Cancer and Non-Cancer Effects Following Ionizing Irradiation
Abstract
1. Introduction
2. Overview of Published Articles
2.1. Circulatory System
2.2. Sensory System
2.3. Nervous System
2.4. Respiratory System, Reproductive System, and Other Systems
3. Conclusions
Funding
Conflicts of Interest
References
- Chen, H.; Han, Z.; Luo, Q.; Wang, Y.; Li, Q.; Zhou, L.; Zuo, H. Radiotherapy modulates tumor cell fate decisions: A review. Radiat. Oncol. 2022, 17, 196. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Hu, S.; Jia, B.; Tuo, B.; Sun, H.; Wang, Q.; Liu, Y.; Sun, Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis. 2023, 14, 679. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, G.; Hu, W. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 2022, 32, 100828. [Google Scholar] [CrossRef]
- Paunesku, T.; Stevanović, A.; Popović, J.; Woloschak, G.E. Effects of low dose and low dose rate low linear energy transfer radiation on animals—Review of recent studies relevant for carcinogenesis. Int. J. Radiat. Biol. 2021, 97, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Benali, K.; Lloyd, M.S.; Petrosyan, A.; Rigal, L.; Quivrin, M.; Bessieres, I.; Vlachos, K.; Hammache, N.; Bellec, J.; Simon, A.; et al. Cardiac stereotactic radiation therapy for refractory ventricular arrhythmias in patients with left ventricular assist devices. J. Cardiovasc. Electrophysiol. 2024, 35, 206–213. [Google Scholar] [CrossRef]
- Paithankar, J.G.; Gupta, S.C.; Sharma, A. Therapeutic potential of low dose ionizing radiation against cancer, dementia, and diabetes: Evidences from epidemiological, clinical, and preclinical studies. Mol. Biol. Rep. 2023, 50, 2823–2834. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.D.; Rogers, C.L.; Mehta, M.P.; Marples, B.; Michael, D.B.; Welsh, J.S.; Martinez, A.A.; Fontanesi, J. The rationale for radiation therapy in Alzheimer’s disease. Radiat. Res. 2023, 199, 506–516. [Google Scholar] [CrossRef]
- Kaul, D.; Ehret, F.; Roohani, S.; Jendrach, M.; Buthut, M.; Acker, G.; Anwar, M.; Zips, D.; Heppner, F.; Prüss, H. Radiation therapy in Alzheimer’s disease: A systematic review. Int. J. Radiat. Oncol. Biol. Phys. 2024, in press. [Google Scholar] [CrossRef]
- Hamada, N. Noncancer effects of ionizing radiation exposure on the eye, the circulatory system and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat. Res. 2023, 200, 188–216. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Ozasa, K.; Akiba, S.; Niwa, O.; Kodama, K.; Takamura, N.; Zaharieva, E.K.; Kimura, Y.; Wakeford, R. Long-term effects of radiation exposure on health. Lancet 2015, 386, 469–478. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Radiological Protection (ICRP). ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—Threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 2012, 41, 1–322. [Google Scholar] [CrossRef] [PubMed]
- Nabialek-Trojanowska, I.; Sinacki, M.; Jankowska, H.; Lewicka-Potocka, Z.; Dziadziuszko, R.; Lewicka, E. The influence of radiotherapy on the function of the left and right ventricles in relation to the radiation dose administered to the left anterior descending coronary artery-from a cardiologist’s point of view. Cancers 2022, 14, 2420. [Google Scholar] [CrossRef]
- Honaryar, M.K.; Allodji, R.; Ferrières, J.; Panh, L.; Locquet, M.; Jimenez, G.; Lapeyre, M.; Camilleri, J.; Broggio, D.; de Vathaire, F.; et al. Early coronary artery calcification progression over two years in breast cancer patients treated with radiation therapy: Association with cardiac exposure (BACCARAT Study). Cancers 2022, 14, 5724. [Google Scholar] [CrossRef]
- Tanno, B.; Novelli, F.; Leonardi, S.; Merla, C.; Babini, G.; Giardullo, P.; Kadhim, M.; Traynor, D.; Medipally, D.K.R.; Meade, A.D.; et al. MiRNA-mediated fibrosis in the out-of-target heart following partial-body irradiation. Cancers 2022, 14, 3463. [Google Scholar] [CrossRef]
- Mpweme Bangando, H.; Simard, C.; Aize, M.; Lebrun, A.; Manrique, A.; Guinamard, R.; On behalf of the stop-as investigators. TRPM4 participates in irradiation-induced aortic valve remodeling in mice. Cancers 2022, 14, 4477. [Google Scholar] [CrossRef]
- Sridharan, V.; Krager, K.J.; Pawar, S.A.; Bansal, S.; Li, Y.; Cheema, A.K.; Boerma, M. Effects of whole and partial heart irradiation on collagen, mast cells, and toll-like receptor 4 in the mouse heart. Cancers 2023, 15, 406. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, O.; Merl-Pham, J.; Subramanian, V.; Oleksenko, K.; Krumm, F.; Mancuso, M.; Pasquali, E.; Tanaka, I.B., 3rd; Tanaka, S.; Atkinson, M.J.; et al. Late Effects of chronic low dose rate total body irradiation on the heart proteome of ApoE−/− mice resemble premature cardiac ageing. Cancers 2023, 15, 3417. [Google Scholar] [CrossRef]
- Hamada, N.; Kawano, K.I.; Nomura, T.; Furukawa, K.; Yusoff, F.M.; Maruhashi, T.; Maeda, M.; Nakashima, A.; Higashi, Y. Temporal changes in sparing and enhancing dose protraction effects of ionizing irradiation for aortic damage in wild-type mice. Cancers 2022, 14, 3319. [Google Scholar] [CrossRef]
- Azizova, T.V.; Bragin, E.V.; Bannikova, M.V.; Hamada, N.; Grigoryeva, E.S. The incidence risk for primary glaucoma and its subtypes following chronic exposure to ionizing radiation in the Russian cohort of Mayak nuclear workers. Cancers 2022, 14, 602. [Google Scholar] [CrossRef]
- Thariat, J.; Martel, A.; Matet, A.; Loria, O.; Kodjikian, L.; Nguyen, A.M.; Rosier, L.; Herault, J.; Nahon-Estève, S.; Mathis, T. Non-cancer effects following ionizing irradiation involving the eye and orbit. Cancers 2022, 14, 1194. [Google Scholar] [CrossRef]
- Peuker, L.; Rolf, D.; Oertel, M.; Peuker, A.; Scobioala, S.; Hering, D.; Rudack, C.; Haverkamp, U.; Eich, H.T. Definition of an normal tissue complication probability model for the inner ear in definitive radiochemotherapy of nasopharynx carcinoma. Cancers 2022, 14, 3422. [Google Scholar] [CrossRef]
- Laurent, O.; Samson, E.; Caër-Lorho, S.; Fournier, L.; Laurier, D.; Leuraud, K. Updated mortality analysis of SELTINE, the French cohort of nuclear workers, 1968–2014. Cancers 2022, 15, 79. [Google Scholar] [CrossRef]
- Rübe, C.E.; Raid, S.; Palm, J.; Rübe, C. Radiation-induced brain injury: Age dependency of neurocognitive dysfunction following radiotherapy. Cancers 2023, 15, 2999. [Google Scholar] [CrossRef]
- Cantabella, E.; Camilleri, V.; Cavalie, I.; Dubourg, N.; Gagnaire, B.; Charlier, T.D.; Adam-Guillermin, C.; Cousin, X.; Armant, O. Revealing the increased stress response behavior through transcriptomic analysis of adult zebrafish brain after chronic low to moderate dose rates of ionizing radiation. Cancers 2022, 14, 3793. [Google Scholar] [CrossRef]
- Matsuya, Y.; Hamada, N.; Yachi, Y.; Satou, Y.; Ishikawa, M.; Date, H.; Sato, T. Inflammatory signaling and DNA damage responses after local exposure to an insoluble radioactive microparticle. Cancers 2022, 14, 1045. [Google Scholar] [CrossRef]
- Fukunaga, H.; Yokoya, A.; Prise, K.M. A brief overview of radiation-induced effects on spermatogenesis and oncofertility. Cancers 2022, 14, 805. [Google Scholar] [CrossRef]
- Cruz-Garcia, L.; Nasser, F.; O’Brien, G.; Grepl, J.; Vinnikov, V.; Starenkiy, V.; Artiukh, S.; Gramatiuk, S.; Badie, C. Transcriptional dynamics of DNA damage responsive genes in circulating leukocytes during radiotherapy. Cancers 2022, 14, 2649. [Google Scholar] [CrossRef] [PubMed]
- Sörgel, C.A.; Schmid, R.; Stadelmann, N.; Weisbach, V.; Distel, L.; Horch, R.E.; Kengelbach-Weigand, A. IGF-I and hyaluronic acid mitigate the negative effect of irradiation on human skin keratinocytes. Cancers 2022, 14, 588. [Google Scholar] [CrossRef] [PubMed]
- Kuncman, Ł.; Orzechowska, M.; Stawiski, K.; Masłowski, M.; Ciążyńska, M.; Gottwald, L.; Milecki, T.; Fijuth, J. The kinetics of FMS-related tyrosine kinase 3 ligand (Flt-3L) during chemoradiotherapy suggests a potential gain from the earlier initiation of immunotherapy. Cancers 2022, 14, 3844. [Google Scholar] [CrossRef]
- Little, M.P.; Azizova, T.V.; Bazyka, D.; Bouffler, S.D.; Cardis, E.; Chekin, S.; Chumak, V.V.; Cucinotta, F.A.; de Vathaire, F.; Hall, P.; et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ. Health Perspect. 2012, 120, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Little, M.P. Radiation and circulatory disease. Mutat. Res. 2016, 770, 299–318. [Google Scholar] [CrossRef] [PubMed]
- Little, M.P.; Azizova, T.V.; Richardson, D.B.; Tapio, S.; Bernier, M.O.; Kreuzer, M.; Cucinotta, F.A.; Bazyka, D.; Chumak, V.; Ivanov, V.K.; et al. Ionising radiation and cardiovascular disease: Systematic review and meta-analysis. BMJ 2023, 380, e072924. [Google Scholar] [CrossRef]
- Peters, C.E.; Quinn, E.K.; Rodriguez-Villamizar, L.A.; MacDonald, H.; Villeneuve, P.J. Exposure to low-dose radiation in occupational settings and ischaemic heart disease: A systematic review and meta-analysis. Occup. Environ. Med. 2023, 80, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.C.; Zhou, P.K. Tissue reactions and mechanism in cardiovascular diseases induced by radiation. Int. J. Mol. Sci. 2022, 23, 14786. [Google Scholar] [CrossRef] [PubMed]
- Peix, A.; Perez, A.; Barreda, A.M. Cancer and postradiotherapy cardiotoxicity: How to face damage in women’s hearts? Eur. Cardiol. 2023, 18, e08. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Kawano, K.I.; Hirota, S.; Saito, Y.; Yusoff, F.M.; Maruhashi, T.; Maeda, M.; Nomura, T.; Nakashima, A.; Yoshinaga, S.; et al. Sparing and enhancing dose protraction effects for radiation damage to the aorta of wild-type mice. Int. J. Radiat. Biol. 2024, 100, 37–45. [Google Scholar] [CrossRef]
- Thome, C.; Chambers, D.B.; Hooker, A.M.; Thompson, J.W.; Boreham, D.R. Deterministic effects to the lens of the eye following ionizing radiation exposure: Is there evidence to support a reduction in threshold dose? Health Phys. 2018, 114, 328–343. [Google Scholar] [CrossRef]
- Ainsbury, E.A.; Barnard, S.G.R. Sensitivity and latency of ionising radiation-induced cataract. Exp. Eye Res. 2021, 212, 108772. [Google Scholar] [CrossRef]
- Shen, C.J.; Kry, S.F.; Buchsbaum, J.C.; Milano, M.T.; Inskip, P.D.; Ulin, K.; Francis, J.H.; Wilson, M.W.; Whelan, K.F.; Mayo, C.S.; et al. Retinopathy, optic neuropathy, and cataract in childhood cancer survivors treated with radiation therapy: A PENTEC comprehensive review. Int. J. Radiat. Oncol. Biol. Phys. 2024, in press. [Google Scholar] [CrossRef]
- Little, M.P.; Kitahara, C.M.; Cahoon, E.K.; Bernier, M.O.; Velazquez-Kronen, R.; Doody, M.M.; Borrego, D.; Miller, J.S.; Alexander, B.H.; Simon, S.L.; et al. Occupational radiation exposure and risk of cataract incidence in a cohort of US radiologic technologists. Eur. J. Epidemiol. 2018, 33, 1179–1191. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Yoshinaga, S.; Zhu, W.; Tokonami, S.; Zou, J.; Tan, G.; Tsuji, M.; Akiba, S.; Sun, Q. Lens opacity prevalence among the residents in high natural background radiation area in Yangjiang, China. J. Radiat. Res. 2021, 62, 67–72. [Google Scholar] [CrossRef]
- Yamada, M.; Wong, F.L.; Fujiwara, S.; Akahoshi, M.; Suzuki, G. Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat. Res. 2004, 161, 622–632. [Google Scholar] [CrossRef]
- Kiuchi, Y.; Yokoyama, T.; Takamatsu, M.; Tsuiki, E.; Uematsu, M.; Kinoshita, H.; Kumagami, T.; Kitaoka, T.; Minamoto, A.; Neriishi, K.; et al. Glaucoma in atomic bomb survivors. Radiat. Res. 2013, 180, 422–430. [Google Scholar] [CrossRef]
- Kiuchi, Y.; Yanagi, M.; Itakura, K.; Takahashi, I.; Hida, A.; Ohishi, W.; Furukawa, K. Association between radiation, glaucoma subtype, and retinal vessel diameter in atomic bomb survivors. Sci. Rep. 2019, 9, 8642. [Google Scholar] [CrossRef]
- Lopes, J.; Leuraud, K.; Klokov, D.; Durand, C.; Bernier, M.O.; Baudin, C. Risk of developing non-cancerous central nervous system diseases due to ionizing radiation exposure during adulthood: Systematic review and meta-analyses. Brain Sci. 2022, 12, 984. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, T.; Chirikova, E.; Birk, S.; Xiong, F.; Benzouak, T.; Liu, J.Y.; Villeneuve, P.J.; Zablotska, L.B. Exposure to ionizing radiation and risk of dementia: A systematic review and meta-analysis. Radiat. Res. 2023, 199, 490–505. [Google Scholar] [CrossRef] [PubMed]
- Pasqual, E.; Boussin, F.; Bazyka, D.; Nordenskjold, A.; Yamada, M.; Ozasa, K.; Pazzaglia, S.; Roy, L.; Thierry-Chef, I.; de Vathaire, F.; et al. Cognitive effects of low dose of ionizing radiation—Lessons learned and research gaps from epidemiological and biological studies. Environ. Int. 2021, 147, 106295. [Google Scholar] [CrossRef] [PubMed]
- Tohidinezhad, F.; Di Perri, D.; Zegers, C.M.L.; Dijkstra, J.; Anten, M.; Dekker, A.; Van Elmpt, W.; Eekers, D.B.P.; Traverso, A. Prediction models for radiation-induced neurocognitive decline in adult patients with primary or secondary brain tumors: A systematic review. Front. Psychol. 2022, 13, 853472. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, E.J.; Jones, B.M.; Dickstein, D.R.; Green, S.; Germano, I.M.; Palmer, J.D.; Laack, N.; Brown, P.D.; Gondi, V.; Wefel, J.S.; et al. The cognitive effects of radiotherapy for brain metastases. Front. Oncol. 2022, 12, 893264. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Kogure, T.; Kurihara, Y.; Miura, H.; Okumura, T.; Satou, Y.; Takahashi, Y.; Yamaguchi, N. A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2019, 205–206, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Higaki, S.; Yoshida-Ohuchi, H.; Shinohara, N. Radiocesium-bearing microparticles discovered on masks worn during indoor cleaning. Sci. Rep. 2023, 13, 10008. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamada, N. Cancer and Non-Cancer Effects Following Ionizing Irradiation. Cancers 2024, 16, 1141. https://doi.org/10.3390/cancers16061141
Hamada N. Cancer and Non-Cancer Effects Following Ionizing Irradiation. Cancers. 2024; 16(6):1141. https://doi.org/10.3390/cancers16061141
Chicago/Turabian StyleHamada, Nobuyuki. 2024. "Cancer and Non-Cancer Effects Following Ionizing Irradiation" Cancers 16, no. 6: 1141. https://doi.org/10.3390/cancers16061141
APA StyleHamada, N. (2024). Cancer and Non-Cancer Effects Following Ionizing Irradiation. Cancers, 16(6), 1141. https://doi.org/10.3390/cancers16061141