapy: Results From a Randomized Trial. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 1074–1084. [Google Scholar] [CrossRef]
- Sanguineti, G.; Faiella, A.; Farneti, A.; D’Urso, P.; Fuga, V.; Olivieri, M.; Giannarelli, D.; Marzi, S.; Iaccarino, G.; Landoni, V.; et al. Refinement & validation of rectal wall dose volume objectives for prostate hypofrac-tionation in 20 fractions. Clin. Transl. Radiat. Oncol. 2020, 21, 91–97. [Google Scholar] [PubMed]
- Kupelian, P.A.; Reddy, C.A.; Carlson, T.P.; Willoughby, T.R. Dose/volume relationship of late rectal bleeding after external beam radiotherapy for localized prostate cancer: Absolute or relative rectal volume? Cancer J. 2002, 8, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, T.; Muramatsu, H.; Takahashi, M.; Saito, J.-I.; Kitamoto, Y.; Harashima, K.; Miyazawa, Y.; Yamada, M.; Ito, K.; Kurokawa, K.; et al. Rectal bleeding after hypofractionated radiotherapy for prostate cancer: Correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Faria, S.; Joshua, B.; Patrocinio, H.; Pra, A.D.; Cury, F.; Velly, A.; Souhami, L. Searching for optimal dose–volume constraints to reduce rectal toxicity after hypofractionated radiotherapy for prostate cancer. Clin. Oncol. 2010, 22, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Vesprini, D.; Sia, M.; Lockwood, G.; Moseley, D.; Rosewall, T.; Bayley, A.; Bristow, R.; Chung, P.; Ménard, C.; Milosevic, M.; et al. Role of principal component analysis in predicting toxicity in prostate cancer patients treated with hypofractionated intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e415–e421. [Google Scholar] [CrossRef] [PubMed]
- Delobel, J.-B.; Gnep, K.; Ospina, J.D.; Beckendorf, V.; Chira, C.; Zhu, J.; Bossi, A.; Messai, T.; Acosta, O.; Castelli, J.; et al. Nomogram to predict rectal toxicity following prostate cancer radiotherapy. PLoS ONE 2017, 12, e0179845. [Google Scholar] [CrossRef] [PubMed]
- Thor, M.; Deasy, J.O.; Paulus, R.; Robert Lee, W.; Amin, M.B.; Bruner, D.W.; Low, D.A.; Shah, A.B.; Malone, S.C.; Michalski, J.M.; et al. Tolerance doses for late adverse events after hypofractionated radiotherapy for prostate cancer on trial NRG Oncolo-gy/RTOG 0415. Radiother. Oncol. 2019, 135, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Wachter, S.; Gerstner, N.; Goldner, G.; Pötzi, R.; Wambersie, A.; Pötter, R. Endoscopic scoring of late rectal mucosal damage after conformal radiotherapy for prostatic carcinoma. Radiother. Oncol. 2000, 54, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Goldner, G.; Tomicek, B.; Becker, G.; Geinitz, H.; Wachter, S.; Zimmermann, F.; Wachter-Gerstner, N.; Reibenwein, J.; Glocker, S.; Bamberg, M.; et al. Proctitis after external-beam radiotherapy for prostate cancer classified by Vienna Rectoscopy Score and correlated with EORTC/RTOG score for late rectal toxicity: Results of a prospective multicenter study of 166 patients. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Bregendahl, S.; Langschwager, M.; Laurberg, S.; Brock, C.; Drewes, A.M.; Krogh, K.; Høyer, M.; Lundby, L. Patho-physiology of late anorectal dysfunction following external beam radiotherapy for prostate cancer. Acta Oncol. 2014, 53, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, E.; Deodato, F.; Macchia, G.; Massaccesi, M.; Digesù, C.; Pirozzi, G.A.; Spera, G.; Marangi, S.; Annoscia, E.; Cilla, S.; et al. Early radiation-induced mucosal changes evaluated by proctoscopy: Predictive role of dosimetric parameters. Radiother. Oncol. 2012, 104, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, E.; Massaccesi, M.; Digesù, C.; Deodato, F.; Macchia, G.; Pirozzi, G.A.; Cilla, S.; Cuscunà, D.; Di Lallo, A.; Mattiucci, G.C.; et al. Early proctoscopy is a surrogate endpoint of late rectal toxicity in prostate cancer treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e191–e195. [Google Scholar] [CrossRef]
- Ippolito, E.; Guido, A.; Macchia, G.; Deodato, F.; Giaccherini, L.; Farioli, A.; Arcelli, A.; Cuicchi, D.; Frazzoni, L.; Cilla, S.; et al. Predictive Factors of Late-onset Rectal Mucosal Changes After Radiotherapy of Prostate Cancer. Vivo 2017, 31, 961–966. [Google Scholar] [CrossRef]
- Michalski, J.M.; Gay, H.; Jackson, A.; Tucker, S.L.; Deasy, J.O. Radiation Dose–Volume Effects in Radiation-Induced Rectal Injury. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S123–S129. [Google Scholar] [CrossRef]
- Alashkham, A.; Paterson, C.; Hubbard, S.; Nabi, G. What is the impact of diabetes mellitus on radiation induced acute proctitis after radical radiotherapy for adenocarcinoma prostate? A prospective longitudinal study. Clin. Transl. Radiat. Oncol. 2019, 14, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Hamstra, D.A.; Stenmark, M.H.; Ritter, T.; Litzenberg, D.; Jackson, W.; Johnson, S.; Albrecht-Unger, L.; Donaghy, A.; Phelps, L.; Blas, K.; et al. Age and comorbid illness are associated with late rectal toxicity following dose-escalated radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.G.; Park, B.; Song, Y.G.; Lee, H.W.; Oh, T.H.; Ryu, D.-S.; Jeong, S.C.; Cho, D.; Oh, J.; Kim, K.M.; et al. Patient-related risk factors for late rectal bleeding after hypofractionated radiotherapy for localized prostate cancer: A single-center retrospective study. Radiat. Oncol. 2022, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Kounadis, G.; Syrigos, N.; Kougioumtzopoulou, A.; Bamias, G.; Kotteas, I.; Papatheodoridis, G.; Grapsa, D. Acute and Late Rectal Toxicity Following Hypofractionated Radiotherapy in Patients With Prostate Cancer: Results of a Prospective Study. Vivo 2022, 36, 1875–1880. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, E.; Zubizarreta, E. Radiotherapy in Cancer Care: Facing the Global Challenge; International Atomic Energy Agency: Vienna, Austria, 2017. [Google Scholar]
- Abdel-Wahab, M.; Gondhowiardjo, S.S.; Rosa, A.A.; Lievens, Y.; El-Haj, N.; Rubio, J.A.P.; Ben Prajogi, G.; Helgadottir, H.; Zubizarreta, E.; Meghzifene, A.; et al. Global Radiotherapy: Current Status and Future Directions—White Paper. JCO Glob. Oncol. 2021, 7, 827–842. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.B.; Compton, C.C. The American joint committee on cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Eifler, J.B.; Feng, Z.; Lin, B.M.; Partin, M.T.; Humphreys, E.B.; Han, M.; Epstein, J.I.; Walsh, P.C.; Trock, B.J.; Partin, A.W. An up-dated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013, 111, 22–29. [Google Scholar] [CrossRef] [PubMed]
- King, C.R.; Fowler, J.F. A simple analytic derivation suggests that prostate cancer alpha/beta ratio is low. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 213–214. [Google Scholar] [CrossRef]
- Boehmer, D.; Maingon, P.; Poortmans, P.; Baron, M.-H.; Miralbell, R.; Remouchamps, V.; Scrase, C.; Bossi, A.; Bolla, M. EORTC ra-diation oncology group Guidelines for primary radiotherapy of patients with prostate cancer. Radiother. Oncol. 2006, 79, 259–269. [Google Scholar] [CrossRef]
- Bentzen, S.M.; Constine, L.S.; Deasy, J.O.; Eisbruch, A.; Jackson, A.; Marks, L.B.; Haken, T.R.K.; Yorke, E.D. Quantitative Anal-yses of Normal Tissue Effects in the Clinic (QUANTEC): An Introduction to the Scientific Issues. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S3–S9. [Google Scholar] [CrossRef]
- Michalski, J.M.; Moughan, J.; Purdy, J.; Bosch, W.; Bruner, D.W.; Bahary, J.-P.; Lau, H.; Duclos, M.; Parliament, M.; Morton, G.; et al. Effect of Standard vs Dose-Escalated Radi-ation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e180039. [Google Scholar] [CrossRef]
- LENT SOMA tables. Radiother. Oncol. 1995, 35, 17–60. [CrossRef]
- Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Kouloulias, V.E.; Kouvaris, J.R.; Pissakas, G.; Kokakis, J.D.; Antypas, C.; Mallas, E.; Matsopoulos, G.; Michopoulos, S.; Vosdoganis, S.-P.; Kostakopoulos, A.; et al. A phase II randomized study of topical intrarectal administration of amifostine for the preven-tion of acute radiation-induced rectal toxicity. Strahlenther. Onkol. 2004, 180, 557–562. [Google Scholar] [CrossRef]
- Roach, M.; Hanks, G.; Thames, H.; Schellhammer, P.; Shipley, W.U.; Sokol, G.H.; Sandler, H. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: Recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 965–974. [Google Scholar] [CrossRef]
- Kougioumtzopoulou, A.; Platoni, K.; Zygogianni, A.; Kounadis, G.; Syrigos, K.N.; Psyrri, A.; Bamias, A.; Kelekis, N.; Kouloulias, V. Moderate Hypofractionated Radiotherapy for Localized Prostate Cancer: The Triumph of Radiobiology. Rev. Recent Clin. Trials 2021, 16, 351–371. [Google Scholar] [CrossRef]
- Rasmussen, S.N.; Riis, P. Rectal wall thickness measured by ultrasound in chronic inflammatory diseases of the colon. Scand. J. Gastroenterol. 1985, 20, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Tucker, S.L.; Dong, L.; Cheung, R.; Johnson, J.; Mohan, R.; Huang, E.H.; Liu, H.H.; Thames, H.D.; Kuban, D. Comparison of rectal dose–wall histogram versus dose–volume histogram for modeling the incidence of late rectal bleeding after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Guckenberger, M.; Meyer, J.; Baier, K.; Vordermark, D.; Flentje, M. Distinct effects of rectum delineation methods in 3D-conformal vs. IMRT treatment planning of prostate cancer. Radiat. Oncol. 2006, 1, 34. [Google Scholar] [CrossRef] [PubMed]
- van Lin, E.N.J.T.; Kristinsson, J.; Philippens, M.E.P.; de Jong, D.J.; van der Vight, L.P.; Kaanders, J.H.A.M.; Leer, J.W.; Visser, A.G. Reduced late rectal mucosal changes after prostate three-dimensional conformal radiotherapy with endorectal balloon as observed in repeated endoscopy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 799–811. [Google Scholar] [CrossRef] [PubMed]
Characteristic | N (%) |
---|---|
Age at diagnosis * | 72.7 years (6.3) |
Histology | |
adenocarcinoma | 20 (100) |
Clinical TNM | |
T1cN0M0 | 5 (25) |
T2aN0M0 | 3 (15) |
T2bN0M0 | 4 (20) |
T2cN0M0 | 8 (40) |
PSA at diagnosis * | 7.4 (12.6) |
Gleason Score | |
6 (3 + 3) | 5 (25) |
7 (3 + 4) | 10 (50) |
7 (4 + 3) | 5 (25) |
Grade | |
1 | 5 (25) |
2 | 10 (50) |
3 | 5 (25) |
4 | 0 (0) |
5 | 0 (0) |
Adjuvant ADT | 20 (100) |
Duration of ADT (months) | 6 (0) |
Diabetes | |
No | 13 (65) |
Yes | 7 (35) |
Anti-coagulant medication | |
No | 13 (65) |
Yes | 7 (35) |
Non malignant findings of the colonoscopy | |
No | 10 (50) |
Yes | 10 (50) |
Pre-treatment symptoms from GI | |
No | 20 (100) |
Yes | 0 (0) |
Pre-treatment symptoms from GU, | |
No | No 14(70) |
Yes | Yes 6 (30) |
Completed protocol schedule (yes or no) | All received |
Interruptions during RT | |
No | 20 (100) |
Yes | 0 (0) |
CTV Prostate Volume * (cm3) | 47.6 (23.4) |
GI Early Adverse Events | Grade 0 N (%) | Grade 1 N (%) | Grade 2 N (%) | Grade 3 N (%) | Grade 4 N (%) |
---|---|---|---|---|---|
1st week of RT | 20 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
2nd week of RT | 20 (100) | 0 (0) | 0 (0) | 0 (0) | 0(0) |
3rd week of RT | 13 (65) | 6 (30) | 1 (5) | 0 (0) | 0 (0) |
4th week of RT | 15 (70) | 3 (15) | 2 (10) | 0 (0) | 0 (0) |
End of RT | 18 (90) | 2 (10) | 0 (0) | 0 (0) | 0 (0) |
3 months post- RT | 20 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
6 months post- RT | 20 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
GU Early Adverse Events | Grade 0 N (%) | Grade 1 N (%) | Grade 2 N (%) | Grade 3 N (%) | Grade 4 N (%) |
---|---|---|---|---|---|
1st week of RT | 19 (95) | 1 (5) | 0 (0) | 0 (0) | 0 (0) |
2nd week of RT | 18 (90) | 2 (10) | 0 (0) | 0 (0) | 0 (0) |
3rd week of RT | 12 (60) | 8 (40) | 0 (0) | 0 (0) | 0 (0) |
4th week of RT | 9 (45) | 11 (55) | 0 (0) | 0 (0) | 0 (0) |
End of RT | 10 (50) | 10 (50) | 0 (0) | 0 (0) | 0 (0) |
3 months post-RT | 20 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
6 months post-RT | 19 (95) | 1 (5) | 0 (0) | 0 (0) | 0 (0) |
GI Late Adverse Events | Grade 0 N (%) | Grade 1 N (%) | Grade 2 N (%) | Grade 3 N (%) | Grade 4 N (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Scale | LENT/SOMA | S-RS | LENT/SOMA | S-RS | LENT/SOMA | S-RS | LENT/SOMA | S-RS | LENT/SOMA | S-RS |
9 months post-RT | 20 (100) | 20 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
12 months post-RT | 18 (90) | 18 (90) | 1 (5) | 1 (5) | 0 (0) | 0 (0) | 1 (5) | 1 (5) | 0 (0) | 0 (0) |
18 months post-RT | 19 (95) | 19 (95) | 0 (0) | 0 (0) | 1 (5) | 1 (5) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
24 months post-RT | 19 (95) | 19 (95) | 0 (0) | 0 (0) | 1 (5) | 1 (5) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
GU Late Adverse Events | Grade 0 N (%) | Grade 1 N (%) | Grade 2 N (%) | Grade 3 N (%) | Grade 4 N (%) |
---|---|---|---|---|---|
9 months post-RT | 19 (95) | 1 (5) | 0 (0) | 0 (0) | 0 (0) |
12 months post-RT | 19 (95) | 1 (5) | 0 (0) | 0 (0) | 0 (0) |
18 months post-RT | 18 (90) | 2 (10) | 0 (0) | 0 (0) | 0 (0) |
24 months post-RT | 14 (70) | 6 (30) | 0 (0) | 0 (0) | 0 (0) |
Rectoscopy | VRS 0 N (%) | VRS 1 N (%) | VRS 2 N (%) | VRS 3 N (%) |
---|---|---|---|---|
3 months post-RT | 20 (100) | 0 (0) | 0 (0) | 0 (0) |
6 months post-RT | 18 (90) | 0 (0) | 2 (10) | 0 (0) |
9 months post-RT | 18 (90) | 0 (0) | 2 (10) | 0 (0) |
12 months post-RT | 13 (65) | 4 (20) | 2 (10) | 1 (5) |
18 months post-RT | 13 (65) | 4 (20) | 3 (15) | 0 (0) |
24 months post-RT | 13 (65) | 4 (20) | 3 (15) | 0 (0) |
Months after RT Colonoscopy | LENT-SOMA Scale | VRS | p-Value | |
---|---|---|---|---|
Discrepancies N (%) | ||||
3 | 0 (0) | - | ||
6 | 2 (10) | 0 0 | 2 2 | 0.16 |
9 | 2 (10) | 0 0 | 2 2 | 0.16 |
12 | 5 (25) | 0 0 0 0 0 | 1 1 1 2 2 | 0.063 |
18 | 6 (30) | 0 0 0 0 0 0 | 1 1 1 1 2 2 | 0.031 |
24 | 6 (30) | 0 0 0 0 0 0 | 1 1 1 1 2 2 | 0.031 |
QUANTEC dose Constrains for Rectum | EQD2 for Late Toxicity (α/β = 3). |
---|---|
V30Gy | V26.08Gy |
V40Gy | V34.78Gy |
V50Gy < 50% | V43.48Gy < 50% |
V60Gy < 35% | V52.17Gy < 35% |
V65Gy < 25% | V56.52Gy < 25% |
V70Gy < 20% | V60.87Gy < 20% |
Rectoscopy Findings | V26.08Gy | V34.78Gy | V43.48Gy | V52.17Gy | V56.52Gy | V60.87Gy |
---|---|---|---|---|---|---|
3 months post-RT | ||||||
Group A | 89.2 (10.5) | 48.5 (28.8) | 32.3 (22.4) | 17.2 (12.3) | 11 (8.6) | 0.2 (2.3) |
Group B | - | - | - | - | - | - |
p value | - | - | - | - | - | - |
6 months post-RT | ||||||
Group A | 89.2 (15) | 47 (25.5) | 30.9 (20.4) | 15.8 (12.3) | 9.5 (7.7) | 0.08 (2.1) |
Group B | 88.7 (10.5) | 68.8 (1.6) | 48.6 (1.2) | 26.1 (15.3) | 18 (12) | 3 (5.1) |
p value | 0.85 | 0.042 | 0.042 | 0.26 | 0.26 | 0.32 |
9 months post-RT | ||||||
Group A | 89.2 (15) | 47 (25.5) | 30.9 (20.4) | 15.8 (12.3) | 9.5 (7.7) | 0.08 (2.1) |
Group B | 88.7 (10.5) | 68.8 (1.6) | 48.6 (1.2) | 26.1 (15.3) | 18 (12) | 3 (5.1) |
p value | 0.85 | 0.042 | 0.042 | 0.26 | 0.26 | 0.32 |
12 months post-RT | ||||||
Group A | 87 (25.6) | 40 (17.7) | 27.6 (13) | 11.8 (8.7) | 7.4 (7.3) | 0.002 (0.2) |
Group B | 94 (12.2) | 61.8 (10) | 45.6 (10.5) | 27.8 (14.2) | 20.7 (12.4) | 2.1 (5.1) |
p value | 0.19 | 0.009 | 0.006 | 0.006 | 0.006 | 0.052 |
18 months post-RT | ||||||
Group A | 87 (25.6) | 40 (17.7) | 27.6 (13) | 11.8 (8.7) | 7.4 (7.3) | 0.002 (0.2) |
Group B | 94 (12.2) | 61.8 (10) | 45.6 (10.5) | 27.8 (14.2) | 20.7 (12.4) | 2.1 (5.1) |
p value | 0.19 | 0.009 | 0.006 | 0.006 | 0.006 | 0.052 |
24 months post-RT | ||||||
Group A | 87 (25.6) | 40 (17.7) | 27.6 (13) | 11.8 (8.7) | 7.4 (7.3) | 0.002 (0.2) |
Group B | 94 (12.2) | 61.8 (10) | 45.6 (10.5) | 27.8 (14.2) | 20.7 (12.4) | 2.1 (5.1) |
p value | 0.19 | 0.009 | 0.006 | 0.006 | 0.006 | 0.052 |
Coloscopy Findings | V26.08Gy | V34.78Gy | V43.48Gy | V52.17Gy | V56.52Gy | V60.87Gy |
---|---|---|---|---|---|---|
3 months after RT | ||||||
Group A | 90 (13.6) | 49.6 (16) | 39.2 (12.4) | 22.6 (11.2) | 15.9 (9) | 1.3 (8) |
Group B | - | - | - | - | - | - |
p value | - | - | - | - | - | - |
6 months after RT | ||||||
Group A | 90 (14.2) | 46.4 (15.2) | 36.7 (12.6) | 21.6 (11.1) | 15.9 (8.4) | 0.6 (7.8) |
Group B | 88.1 (9.5) | 59.1 (2.9) | 44.7 (4.9) | 30.2 (14.9) | 23.3 (16.2) | 8.1 (12.8) |
p value | 0.85 | 0.13 | 0.17 | 0.32 | 0.52 | 0.26 |
9 months after RT | ||||||
Group A | 90 (14.2) | 46.4 (15.2) | 36.7 (12.6) | 21.6 (11.1) | 15.9 (8.4) | 0.6 (7.8) |
Group B | 88.1 (9.5) | 59.1 (2.9) | 44.7 (4.9) | 30.2 (14.9) | 23.3 (16.2) | 8.1 (12.8) |
p value | 0.85 | 0.13 | 0.17 | 0.32 | 0.52 | 0.26 |
12 months after RT | ||||||
Group A | 89.5 (14.6) | 42.8 (12.4) | 33.2 (8.8) | 19.9 (4.2) | 15.7 (3.3) | 0.003 (1.4) |
Group B | 92.8 (12.7) | 55.5 (6.5) | 42.3 (5.8) | 30.9 (14.7) | 24.7 (15.8) | 7.8 (8.9) |
p value | 0.29 | 0.005 | 0.005 | 0.005 | 0.046 | 0.033 |
18 months after RT | ||||||
Group A | 89.5 (14.6) | 42.8 (12.4) | 33.2 (8.8) | 19.9 (4.2) | 15.7 (3.3) | 0.003 (1.4) |
Group B | 92.8 (12.7) | 55.5 (6.5) | 42.3 (5.8) | 30.9 (14.7) | 24.7 (15.8) | 7.8 (8.9) |
p value | 0.29 | 0.005 | 0.005 | 0.005 | 0.046 | 0.033 |
24 months after RT | ||||||
Group A | 89.5 (14.6) | 42.8 (12.4) | 33.2 (8.8) | 19.9 (4.2) | 15.7 (3.3) | 0.003 (1.4) |
Group B | 92.8 (12.7) | 55.5 (6.5) | 42.3 (5.8) | 30.9 (14.7) | 24.7 (15.8) | 7.8 (8.9) |
p value | 0.29 | 0.005 | 0.005 | 0.005 | 0.046 | 0.033 |
Coloscopy Findings | V26.08Gy | V34.78Gy | V43.48Gy | V52.17Gy | V56.52Gy | V60.87Gy |
---|---|---|---|---|---|---|
3 months post-RT | ||||||
Group A | 78.4 (39.1) | 36.4 (23.6) | 21.7 (23.2) | 5.5 (8.9) | 1.1 (4.1) | 0 (0) |
Group B | - | - | - | - | - | - |
p value | - | - | - | - | - | - |
6 months post-RT | ||||||
Group A | 83.5 (32.3) | 36.4 (24.1) | 24.1 (25.2) | 5.5 (9.6) | 0.8 (5.6) | 0 (0) |
Group B | 60.1 (33.7) | 32.8 (19.9) | 17.7 (7) | 4.3 (4.7) | 1.7 (2) | 0 (0) |
p value | 0.38 | 0.59 | 0.44 | >0.99 | 0.61 | >0.99 |
9 months post-RT | ||||||
Group A | 83.5 (32.3) | 36.4 (24.1) | 24.1 (25.2) | 5.5 (9.6) | 0.8 (5.6) | 0 (0) |
Group B | 60.1 (33.7) | 32.8 (19.9) | 17.7 (7) | 4.3 (4.7) | 1.7 (2) | 0 (0) |
p value | 0.38 | 0.59 | 0.44 | >0.99 | 0.61 | >0.99 |
12 months post-RT | ||||||
Group A | 79.9 (21.9) | 35.8 (19.4) | 22.3 (12.9) | 5.4 (8.4) | 0 (5.6) | 0 (0) |
Group B | 76.9 (53.2) | 42.8 (23.6) | 21.2 (33.7) | 5.5 (8.9) | 1.5 (2.6) | 0 (0) |
p value | 0.8 | 0.7 | 0.7 | 0.53 | 0.8 | >0.99 |
18 months post-RT | ||||||
Group A | 79.9 (21.9) | 35.8 (19.4) | 22.3 (12.9) | 5.4 (8.4) | 0 (5.6) | 0 (0) |
Group B | 76.9 (53.2) | 42.8 (23.6) | 21.2 (33.7) | 5.5 (8.9) | 1.5 (2.6) | 0 (0) |
p value | 0.8 | 0.7 | 0.7 | 0.53 | 0.8 | >0.99 |
24 months post-RT | ||||||
Group A | 79.9 (21.9) | 35.8 (19.4) | 22.3 (12.9) | 5.4 (8.4) | 0 (5.6) | 0 (0) |
Group B | 76.9 (53.2) | 42.8 (23.6) | 21.2 (33.7) | 5.5 (8.9) | 1.5 (2.6) | 0 (0) |
p value | 0.8 | 0.7 | 0.7 | 0.53 | 0.8 | >0.99 |
Coloscopy Findings | V26.08Gy | V34.78Gy | V43.48Gy | V52.17Gy | V56.52Gy | V60.87Gy |
---|---|---|---|---|---|---|
3 months post-RT | ||||||
Group A | 100 (0) | 58 (13.3) | 46.3 (10.6) | 34.4 (13.7) | 29.4 (15) | 0.4 (3.3) |
Group B | - | - | - | - | - | - |
p value | - | - | - | - | - | - |
6 months post-RT | ||||||
Group A | 100 (0) | 54.6 (13.7) | 45 (10.9) | 34.4 (11.8) | 29.4 (14.2) | 0.07 (3.2) |
Group B | 100 (0) | 66.4 (9.3) | 52.4 (11.4) | 35.5 (26.1) | 24.9 (34) | 10.2 (14) |
p value | >0.99 | 0.095 | 0.26 | 0.95 | 0.95 | 0.13 |
9 months post-RT | ||||||
Group A | 100 (0) | 54.6 (13.7) | 45 (10.9) | 34.4 (11.8) | 29.4 (14.2) | 0.07 (3.2) |
Group B | 100 (0) | 66.4 (9.3) | 52.4 (11.4) | 35.5 (26.1) | 24.9 (34) | 10.2 (14) |
p value | >0.99 | 0.095 | 0.26 | 0.95 | 0.95 | 0.13 |
12 months post-RT | ||||||
Group A | 100 (0) | 52.3 (14.7) | 41.8 (9.6) | 32.5 (9.6) | 28 (9.4) | 0 (2) |
Group B | 100 (0.1) | 61.2 (14.3) | 48.6 (11.6) | 39.9 (14.3) | 32.4 (17.5) | 3.1 (14.7) |
p value | 0.22 | 0.056 | 0.16 | 0.24 | 0.24 | 0.034 |
18 months post-RT | ||||||
Group A | 100 (0) | 52.3 (14.7) | 41.8 (9.6) | 32.5 (9.6) | 28 (9.4) | 0 (2) |
Group B | 100 (0.1) | 61.2 (14.3) | 48.6 (11.6) | 39.9 (14.3) | 32.4 (17.5) | 3.1 (14.7) |
p value | 0.22 | 0.056 | 0.16 | 0.24 | 0.24 | 0.034 |
24 months post-RT | ||||||
Group A | 100 (0) | 52.3 (14.7) | 41.8 (9.6) | 32.5 (9.6) | 28 (9.4) | 0 (2) |
Group B | 100 (0.1) | 61.2 (14.3) | 48.6 (11.6) | 39.9 (14.3) | 32.4 (17.5) | 3.1 (14.7) |
p value | 0.22 | 0.056 | 0.16 | 0.24 | 0.24 | 0.034 |
Coloscopy Findings | V26.08Gy | V34.78Gy | V43.48Gy | V52.17Gy | V56.52Gy | V60.87Gy |
---|---|---|---|---|---|---|
3 months post-RT | ||||||
Group A | 99.5 (14.8) | 49.8 (19.3) | 38.6 (17.2) | 29.3 (20.6) | 22.7 (19.6) | 0.4 (8.2) |
Group B | - | - | - | - | - | - |
p value | - | - | - | - | - | - |
6 months post-RT | ||||||
Group A | 98.7 (14.8) | 48 (20.8) | 37.4 (17.5) | 28.1 (15.5) | 21.2 (14.3) | 0.3 (7.2) |
Group B | 100 (0) | 69.8 (23.6) | 55.7 (15.5) | 47.1 (10.8) | 40.9 (9.1) | 12.1 (23.9) |
p value | 0.3 | 0.095 | 0.063 | 0.095 | 0.095 | 0.37 |
9 months post-RT | ||||||
Group A | 98.7 (14.8) | 48 (20.8) | 37.4 (17.5) | 28.1 (15.5) | 21.2 (14.3) | 0.3 (7.2) |
Group B | 100 (0) | 69.8 (23.6) | 55.7 (15.5) | 47.1 (10.8) | 40.9 (9.1) | 12.1 (23.9) |
p value | 0.3 | 0.095 | 0.063 | 0.095 | 0.095 | 0.37 |
12 months post-RT | ||||||
Group A | 98.3 (14.8) | 44.7 (17.4) | 33.6 (12.9) | 26.8 (9) | 18.6 (12.2) | 0 (1.7) |
Group B | 100 (3.1) | 62.5 (21.7) | 52.3 (21.5) | 44.5 (22.7) | 36.4 (22.4) | 9.1 (23.9) |
p value | 0.19 | 0.005 | 0.002 | 0.003 | 0.006 | 0.015 |
18 months post-RT | ||||||
Group A | 98.3 (14.8) | 44.7 (17.4) | 33.6 (12.9) | 26.8 (9) | 18.6 (12.2) | 0 (1.7) |
Group B | 100 (3.1) | 62.5 (21.7) | 52.3 (21.5) | 44.5 (22.7) | 36.4 (22.4) | 9.1 (23.9) |
p value | 0.19 | 0.005 | 0.002 | 0.003 | 0.006 | 0.015 |
24 months post-RT | ||||||
Group A | 98.3 (14.8) | 44.7 (17.4) | 33.6 (12.9) | 26.8 (9) | 18.6 (12.2) | 0 (1.7) |
Group B | 100 (3.1) | 62.5 (21.7) | 52.3 (21.5) | 44.5 (22.7) | 36.4 (22.4) | 9.1 (23.9) |
p value | 0.19 | 0.005 | 0.002 | 0.003 | 0.006 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kougioumtzopoulou, A.; Syrigos, N.; Zygogianni, A.; Georgakopoulos, I.; Platoni, K.; Patatoukas, G.; Tzannis, K.; Bamias, A.; Kelekis, N.; Kouloulias, V. Comprehensive 3DCRT Hypofractionated Radiotherapy Schedule for Localized Prostate Adenocarcinoma in the Era of IMRT: Dosimetric and Endoscopic Analysis. Cancers 2024, 16, 1192. https://doi.org/10.3390/cancers16061192
Kougioumtzopoulou A, Syrigos N, Zygogianni A, Georgakopoulos I, Platoni K, Patatoukas G, Tzannis K, Bamias A, Kelekis N, Kouloulias V. Comprehensive 3DCRT Hypofractionated Radiotherapy Schedule for Localized Prostate Adenocarcinoma in the Era of IMRT: Dosimetric and Endoscopic Analysis. Cancers. 2024; 16(6):1192. https://doi.org/10.3390/cancers16061192
Chicago/Turabian StyleKougioumtzopoulou, Andromachi, Nick Syrigos, Anna Zygogianni, Ioannis Georgakopoulos, Kalliopi Platoni, George Patatoukas, Kimon Tzannis, Aristotelis Bamias, Nikolaos Kelekis, and Vasileios Kouloulias. 2024. "Comprehensive 3DCRT Hypofractionated Radiotherapy Schedule for Localized Prostate Adenocarcinoma in the Era of IMRT: Dosimetric and Endoscopic Analysis" Cancers 16, no. 6: 1192. https://doi.org/10.3390/cancers16061192
APA StyleKougioumtzopoulou, A., Syrigos, N., Zygogianni, A., Georgakopoulos, I., Platoni, K., Patatoukas, G., Tzannis, K., Bamias, A., Kelekis, N., & Kouloulias, V. (2024). Comprehensive 3DCRT Hypofractionated Radiotherapy Schedule for Localized Prostate Adenocarcinoma in the Era of IMRT: Dosimetric and Endoscopic Analysis. Cancers, 16(6), 1192. https://doi.org/10.3390/cancers16061192