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Abstract: On the one hand, ionizing radiation has been used to treat not only cancer, but also non-
cancer diseases. On the other hand, associations with radiation exposure have increasingly been
reported not only for cancer, but also non-cancer diseases, both at doses or dose rates much lower
than previously suggested or considered. This underscores the need for considering both cancer and
non-cancer effects of medical (diagnostic or therapeutic), occupational or environmental exposure to
radiation. As such, this Special Issue aims to serve as a forum to gather the latest developments and
discuss future prospects in the field of normal tissue responses to radiation exposure. The Special
Issue is composed of 18 articles outlining the radiation effects arising in various tissues (e.g., those in
the circulatory, sensory, nervous, respiratory, and reproductive systems).

1. Introduction

Ionizing radiation is used to treat cancer [1,2], but is also a carcinogen [3,4]. Alongside
that, there has been mounting interest not only in radiotherapy for non-cancer diseases [5–9],
but also the non-cancer effects of radiation exposure that occur at doses or dose rates much
lower than previously suggested or considered [9–11]. This underlines the need to consider
both the cancer and non-cancer effects of medical (diagnostic or therapeutic), occupational
or environmental exposure to radiation. Therefore, this Special Issue (https://www.mdpi.
com/journal/cancers/special_issues/cancer_ionizing_radiation) aims to serve as a forum
to gather the latest developments and discuss future prospects in the field of normal tissue
responses to radiation exposure. The Special Issue consists of 18 articles [12–29] outlining
the cancer and non-cancer effects of radiation occurring in various tissues (e.g., those in the
circulatory, sensory, nervous, respiratory, and reproductive systems), including studies on
mitigation strategies and biomarkers, as outlined below.

2. Overview of Published Articles
2.1. Circulatory System

A growing body of epidemiological evidence has suggested elevated radiation risks of
cardiovascular diseases (especially ischemic heart disease and stroke) [30–33]; however, the
manifestations (in particular at low or moderate doses, and at low dose rates) and mechanis-
tic underpinnings of this remain incompletely understood [9,34,35]. Nabialek-Trojanowska
et al. [12] carried out speckle-tracking echocardiography in 12 patients at a median of
51 months after radiotherapy for mediastinal lymphoma, concluding that radiation expo-
sure of the heart substructures is correlated with cardiac dysfunction (e.g., left ventricular
global or anterior longitudinal strain). Honaryar et al. [13] conducted a prospective study
of 101 breast cancer patients who received radiotherapy but not chemotherapy, and found
that at two years after radiotherapy, early progression of calcification in the left anterior
descending coronary artery is associated with radiation exposure of the left ventricle. Tanno
et al. [14] performed microRNome analysis in the heart of wild-type mice whose whole
bodies or partial (lower one-third) bodies were irradiated, and revealed the differential
expression of microRNAs belonging to the myomiR family in the heart of whole body- or
partial body-irradiated mice. Tanno et al. [14] also conducted in vitro experiments whereby
irradiated skeletal muscle cells and non-irradiated ventricular cells were co-cultured, and
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proposed miR-1/133a as a potential mediator of the abscopal (out-of-field) response in
non-directly irradiated tissues. Mpweme Bangando et al. [15] irradiated the aortic valves
of mice defective in transient receptor potential melastatin 4 (TRPM4, monovalent non-
selective cation channel) or their wild-type counterparts, and found that TRPM4 is involved
in aortic valve remodeling after irradiation. Sridharan et al. [16] compared cardiac changes
(e.g., plasma metabolomics, collagen deposition, mast cell numbers, and Toll-like recep-
tor 4 expression) in wild-type mice whose whole hearts or partial (40%) hearts received
irradiation, and observed no difference in adverse tissue remodeling in the irradiated and
unirradiated parts of the heart. Azimzadeh et al. [17] conducted proteomic analysis in the
heart of apolipoprotein E-deficient mice of which whole bodies were continuously exposed
at 1 mGy/day or 20 mGy/day, and found that such chronic irradiation modulates various
pathways in the heart that are common with age-related pathways. Hamada et al. [18] used
four different irradiation regimens to deliver the same total dose, and found that the magni-
tude of damage arising at 12 months post-irradiation in the aorta of whole body-irradiated
wild-type mice was greater in 25 fractions, smaller in 100 fractions, and much smaller in
chronic exposure (at ca. 1 mGy/h) compared with acute, single exposure, confirming the
results obtained at 6 months post-irradiation [36].

2.2. Sensory System

Regarding the effects of radiation exposure on the eye, evidence has accumulated
for cataracts following moderate or high doses [37–39] (along with limited evidence at
low doses [40,41]) and neovascular glaucoma following high doses [9]. Azizova et al. [19]
reported a significantly increased radiation risk of normal-tension glaucoma (a subtype of
primary open-angle glaucoma) in a cohort of Russian Mayak nuclear workers, confirming
observations in Japanese atomic bomb survivors [42–44]. Thariat et al. [20] reviewed the
current knowledge on normal tissue complications in the eye and orbit (e.g., the lacrimal
gland, eyelashes, eyelids, cornea, lens, macula/retina, optic nerves and chiasma) following
radiotherapy. Peuker et al. [21] found a sigmoidal relationship between radiation dose and
the incidence of inner ear toxicity following radiotherapy for nasopharyngeal carcinoma,
and proposed dose constraints to reduce inner ear toxicity.

2.3. Nervous System

Associations between radiation exposure and neurological effects on the brain have
increasingly been reported [45–49]. Laurent et al. [22] conducted a cohort study of French
nuclear workers and found significantly increased radiation risks of mortality from de-
mentia and Alzheimer’s disease in addition to leukemia (excluding chronic lymphocytic
leukemia), but not solid cancer. Rübe et al. [23] performed a survey of literature about
the neurocognitive effects of radiation exposure and identified the age dependence of
neurocognitive dysfunction following cranial radiotherapy, which was supported by pre-
clinical rodent studies. Cantabella et al. [24] carried out transcriptomic analysis in the
telencephalon of zebrafish exposed continuously at 0.05–5 mGy/h and found a dose rate-
dependent increase in the genes involved in neurotransmission, neurohormones, and
hypothalamic–pituitary–interrenal axis functions.

2.4. Respiratory System, Reproductive System, and Other Systems

Pertinent to the respiratory system, Matsuya et al. [25] examined the impact of local
exposure to a radiocesium-bearing microparticle (an insoluble microparticle emitted by the
incident at the Fukushima nuclear power plant [50,51]) in normal human lung fibroblasts
and bronchial epithelial cells, and revealed the inflammatory signaling and DNA damage
responses that were modified by the nuclear factor κB pathways. In relation to the repro-
ductive system, Fukunaga et al. [26] reviewed current knowledge about radiation effects on
spermatogenesis and its associated genotoxicity, and discussed the importance of preserv-
ing male fertility during radiotherapy from the perspective of oncofertility. Cruz-Garcia
et al. [27] monitored the messenger RNA transcript abundance of DNA damage response
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genes in the circulating blood lymphocytes of patients with lung, neck, brain or pelvic can-
cer during radiotherapy, and found that ferredoxin reductase (FDXR) represents the most
radioresponsive gene. In an effort to reduce radiation dermatitis following radiotherapy,
Sörgel et al. [28] reported that hyaluronic acid and insulin-like growth factor I mitigated
radiation-induced reductions in the viability and migration of human skin keratinocytes
in vitro. Finally, Kuncman et al. [29] looked at the kinetics of FMS-related tyrosine kinase
3 ligand (Flt-3L, a multipotential hemopoietic factor) during chemoradiotherapy for rectal
cancer and proposed the early initiation of immunotherapy when the concentration of
Flt-3L is high and no lymphopenia has yet occurred.

3. Conclusions

I am grateful to the distinguished authors for their invaluable contributions and
am indebted to the expert reviewers for their cooperation, dedication, and constructive
comments. I would like to acknowledge Cancers for the opportunity to Guest-Edit this
Special Issue. I hope that ongoing and future studies in this research field continue to give
further insights into the manifestations and mechanisms of cancer and non-cancer effects
following ionizing radiation exposure.

Funding: This work received no funding.
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